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Abstract

Imaging findings inconsistent with those expected at specific chronological age ranges may 

serve as early indicators of neurological disorders and increased mortality risk. Estimation of 

chronological age, and deviations from expected results, from structural magnetic resonance 

imaging (MRI) data has become an important proxy task for developing biomarkers that are 

sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) 

has proven effective in identifying age-related microstructural changes within the brain white 

matter, thereby presenting itself as a promising additional modality for brain age prediction. 

Although early studies have sought to harness DTI’s advantages for age estimation, there is no 
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evidence that the success of this prediction is owed to the unique microstructural and diffusivity 

features that DTI provides, rather than the macrostructural features that are also available in DTI 

data. Therefore, we seek to develop white-matter-specific age estimation to capture deviations 

from normal white matter aging. Specifically, we deliberately disregard the macrostructural 

information when predicting age from DTI scalar images, using two distinct methods. The first 

method relies on extracting only microstructural features from regions of interest (ROIs). The 

second applies 3D residual neural networks (ResNets) to learn features directly from the images, 

which are non-linearly registered and warped to a template to minimize macrostructural variations. 

When tested on unseen data, the first method yields mean absolute error (MAE) of 6.11 ± 0.19 

years for cognitively normal participants and MAE of 6.62 ± 0.30 years for cognitively impaired 

participants, while the second method achieves MAE of 4.69 ± 0.23 years for cognitively normal 

participants and MAE of 4.96 ± 0.28 years for cognitively impaired participants. We find that the 

ResNet model captures subtler, non-macrostructural features for brain age prediction.
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1. INTRODUCTION

Each person’s brain ages in its own unique trajectory, emphasizing the need for a precise 

biomarker that gauges the “true” biological age of a brain, relative to chronological age. 

Studies have shown that large deviations between chronological and biological age can 

indicate conversion from mild cognitive impairment (MCI) to Alzheimer’s disease (AD)1, 

brain atrophy after traumatic injury2, schizophrenia3, increased mortality risk4, major 

depressive disorder5,6, and other brain disorders7. Existence of a general biomarker for 

biological brain age holds wide-reaching implications, as it could serve as a tool in guiding 

clinical interventions for brain diseases and disorders.

Diffusion tensor imaging (DTI) facilitates a non-invasive exploration of the degree of 

anisotropy and structural orientation based on water movements within the architecture 

of the tissues.8 It provides a depth of information about brain microstructure beyond 

the capabilities of normal structural MRI modalities such as T1-weighted MRI.9 Studies 

have shown that brain microstructure experiences age-related alterations throughout the 

lifespan,10 offering insights into normal brain aging,11 as well as abnormal brain aging 

like Alzheimer’s disease.12 Fractional anisotropy (FA) and mean diffusivity (MD) are two 

commonly used scalar maps derived from DTI data. In cognitively normal participants, we 

observe changes in brain microstructure and diffusivity as age increases (Figure 1). We 

would like to know whether we can use this information for age prediction. Specifically, 

we study brain age prediction methods that do not depend on macrostructural differences. 

We minimize these differences through non-rigid and non-linear registrations between 

participants and a target atlas space, which involves warping of the brain anatomy. All 

inferences are made using only FA and MD within the normalized space. In this context, 

we are not seeking to develop the most accurate brain age prediction possible. Instead, we 

aim to identify and characterize the aspects of aging that impact white matter microstructure. 
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The overall goal is to develop a metric that is complementary to more traditional structural 

brain age prediction approaches13.

2. METHODS

We propose two distinct methods for predicting brain age from DTI scalar images. (Figure 

2) The first method involves whole-brain segmentation and the extraction of features from 

each region of interest (ROI). These extracted features are then input into a multi-layer 

perceptron (MLP), which generates the predicted age. We adopt this method as our 

baseline, providing us with a benchmark for minimum achievable performance using a 

straightforward approach. The second method leverages a 3D ResNet14 to learn features 

directly from the images. The high-dimensional features are then fed into an MLP to yield 

the predicted age. To determine the best-performing models, we use 5-fold cross-validation, 

with consistent fold-splitting across all models. Finally, we assess the performance of 

models of both methods on the same, previously unseen testing sets, using images of 

cognitively normal participants and cognitively impaired participants.

2.1 Data

The FA and MD images are generated from DTI data preprocessed by the PreQual15 

pipeline. We use brain segmentation labels created by SLANT16,17, aligning them with 

the brain presented in the FA and MD images, to extract the mean and standard deviation 

values of FA and MD within each ROI (Figure 2), and to generate binary brain masks for 

removing non-brain voxels in the FA and MD images. We aim to reduce the macrostructural 

information that the 3D ResNet models can learn from the FA and MD images. To achieve 

this, we align and warp the brain in these images to match with the one in the MNI152 

template18, by performing a series of both linear and non-linear registrations implemented 

by ANTs19.

All resulting images are manually inspected, and those with unsuccessful preprocessing are 

excluded. After inspection, we have a dataset composed of 1327 participants (Table 1). The 

collected data is split at the participant-level into training (which contains only cognitively 

normal participants) and testing sets (which contains both cognitively normal and impaired 

participants). The training set is then divided into five consecutive folds. Each fold, in turn, 

is used once as the validation set while the remaining four folds constitute the training 

set. The data splits are exported to .csv files, and we ensure no participant overlap occurs 

between the training, validation, and testing sets.

2.2 ROI-based feature engineering method

We extract the mean and standard deviation of FA and MD values from 134 ROIs, along 

with the sex of the participant, resulting in a total of 537 features. These features are fed as 

input to an MLP (Figure 2). We experiment with different configurations of hidden layers, 

each varying in the number of neurons.
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2.3 3D residual neural network

We build and train the 3D ResNets with PyTorch20 and MONAI21, using a Quadro RTX 

5000 with 16 GB of RAM. The FA and MD images, each sized at 193×229×193 at 1 mm 

isotropic voxels, are combined (with each image being treated as a separate channel) and 

resampled to 128×128×128 at 1.51×1.79×1.51 mm anisotropic voxels before being input 

into the ResNet. The ResNet subsequently generates 512 features from each FA and MD 

image pair. These 512 features are combined with sex information and provided to an MLP, 

which generates the predicted brain age (Figure 2). We experiment with multiple ResNet 

architectures of varying model complexities, as well as MLPs with and without the hidden 

layer between the input and output layers.

2.4 Model evaluation

Through a 5-fold cross-validation process, we identify the optimal model of each method 

and evaluate its generalizability and applicability using two unseen testing sets. One set 

comprises cognitively normal participants, while the other includes cognitively impaired 

participants (not MCI), participants with mild cognitive impairment (MCI), and participants 

with dementia.

3. RESULTS

For the ROI-based feature engineering method, the MLP configuration with layers arranged 

as (input→128→64→output) outperforms all other configurations from this method, 

achieving MAE of 6.31 ± 0.48 years on the validation set. Despite this, every 3D ResNet 

configuration, even the one with the poorest performance on the validation set, the ResNet10 

concatenated with an MLP that has one hidden layer, is significantly better (t-statistic=3.83, 

p-value=0.019) than the best of the ROI-based feature engineering method across validation 

folds (Figure 3). For the 3D ResNets, increased complexity does not necessarily lead 

to improved performance (compare ResNet34 with ResNet18 in Figure 3). Also, adding 

an extra hidden layer to the MLP does not always improve performance (Figure 3). 

ResNet18 concatenated with an MLP that has one hidden layer yielded the best performance 

(MAE=4.85 ± 0.16 years) across the validation folds.

On the unseen testing sets, the best model from the ROI-based feature engineering method 

achieves MAE of 6.11 ± 0.19 years on cognitively normal participants and MAE of 6.62 ± 

0.30 years on cognitively impaired participants, while the best model among the 3D ResNets 

achieves MAE of 4.69 ± 0.23 years on cognitively normal participants and MAE of 4.96 ± 

0.28 years on cognitively impaired participants. Upon completion of the training, validation, 

and testing of these two chosen models, we assessed the performance of all models on the 

testing sets. In this post-hoc comparison, our chosen ResNet model was the second-best 

regarding MAE on the testing sets (Table 2). For clarification, the age predictions presented 

in the subsequent figures are made by the MLP (input→128→64→output) (the lowest 

purple triangle in Figure 3) trained on the 5th fold or ResNet18 trained on the 5th fold (the 

lowest blue circle with black outline in Figure 3).
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The kernel density of the difference between predicted and chronological age (Figure 4) 

shows that: (i) Compared to the ResNets, the ROI-based feature engineering method has 

larger differences between predicted age and chronological age; (ii) For cognitively normal 

participants, while the majority of age predictions are centered around the chronological 

age (zero difference), the spread of these predictions is quite broad, and there are a few 

outliers for both methods; (iii) On cognitively impaired participants, the differences between 

predicted and chronological age tend to deviate from zero, and there is a noticeable trend of 

the density distribution becoming increasingly narrower and more skewed as the severity of 

impairment advances.

On cognitively normal participants sampled from the testing set, we visually observed that 

brain changes correlate more strongly with increases in predicted age than with increases 

in chronological age (Figure 5). Macrostructural changes, such as ventricle enlargement, are 

not the major influences in the prediction. Rather, subtler, non-macrostructural features seem 

to guide our brain age prediction model.

4. DISCUSSION

We aimed to predict white matter age by focusing solely on microstructural and diffusivity 

features, refraining from using macrostructural features. To achieve this, we used a 

combination of linear and non-linear registrations to align the input images to a standard 

template and warp the anatomy to match the one in the template image. This helps to 

normalize the macrostructures within the images, thereby minimizing the macrostructural 

information the model can use for age prediction. Even with the macrostructural information 

minimized (if not completely removed), our best model shows a performance comparable 

to that reported in existing literature. For instance, Chen et. al reported that their cascade 

neural network model– which takes tract features extracted from 76 fiber tract bundles 

as input– achieves MAE of 4.78 years on the unseen data after refined optimization and 

transfer learning22, while our best model achieves MAE of 4.69 years on the unseen data. 

But note that our model was trained on a larger training set (N=800 for each fold, compared 

to N=500 for theirs). And we did not test our model performance on data coming from 

different sites like they did. We also note that it is not our goal to develop the most accurate 

brain age prediction possible in this project. Instead, the overall goal is to develop a metric 

that is complementary to more traditional structural brain age prediction approaches. As 

we integrate more data into our training set and begin to include macrostructural features, 

along with other types of data, we anticipate the potential to fully leverage the predictive 

capabilities of our model.

5. CONCLUSION

Identification of deviations from the typically-expected changes that occur with progression 

of chronological age is crucial for the early detection and diagnosis of neurological 

pathology. We developed models using two distinct methods for predicting white matter 

specific age, relying exclusively on the microstructural and diffusivity information present 

in DTI scalar images. Notably, we minimized the use of macrostructural information in 
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these models. Our experimental findings affirm that DTI data can serve as valuable input for 

predicting brain age.
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Figure 1. 
The premise of this effort is that the brain undergoes microstructural and diffusivity changes 

throughout the normal aging process. At left above, we can appreciate that there are 

microstructural changes—as shown in fractional anisotropy (FA)—mainly characterized 

by a decrease in FA (top row). Additionally, there are diffusivity changes, with increased 

diffusivity in the white matter, notably in the central white matter, as shown in mean 

diffusivity (MD) (bottom row). We would like to know if prediction of the chronological 

age from microstructure and diffusivity could provide a useful biomarker to detect abnormal 

aging as a difference between the age one might predict from a participant with dementia 

(shown right), versus their true chronological age.
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Figure 2. 
The ROI-based feature engineering method uses mean and standard deviation values of FA 

and MD within each ROI (segmented by SLANT16,17), alongside the sex of the participant, 

to feed into an MLP. The 3D ResNet method extracts features from preprocessed images. 

These features, once concatenated with the participant’s sex, are then processed by an MLP, 

with or without a hidden layer, to generate a prediction of the participant’s age.
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Figure 3. 
The best model from the ROI-based feature engineering method, MLP with layers arranged 

as (input→128→64→output), is significantly worse than the worst model from the 

3D ResNet method, ResNet10 concatenated with an MLP that has one hidden layer (t-

statistic=3.83, p-value=0.019). ResNet18 (with hidden layer in the MLP) is significantly 

better (t-statistic=2.905, p-value=0.044) than ResNet10 (with hidden layer in the MLP), 

and better (t-statistic=2.347, p-value=0.079) than ResNet34 (with hidden layer in the MLP). 

Having a hidden layer in the MLP does not necessarily improve the performance. For 

instance, ResNet10 (with hidden layer in the MLP) is significantly worse (t-statistic=3.629, 

p-value=0.022) than ResNet10 (without hidden layer in the MLP). The size of the markers 

represents the relative complexity of the models (as measured by the number of trainable 

parameters) in comparison to other models from the same method. (All t-statistic and 

p-value presented here are calculated from paired t-test)
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Figure 4. 
Cross-sectional comparison of age predictions made by the top-performing model from 

both the ROI-based feature engineering approach (top row) and the 3D ResNet method 

(bottom row) shows that: i) In comparison to the predictions made by the ROI-based 

feature engineering method, the ages predicted by the ResNet model generally align more 

closely with the chronological ages; ii) As we transition from normal, to impaired, to MCI, 

and finally, to dementia, the density distribution becomes increasingly narrower and more 

diagonal. This pattern suggests a trend of diminishing model performance as the severity of 

the disease increases.
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Figure 5. 
There are more pronounced changes of the brain along the predicted age axis compared 

to the chronological age axis. While macrostructural changes (those remained after the 

registrations) like ventricle enlargement apparently influence age prediction in older 

participants, they are not the primary factors driving the age prediction, particularly for 

participants with predicted ages under 70. In these cases, subtler features, distinct from 

apparent macrostructural changes, are guiding the prediction.
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Table 1.

We use data acquired from 1327 participants for the training, validation, and testing of the models. There are 

mean chronological age shifts across datasets, which makes the prediction more challenging on the unseen 

testing data.

Training + Validation Testing (normal participants) Testing (impaired participants)

Site # Participants Mean Age # Participants Mean Age # Participants Mean Age

BIOCARD23 104 68.7 ± 8.4 35 69.6 ± 7.2 84 73.9 ± 8.4

BLSA24 895 65.1 ± 14.7 117 72.5 ± 13.0 72 82.9 ± 7.4

ICBM25 19 28.0 ± 5.7 1 40 0 N/A

Total 1018 64.7 ± 15.0 153 71.6 ± 12.2 156 ± 9.1
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Table 2.

The 3D ResNets achieve lower MAE than the ROI-based feature engineering method. ResNet18 concatenated 

with an MLP (with one hidden layer of 64 neurons) achieves the best performance on the validation set and the 

2nd-best on the unseen testing sets. The lowest MAE on the validation set for each method is highlighted in 

bold.

Validation (normal) Testing (normal) Testing (impaired)

Method Model MAE (year) MAE (year) MAE (year)

ROI-based feature engineering

MLP (in→128→64→out) 6.31 ± 0.48 6.11 ± 0.19 6.62 ± 0.30

MLP (in→64→32→8→out) 6.49 ± 0.39 6.33 ± 0.23 6.90 ± 0.36

MLP (in→128→64→8→out) 6.49 ± 0.51 6.43 ± 0.27 6.99 ± 0.40

3D residual neural network

ResNet10 + MLP (w/o hidden layer) 5.09 ± 0.29 5.15 ± 0.23 5.41 ± 0.23

ResNet10 + MLP (w/ hidden layer) 5.30 ± 0.28 5.28 ± 0.27 5.70 ± 0.28

ResNet18 + MLP (w/o hidden layer) 4.87 ± 0.16 4.48 ± 0.13 4.86 ± 0.15

ResNet18 + MLP (w/ hidden layer) 4.85 ± 0.16 4.69 ± 0.23 4.96 ± 0.28

ResNet34 + MLP (w/o hidden layer) 4.97 ± 0.12 4.81 ± 0.17 4.96 ± 0.38

ResNet34 + MLP (w/ hidden layer) 5.19 ± 0.42 4.99 ± 0.14 5.35 ± 0.29
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