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ABSTRACT The condemnation of broiler carcasses in
the poultry industry is a major challenge and leads to
significant financial losses and food waste. This study
addresses the critical issue of condemnation risk assess-
ment in the discarding of antibiotic-free raised broilers
using machine learning (ML) predictive modeling. In
this study, ML approaches, specifically least absolute
shrinkage and selection operator (LASSO), classifica-
tion tree (CT), and random forests (RF), were used to
evaluate and compare their effectiveness in predicting
high condemnation rates. The dataset of 23,959 truck-
loads from 2021 to 2022 contained 14 independent varia-
bles covering the rearing, catching, transportation, and
slaughtering phases. Condemnation rates between
0.26% and 25.99% were used as the dependent variable
for the analysis, with the threshold for a high conviction
rate set at 3.0%. As high condemnation rates were in the

minority (8.05%), sampling methods such as random
over sampling (ROS), random under sampling (RUS),
both sampling (BOTH), and random over sampling
example (ROSE) were used to account for imbalanced
datasets. The results showed that RF with RUS per-
formed better than the other models for balanced data-
sets. In this study, mean body weight, weight per crate,
mortality and culling rates, and lairage time were identi-
fied as the 4 most important variables for predicting
high condemnation rates. This study provides valuable
insights into ML applications for predicting condemna-
tion rates in antibiotic-free raised broilers and provides a
framework to improve decision-making processes in
establishing farm management practices to minimize
economic losses in the poultry industry. The proposed
methods are adaptable for different broiler producers,
which increases their applicability in the industry.
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INTRODUCTION

The condemnation of broiler carcasses poses signifi-
cant financial losses and food waste challenges, present-
ing a critical issue within the poultry industry. Broiler
condemnation occurs during the postmortem inspection
process at slaughterhouses, where either the entire car-
cass or specific portions are rejected based on the sever-
ity of defects. Diseases and injuries are common causes
of condemnation, with various factors such as contami-
nation, traumatic injuries, septicemia, dermatitis, and
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ascitic syndrome contributing to partial or complete
condemnation (Horténcio, et al., 2022).

The condemnation rate in broilers is influenced by
various factors, including health status, weather condi-
tions, weight, age, stocking density and management
practices (Buzdugan et al., 2020; Junghans et al., 2022;
Lupo et al., 2009). Health status, a critical predictor of
outcomes such as mortality, morbidity and functional
status, plays a significant role in these rates (Diipjan
and Dawkins, 2022). Pirompud et al. (2023) used tradi-
tional statistical methods to investigate risk factors for
condemnation in antibiotic-free broiler rearing and iden-
tified the most important influencing factors, including
transport time, sex, slaughter age, mortality rate, weight
per crate, mean body weight, feed withdrawal time and
rearing stocking density.

Despite numerous studies on risk factors, reducing
broiler condemnation rates remains challenging due to
the complex interplay of these factors. Condemnation
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rates are influenced by variables such as weight, age,
weather, health status, diseases and preslaughter han-
dling practices such as feed withdrawal, lairage, and
transport times (Lupo et al., 2009; Buzdugan et al.,
2020; Junghans et al., 2022). However, in the broiler
industry, there is little evidence of predictive models
that classify and predict condemnation rates, prioritiz-
ing influencing factors. Two primary methods for pre-
dicting outcomes based on multiple variables are
regression techniques (e.g. logistic regression, LASSO)
and machine learning (ML) algorithms. ML, known for
its ability to handle nonlinear systems and large data-
sets, has gained prominence in various fields (Sampson
et al., 2011; Shahinfar et al., 2014). Within the field of
statistical modeling, the LASSO model is regarded as a
regression strategy since it enhances the accuracy and
interpretability of regression models by applying
machine learning concepts, particularly regularization
techniques (Tibshirani, 1996; Hastie et al., 2009). ML
algorithms have been shown to be effective in predicting
various outcomes in livestock research (Avizheh et al.,
2023; Magalhaes et al., 2023; Punyapornwithaya et al.,
2022; Pirompud et al., 2024). However, to our knowl-
edge, there are no ML predictive models that specifically
classify and predict condemnation rates in broilers.

Machine learning, a branch of data science, is about
training computers to make predictions based on data
(Kuhle, et al., 2018). Better predictions are achieved
through machine learning techniques that adapt and
learn from incoming data. While traditional statistical
methods are valuable, their effectiveness may be limited
when dealing with the complexity of relationships, espe-
cially in scenarios with high condemnation rates. There-
fore, exploring the potential of machine learning is
crucial given its proven superiority, especially when
processing large and complex datasets.

In this study, ML approaches, least absolute shrink-
age and selection operator (LASSO), classification tree
(CT), and random forests (RF) are used to evaluate
and compare their ability to predict high condemnation
rates. LASSO, a statistical method for regression in
datasets with numerous variables, uses a penalty term
to shrink less influential variables to zero. This prevents
overfitting, facilitates variable selection, and results in
an accurate and interpretable model, making LASSO
valuable for statistical modeling and machine learning
(Ghosh, et al., 2021). CT and RF are machine learning
methods that establish rules for categorizing and pre-
dicting outcomes. The CT approach creates a decision
tree with binary answers ("yes" or "no") that shows the
path from the root main node to the leaf node. The
"what-if" results of CT are easy to understand (Block-
eel, et al., 2023; Mlambo, et al., 2022). The RF algo-
rithm, on the other hand, generates a multidimensional
decision tree and the final model outcome is selected by
majority voting based on the results of the individual
trees (Ahmad, et al., 2018). Imbalanced datasets, where
the minority class constitutes less than 40% of the total
data (Google Developer, 2022), can lead to biased ML
models that favor the majority class. To address this,

various data balancing strategies are applied, including
random over sampling (ROS), random under sampling
(RUS), both sampling (BOTH) and synthetic sampling
or random over sampling example (ROSE). These
methods help to improve the predictive accuracy of
models when dealing with imbalanced data (Demir and
Sahin, 2022; Lunardon et al., 2014; Pirompud et al.,
2024).

Despite the limited use of ML in predicting condemna-
tions in poultry production, this study aims to bridge the
gap by evaluating the predictive performance of LASSO,
CT, and RF models for categorizing condemnation per-
centages. In addition, 4 sampling methods - ROS, RUS,
BOTH, and ROSE - were used to optimize the imbal-
ance of the original datasets and improve the prediction
accuracy. The results can support the incorporation of
appropriate ML algorithms into commercial broiler pro-
duction and help decision-makers establish farm man-
agement practices and minimize economic losses. In
addition, the methods can be adapted for different
broiler producers, increasing the applicability of the
results.

MATERIALS AND METHODS

Data Collection and Description of the
Variables

The data for this study were sourced from a broiler
producer primarily exporting poultry to Europe. In com-
pliance with export regulations, the company ensures
antibiotic-free rearing of broilers. The Ross 308 and
Cobb 500 commercial broiler strains were raised in con-
trolled commercial environments with regulated temper-
ature, lighting, and ventilation to optimize growth.
After the rearing phase, the birds were manually sorted
by weight, placed into transport crates, and loaded onto
trucks. Each truck, holding 495 crates, transported the
birds to the slaughterhouse. Following reversible electri-
cal stunning, the birds were automatically eviscerated,
with carcasses and internal organs conveyed together.
Inspectors then identified and separated condemned car-
casses and organs by removing them from the conveyor.
Various causes of condemnation were noted during this
inspection, including purulent abscesses, cellulitis,
arthritis, viscera unfit for human consumption, cachexia,
emaciated carcasses, abnormal carcass color, and car-
casses without offal.

The study used datasets of 27,111 truckloads from
2021 to 2022, which contained 14 independent variables
(Table 1) with condemnation percentage as the depen-
dent variable. To refine the dataset, records with miss-
ing variables, and condemnation rates of less than 0.26%
and more than 25.99% were excluded, leaving 23,959
truckloads with condemnation rates between 0.26% and
25.99% for analysis. For the condemnation risk factors
analyzed in this study, a condemnation rate of more
than 3.0% was set as the threshold for a high condemna-
tion rate to meet customer requirements for corrective
action following McDonald’s data collection guidance
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Table 1. Description of features used to predict the condemnation rate.

Data type Variable Description
Category Season’ ‘ 1 = Winter, 2 = Summer, 3 = Rainy
Time of transport” 1 = Night, 2 = Morning, 3 = Day
Sex® 1 = Male, 2 = Female, 3 = Mixed sex
Numeric Age (day) Slaughter age

Flock size (n)

Mean body weight (g)

Rearing stocking density (kg/m2)
Mortality and culling (%)

Weight per crate (kg)

Birds per crate (n)
Transport duration (min)
Distance (km)

Lairage time (min)

Feed withdrawal time (min)

Number of birds per house

Average of body weight per birds per truckload

Total amount of kilograms of bird per 1 m?

(Total number of dead and culled birds x 100)/total number of
chicks placed

Total amount of kilograms of bird in the crate

Number of birds per crate

Time from the end of loading to arrival at slaughterhouse

Length from farm to slaughterhouse

Time from entering holding area to leaving holding area

Time from feed removal on farm to leaving holding area

'Season in Thailand: winter (November—February), summer (March—May), and rainy (June—October).
?Time of transport is time of day the vehicle left the farm after loading (Night = 18:00—04:00, Morning = 04:00—08:00, Day = 8:00—18:00).
3Sex included male, female, and mixed sex (housing both males and females together).

(McDonald, 2020). Records with condemnation rates
higher than 25.99% were excluded due to the presence of
infections in those batches, which resulted in abnormally
high condemnation rates. The condemnation rate was
treated as a binary characteristic and labeled "0” for a
low condemnation rate from 0.26% to 3.00% and "1” for
a high condemnation rate from more than 3.0% to
25.99%. In the refined dataset of 23,959 truckloads,
1,928 (8.05%) were classified as having a high condem-
nation rate, while 22,031 (91.95%) were classified as hav-
ing a low condemnation rate.

Pearson correlation coefficients were used to examine
the relationships between continuous predictors and the
condemnation rate, using the "cor" function from R-
Base. A correlation matrix was then created and visual-
ized using the ’corrplot’ package, which illustrates the
potential linear relationships between the predictors and
the condemnation rate and highlights the strength and
direction of these relationships.

Machine Learning Algorithms

Prediction models for high condemnation rates (0 = nor-
mal/low condemnation, 1 = high condemnation) have
been developed using ML algorithms, in particular
LASSO, CT, and RF. These algorithms have different
prediction strengths. LASSO regularizes the linear regres-
sion and introduces a penalty term based on the absolute
values of the regression coefficients to simplify the model
and automatically select features by shrinking coefficients,
making it more interpretable and efficient. The tuning
parameter controls the strength of this penalty and plays
a crucial role in determining the trade-off between model
simplicity and accuracy (Hastie, et al., 2009; Tibshirani,
1996). CT uses iterative partitioning and pruning to cre-
ate a decision tree that effectively classifies the observa-
tions while avoiding overfitting by simplifying the tree
structure based on certain criteria such as the classifica-
tion error rate and the Gini index (Breiman et al., 2017;
Shahinfar, et al. 2014). In contrast, RF uses bootstrap

aggregation or bagging to create numerous decision trees.
Each tree makes independent predictions, and their
collective decisions contribute to the overall predictions
(Shahinfar, et al. 2014).

The ML models were created with R version 4.3.1 and
the algorithms LASSO, CT, and RF (R Core Team,
2023). Important packages used in the development
were caret, dplyr, glmnet, tidyverse, partykit, e1071,
ROCR, randomForest, and ggplot2.

Model Building and Sampling Techniques

ML algorithms in R were employed to forecast the like-
lihood of a high condemnation rate. The original dataset
contained 22,031 truckloads (91.95%) with a low condem-
nation rate of 0.26% to 3.0% and 1,928 truckloads
(8.05%) with a high condemnation rate of greater than
3.0% to 25.99%. In this study, the minority -class
accounted for 1% to 20%, which is a moderate imbalance
(Google Developer, 2022). ML algorithms perform best
when samples are evenly distributed across classes, so
sampling methods were used to balance the dataset.

Figure 1 outlines the process of creating the original
data model, starting with a 70:30 segmentation of the
dataset. The original dataset of 23,959 truckloads was ran-
domly divided into a train dataset and a test dataset, with
16,772 truckloads for the train dataset and 7,187 truck-
loads for the test dataset. The train dataset comprised
15,422 truckloads with low condemnation rates (majority
class) and 1,350 truckloads with high condemnation rates
(minority class). This segmentation was used for model
building, parameter tuning and performance evaluation.

The model development included a 10-fold cross-valida-
tion with the train dataset. In addition, ROS, RUS,
BOTH, and ROSE parameter tunning methods from the
ROSE package (R Core Team, 2023) were used to
remove class imbalances and improve model predictions.
In ROS, the instances of the minority class are randomly
duplicated to equalize the class distribution (Demir and
Sahin, 2022). RUS, on the other hand, randomly removes
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Figure 1. The process of machine learning methods for condemnation rate prediction in original imbalance and balance datasets.

instances from the majority class to balance the class dis-
tribution (Demir and Sahin, 2022). BOTH is a combina-
tion of oversampling and undersampling (Lunardon, et
al., 2014). In synthetic sampling, which is implemented
by ROSE in particular, synthetic instances of the minor-
ity class are generated (Lunardon, et al., 2014).

Given that the imbalanced data were split into train
and test datasets, the test dataset (n = 7,187 truckloads)
was reserved for evaluating all machine learning models
generated in this study. The imbalanced train data were
initially used to train these models. However, the appli-
cation of oversampling and undersampling techniques
inevitably altered the size of the train dataset compared
to the original imbalanced data. The details of the sam-
ple size for the train dataset for each sampling technique
and ML method are provide in Supplementary Table 3.
For example, ROS, an oversampling technique, increase
minority class size from 1,350 to 15,422 truckloads.

Model Evaluation

The evaluation of model performance was based on
the agreement between the actual results and the

predictions of the model, using metrics such as true-posi-
tive (TP), true-negative (TIN), false-positive (FP), and
false-negative (FIN). The total number of observations
(truckloads) was represented by N, where N = TP +
TN + FP + FN. Standard performance measures
defined by (Shahinfar, et al., 2014) were used to evaluate
model performance:

® Accuracy (ACC): Measures the proportion of cor-
rectly identified observations for both classes
(positive = high condemnation, negative = low con-
demnation).
ACC = (TP + TN)/(TP + TN + FP + FN)
e Sensitivity (Se): TP rate or recall, measures the pro-
portion of positives correctly identified.
Se = TP/(TP + FN)
e Specificity (SP): TN rate, measures the proportion of
negatives correctly identified.
SP = TN/(TN + FP)
® Positive Predicted Value (PPV): Precision, measures
the proportion of predicted positives that are correct.
PPV = TP/(TP + FP)
e Negative Predicted Value (NPV): Measures the pro-
portion of predicted negatives that are correct.
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NPV = TN/(TN + FN)

the F1 score and the area under the receiver operating characteristic
(ROC) curve were also used to evaluate model performance (Vihinen,
2012). The F1 score is calculated using the formula:

Fl— 2 x Precision x Recall
" Presion + Recall

the ROC curve for each ML model was generated by
plotting the true-positive rates (sensitivity) against the
false-positive rates (1-specificity) using the functions
provided by the ROCR package (Sing, et al., 2005). The
discriminatory or predictive ability of the predictors was
assessed by determining the area under the ROC curve
(AUC) for each ML model. As stated by Hosmer, et al.
(2013), the interpretation of the AUC values was as fol-
lows: An area under the curve (AUC): 0.5 indicates the
absence of discrimination; 0.6 to 0.7 indicates fair dis-
crimination; 0.7 to 0.8 indicates acceptable discrimina-
tion; 0.8 to 0.9 indicates great discrimination; and 0.9 to
1.0 denotes outstanding discrimination.

Variable Importance

It is critical in the field of machine learning to assess
the significance of variables to obtain information
regarding the effect of removing predictors from the
model on prediction accuracy. This evaluation was per-
formed by ranking the predictors using the varImp func-
tion from the caret package (Punyapornwithaya, et al.,
2022). In this analysis, ML models developed with the
train dataset were considered. In the context of predic-
tive modeling, the variable importance scores, which
were normalized to a maximum of 100, provided a clear
indication of the predictors’ relative importance, with
higher scores signifying greater significance.

RESULTS AND DISCUSSION

Summary of Descriptive Statistics of All
Studied Variables

The study used data from 23,959 truckloads from the
years 2021 and 2022. Table 2 shows the mean condem-
nation percentage for each categorical variable, while
Table 3 provides descriptive statistics of continuous

Table 2. Mean percentage of condemnation.

Truckload
Category variable n % % Condemnation
Season
Winter 9,558 39.89 141
Summer 4,799 20.03 1.41
Rainy 9,602 40.08 1.12
Time of transport
Night 10,826 45.18 1.21
Morning 1,950 8.14 1.28
Day 11,183 46.68 1.37
Sex
Male 1,793 7.48 1.02
Female 1,558 6.50 0.91
Mixed sex 20,608 86.02 1.34

variables related to condemnation percentages. Addi-
tional details on the distinction between high and low
condemnation rates for each variable can be found in
Supplementary Tables 2 and 3.

Condemnation percentages for all truckloads ranged
from 0.26% to 25.99%, with a mean of 1.29% and a
median of 0.75%. The original data set included 22,031
truckloads (91.95%) with a low condemnation rate
between 0.26% and 3.0% and 1,928 truckloads (8.05%)
with a high condemnation rate between 3.0% and
25.99%. The proportion of minority classes in the data-
set was between 1 % and 20 %, indicating a moderate
imbalance (Google Developer, 2022). Table 4 shows the
percentages of the causes of condemnation. It was found
that the highest cause of condemnation was viscera not
fit for human consumption (0.96% of 1.29%), represent-
ing 74.42% of the causes of condemnation.

In the correlation analysis, almost all pairs of variables
showed significant correlations, with p-values less than
0.05, as shown in Figure 2. The results show a strong
positive correlation between distance and transportation
duration (r = 0.87, P < 0.001). Similarly, weight per
crate and mean body weight are strongly correlated
(r = 0.76, P < 0.001), while mean body weight shows a
moderate correlation with rearing stocking density
(r=0.68, P <0.001). In addition, the percentage of con-
demnations shows a slight positive correlation with mor-
tality and culling rate (r = 0.17, P < 0.001) and negative
correlations with mean body weight (r = —0.20, P <
0.001), weight per crate (r = —0.17, P < 0.001) and rear-
ing stocking density (r = —0.14, P < 0.001).

Model Performances With Original Datasets

The model performances of the original datasets are
shown in Table 5. The high accuracy in the range of 92-
93 % indicates a good overall performance of all 3 mod-
els. The high specificity (99%) of all 3 models show how
well the models correctly identify negative cases or low
condemnation rates. The sensitivity, which indicates the
ability to correctly identify all positive cases or a high
condemnation rate (Trevethan, 2017), is between 0.06
and 0.17 for the train dataset and 0.04 and 0.13 for the
test dataset. In addition, the model performance was
also evaluated by the F1 score is a valuable metric in
classification models, offering a balanced measure of
accuracy by considering both precision and recall. This
metric is especially useful in handling imbalanced data-
sets, providing a comprehensive evaluation of a model’s
performance (Wood, 2016). In the current study, F1
scores are low: 0.11 to 0.30 for the train dataset and 0.09
to 0.22 for the test dataset. The AUC scores for the
LASSO and CT models of train and test datasets were
classified as fair (71—72%) and poor (56—57%) classifica-
tion models, respectively. In contrast, the AUC for the
RF model was 99% on the train dataset but dropped to
80% on the test dataset. This finding suggests potential
overfitting, as the model performed significantly better
on the train data than on the test data. However, since
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Table 3. Descriptive statistics of continuous variables and condemnation rate.

Variables Mean SD Min Max Median % CV
Flock size (n) 27411.63 8974.59 5184 62000 30200 32.74
Age (day) 44.74 5.82 32 70 43 13.01
Mean body weight (g) 2935.34 308.60 1330 5040 2933 10.51
Rearing stocking density (kg/m?) 29.09 3.28 13.27 41.23 29.11 11.24
Mortality and culling (%) 5.09 2.42 1.02 11.96 4.56 47.54
Weight per crate (kg) 18.04 2.15 6.35 35.21 17.96 11.92
Bird per crate (n) 6.15 0.49 4 10 6 7.96
Lairage time (min) 118.45 64.41 10 886 114 54.37
Transport duration (min) 151.23 87.64 30 488 126 57.95
Distance (km) 112.96 78.02 25 354 80 69.07
Feed withdrawal time (min) 535.74 80.41 300 852 550 15.02
Condemnation (%) 1.29 1.82 0.26 25.99 0.75 141.08

Table 4. Causes of condemnation.

% of total % of causes of

Causes of condemnation slaughter condemnation
Purulent abscess 0.16 12.20
Cellulitis 0.01 1.03
Arthritis 0.04 3.24
Viscera not fit for human consumption 0.96 74.42
Cachexia and emaciated carcasses 0.06 4.55
Abnormal color carcasses 0.04 3.10
Carcass without offal 0.02 1.54
Condemnation percentage 1.29 100

the AUC on the test dataset is still above 80%, the RF
model remains a good classifier (Tlyrek, 2023). Previous
studies have also documented overfitting in RF models
(Liet al., 2024; Song et al., 2021).

These results indicate that the predictive performance
of the RF model was outstanding for the train dataset
and great for the test dataset, based on the classification
criteria by Hosmer, et al., (2013). Analysis of the ROC
curve showed that RF had better predictive perfor-
mance than CT and LASSO, as it had a larger area
under the curve (Figure 3). In summary, the results
show that none of the 3 models can effectively predict a
high condemnation rate in the original imbalanced data-
set due to the low sensitivity and F1 score. Although
models such as RF showed high predictive power with
an AUC of 0.8 for the original test dataset, the overall
performance was affected by the imbalance. Therefore,
the use of sampling methods to handle the imbalance
parameters was deemed necessary to improve the predic-
tive performance of the model.

Model Performances With Balanced
Datasets

Handling imbalanced data is essential for enhancing
the performance of ML models and ensuring the reliabil-
ity of the results. If 1 class outperforms the others,
biased models may perform well in the dominant class
while underperforming in the minority class. By using
sampling techniques to treat imbalanced data, ML proj-
ects can improve generalization and make predictions
across classes, making the model more robust and effec-
tive (Nagidi, 2020). In this study, given the moderate
imbalance in the original dataset, the 3 ML models were
not appropriate for predicting a high condemnation rate

due to low Se and F1 scores. Thus, 4 sampling techni-
ques—ROS, RUS, BOTH, and ROSE—were employed
to address the imbalanced dataset and improve the
model performance. The model performance of the bal-
ance train and test datasets with 4 different sampling
techniques is presented in Table 6, revealing that each
sampling method has a remarkable impact on the sensi-
tivity, with the RUS method having the highest sensitiv-
ity compared to the others. The F1 score was also
improved by the sampling techniques, as it increased
from 0.09-0.22 for the original test datasets to 0.29-0.40
for the balanced test datasets. The AUC values for the
original and balanced train datasets differ significantly.
All ML models trained on the balanced dataset demon-
strated higher AUC values compared to those trained
on the original dataset, suggesting a potential risk of
overfitting. In contrast, the AUC values for the original
and balanced test datasets did not show significant dif-
ferences. Among the models, RF achieved the highest
AUC, followed by LASSO and CT. Avizheh et al. (2023)
reported similar AUC values between the original and
balanced datasets following parameter tuning. The areas
under the ROC curve for the balanced dataset were very
similar across the 4 sampling techniques for each model,
with the RF model exhibiting the largest area under the
ROC curve, as illustrated in Figure 4.

In this study, the most appropriate model for predict-
ing a high condemnation rate should be RF as it had
higher AUC compared to CT and LASSO. The AUC of
RF was 0.8 which was in the great performance criteria
according to Hosmer, et al. (2013). The RUS method was
required to treat the imbalance of original data before RF
was performed, as it provided higher sensitivity with a
comparable F1 score compared to other sampling techni-
ques. However, the RUS sampling technique reduced the
ACC value from about 90 % of the original dataset to
about 70 % of the balanced dataset. In general, a higher
ACC value is preferable. Occasionally, however, a model
with a lower ACC value but higher precision or recall
may be better (Google Developer, 2022).

Variable Importance

In the original imbalanced datasets, mean body
weight (BW), weight per crate (WC), rearing stocking
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Figure 2. The correlation matrix between the studied variables. Age (bird age), BW (mean body weight), BC (bird/crate), MC (mortality and
culling rate), Di (distance of transport), Du (duration of transport), FS (flock size), Sex, WC (weight /crate), LT (lairage time), Se (season), St (rear-

ing stocking density), Ti (time of transport), WT (feed withdrawal time) and condemn (%condemnation).

density (St), and age were the most significant predic-
tors of a high condemnation rate for the CT model, and
BW, WC, feed withdrawal time (WT), and St for the
RF models. These were not the same as the 4 most sig-
nificant predictors of the LASSO model, which were
bird per crate (BC), sex, WC, and mortality and culling
rate (MC), as illustrated in Figure 5. Only 1 predictor,
WC, was among the top 4 most influential predictors
across the 3 models. Although they were not included in
the LASSO model, BW and WC were the 2 most signifi-
cant predictors for the CT and RF models. This incon-
sistency underlines the varied outcomes of feature
selection in the models.

For the balanced dataset, RF with RUS was selected
due to its great performance in predicting the high con-
demnation rate, as shown in Figure 6. The top 4 predic-
tors in each model differed from those in the imbalanced
dataset. In the LASSO model for the balanced dataset,
the 4 most important predictors were BC, sex, WC, and
MC. The 4 most significant predictors in the CT model
were BW, MC, WC, and distance of transport (Di). In
the RF model, BW, WT, MC, and lairage time (LT)

were the 4 most important predictors for the balanced
dataset. MC was the only predictor that was among the
top 4 variables in all 3 models. In the LASSO and CT
models, WC was 1 of the top 4 predictors, while BW was
in the CT and RF models. The first 4 ranks of the CT
and RF models did not include any categorical variables,

Table 5. Model performances with the original datasets.

Parameters’
Models ACC  Se Sp PPV NPV F1 AUC
Train data
LASSO regression  0.92 0.06 099 0.74 092 0.11 0.72
Classification tree  0.92 0.15 0.99 064 093 0.24 0.57
Random forests 093 0.17 099 096 093 030 0.99
Test data
LASSO regression  0.92 0.04 0.99 079 092 0.09 0.71
Classification tree  0.92 0.13 0.99 0.63 093 022 0.56
Random forests 093 0.11 099 0.78 093 020 0.80

'Accuracy (ACC), sensitivity (Se), specificity (Sp), positive predicted
value (PPV), negative predicted value (NPV), F1 (F-measure), AUC
(Area under the ROC curve).
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Figure 3. Receiver operator characteristic curve of the LASSO regression (LASSO), classification tree (CT), and random forests (RF) models

for the original data sets. A= train dataset, B = test dataset.

but the second rank of the LASSO model only included
the categorical variable of sex.

Ranking Variable Importance

Variable importance scores play a crucial role in
understanding the importance of individual variables in
predictive modeling and classification tasks. These
scores provide information on the extent to which a par-
ticular variable influences the classification status
of observations within a dataset. The most important
features can improve model interpretability and guide

feature selection. According to Khalilia et al., (2011),
the variable important score shows how strongly a vari-
able is correlated with the categorization status. In the
current study, the RF algorithm employing the RUS
tuning method was the most effective for both classify-
ing and forecasting a high condemnation rate. It was
discovered that the 4 most important variables for fore-
casting a high condemnation rate were BW, WT, MC,
and LT.

The first rank of important variable for predicting a
high condemnation rate was BW. Pirompud et al.
(2023) reported a significant negative relationship
between condemnation rate and mean body weight in

Table 6. Model performance of the balanced datasets with 4 sampling techniques.

Parameters”

Models Sampling technique’ ACC Se Sp PPV NPV F1 AUC

Train dataset

LASSO regression ROS 0.99 1.00 0.99 0.99 1.00 0.99 1.00
RUS 0.78 1.00 0.76 0.26 1.00 0.42 0.98
BOTH 0.98 0.99 0.98 0.79 1.00 0.88 1.00
ROSE 0.87 0.42 0.91 0.29 0.94 0.34 0.77

Classification tree ROS 0.99 1.00 0.99 0.99 1.00 0.99 1.00
RUS 0.79 1.00 0.77 0.27 1.00 0.43 1.00
BOTH 0.97 0.99 0.97 0.77 0.99 0.87 1.00
ROSE 0.87 0.40 0.92 0.30 0.94 0.34 0.78

Random forest ROS 0.99 1.00 0.99 0.99 1.00 0.99 0.99
RUS 0.78 1.00 0.76 0.26 1.00 0.42 0.99
BOTH 0.97 0.99 0.98 0.80 0.99 0.88 0.99
ROSE 0.87 0.44 0.90 0.28 0.95 0.34 0.81

Test dataset

LASSO regression ROS 0.92 0.21 0.98 0.57 0.93 0.30 0.72
RUS 0.73 0.67 0.74 0.18 0.96 0.29 0.72
BOTH 0.91 0.34 0.96 0.44 0.94 0.39 0.71
ROSE 0.86 0.38 0.90 0.25 0.94 0.31 0.69

Classification tree ROS 0.92 0.24 0.98 0.59 0.94 0.34 0.57
RUS 0.75 0.70 0.75 0.20 0.97 0.31 0.57
BOTH 0.91 0.35 0.96 0.42 0.94 0.38 0.57
ROSE 0.87 0.35 0.91 0.25 0.94 0.29 0.58

Random forest ROS 0.92 0.24 0.98 0.59 0.94 0.34 0.80
RUS 0.74 0.70 0.75 0.20 0.97 0.31 0.80
BOTH 0.91 0.36 0.96 0.45 0.94 0.40 0.81
ROSE 0.86 0.41 0.90 0.27 0.94 0.32 0.79

'ROS = random over sampling, RUS = random under sampling, BOTH = both sampling, ROSE = random over sampling example.
2Accuracy (ACC), sensitivity (Se), specificity (Sp), positive predicted value (PPV), negative predicted value (NPV), F1 (F-measure), AUC (Area

under the curve).
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Figure 5. Variable importance plots from the original dataset show the predictors of high condemnation (%) of broilers raised without antibiot-
ics from the LASSO regression, classification tree (CT), and random forests (RF) models. BC (bird/crate), BW (mean body weight), WC (weight/
crate), St (rearing stocking density), WT (feed withdrawal time), MC (mortality and culling rate), age, LT (lairage time), Du (duration of trans-
port), Se (season), Ti (time of transport), FS (flock size), and sex.

broilers reared without an antibiotic program. In agree-
ment with Hashimoto et al. (2013) they reported a sig-
nificant negative correlation between body weight and
condemnation rate (r = —0.195). Kanabata et al. (2023)
found a positive correlation between high body weight

and condemnation, especially in ascites. It is hypothe-
sized that this correlation is the result of excessive oxy-
gen consumption caused by metabolic overload due
to weight gain. However, they did not find a significant
correlation between body weight and overall total
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Figure 6. Variable importance plots from the RUS balance dataset show the predictors of high Condemnation (%) of broilers raised without
antibiotics from the LASSO regression, classification tree (CT), and random forests (RF) models. BC (bird/crate), BW (mean body weight), WC
(weight /crate), St (rearing stocking density), WT (feed withdrawal time), MC (mortality and culling rate), age, LT (lairage time), Du (duration of
transport), Se (season), Ti (time of transport), FS (flock size), and sex.
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condemnation. The influence of mean body weight and
condemnation rate might be varied among studies might
be due to broiler genotypes, rearing systems, causes of
condemnation, or tools to analyze e.g. conventional sta-
tistics or ML algorithms.

Feed withdrawal time ranked as the second most sig-
nificant variable in predicting a high rate of condemna-
tion. Feed withdrawal time includes the time in the
house without feed, the catching time, the transport
time, and the time in the lairage area before processing,
while water should be provided until catching (Monleon,
2012). Feed withdrawal 8 to 12 h before slaughter is the
most effective method to minimize carcass contamina-
tion and reduce carcass weight loss (Lyon et al., 1991;
Northcutt et al., 1997). The condemnation rate in
broilers is influenced by the feed withdrawal time. This
could be due to the carcasses being contaminated by the
remaining contents of the crop and digestive tract if the
withdrawal time is insufficient (Northcutt et al., 1997).
The long duration of food deprivation led to the rupture
of many inner layers of the mucosa and submucosa,
making the intestine sensitive and facilitating contami-
nation with feces. The process of evisceration led to the
penetration of feces into the abdominal cavity and car-
cass, as documented by Lopez, (2010). Excessive feed
deprivation for more than 13 h can lead to discoloration
of the empty crop, proventriculus, and gizzard due to
bile accumulation. The intestines may become weak and
thin, with detached mucosa, increasing the likelihood of
ruptures and increasing the risk of microbial contamina-
tion (Monleon, 2012).

The third crucial variable for predicting a high con-
demnation rate was MC. Several factors, including rear-
ing density, litter moisture, ammonia levels, ventilation,
temperatures, and disinfection, contributed to the clini-
cal signs of reduced feed intake and performance in coli-
bacillosis—a disease caused by E. coli. As a result, there
was a high mortality rate during rearing (Chauvin et al.,
2011; Whiting et al., 2007). Some surviving broilers
showed gastrointestinal pathology that could spread to
other organs, leading to respiratory infections and
potential septicemia through the colonization of internal
organs (Muchon et al., 2019). These broilers were more
susceptible to mortality during transportation, which
increased the condemnation rate due to viscera unfit for
human consumption (Cockram and Dulal, 2018; Lupo et
al., 2010).

Lairage time was the fourth significant variable that
predicted a high rate of condemnation. Lupo, et al.
(2010) found a negative correlation between lairage time
and condemnation rate, but a positive correlation with
mortality rate. Because they don’t have much room in
the crate during lairage, heat builds up and has a big
impact on the temperature environment. All of the birds
in the load face difficulties due to inadequate ventilation
in the lairage location. A high death rate may result if
the temperature inside the crates is higher than the
ambient temperature and the body temperature
increases by more than 1°C (Bayliss and Hinton, 1990;
Jacobs et al., 2017; Mitchell and Kettlewell, 1998;

Nijdam et al., 2004). The observed increase in mortality
rate instead of condemnation rate can be explained by
the fact that more birds die under unfavorable lairage
conditions, which means a lower condemnation rate for
the remaining birds. According to Petracci et al. (2005),
an effective environmental management system in the
processing plant’s holding area explains why the lairage
period had little effect on the mortality rate or the car-
cass condemnation rate. This result agrees with that of
Pirompud et al. (2023), who found no effect of lairage
time on the condemnation rate in broilers reared without
antibiotics.

In addition to the 4 main variables, this study identi-
fied other significant factors contributing to high con-
demnation rates in broilers reared without antibiotics.
These factors include rearing stocking density, duration
of transport, weight per crate, distance of transport, and
age of the birds. Rearing stocking density plays a crucial
role in the overall welfare of broilers as it affects their
health and stress levels during the production cycle. In
addition, the duration and distance of transport can
affect the welfare of the animals and potentially lead to
physiological stress and injury, which in turn can result
in condemnation. Weight per crate is another critical
factor, as overcrowding or inappropriate loading density
can exacerbate stress and physical trauma during trans-
portation and affect the overall condition of the birds on
arrival. The age of the birds is also an important factor,
as older birds may be more susceptible to stress and
health problems during transportation and processing.
Addressing these risk factors through proper manage-
ment practices, optimal transport conditions and adher-
ence to recommended stocking densities can contribute
to a significant reduction in condemnation rates and
thus minimize economic losses in broiler production.

It is important to note that factors of lesser impor-
tance, such as the number of birds per crate, transport
time, sex and season, should not be disregarded. While
certain variables such as sex and season are unchange-
able, factors such as the number of birds per crate and
transport time can be adjusted and thus offer potential
opportunities for risk mitigation.

Overall, the machine learning model identifies and
ranks the factors associated with condemnation rates,
providing crucial insights for risk assessment. The poul-
try industry can leverage these insights to target and
mitigate high-risk factors that lead to higher condemna-
tion rates. In addition, by applying new data under dif-
ferent scenarios of factor combinations, the model can
predict future condemnation rates. These predictions
provide valuable insight into the future and allow the
industry to anticipate outcomes and implement more
effective strategies.

Limitations

It should be highlighted that although machine learn-
ing algorithms and sampling techniques are the focus of
this work, it only covers 3 algorithms and 4 sample
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techniques for parameter optimization. A more compre-
hensive investigation of the factors influencing increased
condemnation rates could significantly improve deci-
sion-making for broiler producers. Expanding the com-
parison to include additional results derived from
different algorithms and sampling methods would con-
tribute to a more nuanced and informed decision-making
process aimed at reducing condemnation rates. The
observed variability in results between different ML
algorithms highlights the crucial role played by factors
such as the number of predictors, variable types, and
datasets. Researchers are advised to carefully consider
these factors both in the selection of ML methods and in
the interpretation of study results.

In summary, this research not only advances machine
learning predictive models but also provides insightful
information for broiler production decision-makers.
Stakeholders can avoid financial losses by implementing
targeted farm management and monitoring measures by
accurately predicting high condemnation status. The
methodology used in the study provides flexibility in
analyzing data from different broiler producers, which
increases its relevance in commercial contexts.
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