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Mitochondrial 16S rRNA gene as a molecular marker in the phylogenetic 
relationships of some Rabbitfishes species (Siganidae: Perciformes)
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ABSTRACT
Background: Siganidae is a marine teleost family consisting of a single extant genus, Siganus Forsskål, 1775, which 
included 29 recognized species of rabbitfish. 
Aim: The main goal of this study was the use of the mitochondrial 16S rRNA gene as a potential molecular marker in 
the phylogenetic relationships study of some rabbitfishes species (Siganidae: Perciformes). 
Methods: The samples were gathered from the Red Sea. The sequences of four rabbitfishes (Siganus argenteus, 
Siganus luridus, Siganus rivulatus, and Siganus stellatus) were deposited into NCBI to gain the accession numbers 
(PP488874–PP488877) and then analyzed with their related rabbitfishes depending on available sequence data of the 
mitochondrial 16S rRNA gene. 
Results: The results of 16S rRNA sequences illustrated that the average A+T values were greater than C+G. 
Conclusion: The low genetic distance between S. luridus and Siganus rivulatus indicated a close linkage between 
them.
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Introduction
With 27 species, siganids, or “rabbit fishes,” are a 
small family of marine herbivorous fish known as is 
widely spread throughout the tropical waters of the 
Indian Ocean, Red Sea, and Indo-Pacific (Woodland, 
1983; Saoud et al., 2008). Moreover, subtropical 
Mediterranean locations have been reported to harbor 
these fish (Saoud et al., 2008; Insacco and Zava, 2016). 
A large range of salinity and temperature were tolerable 
to siganidas (Woodland, 1983; Saoud et al., 2007). In 
terms of growth, siganida grows similarly to other 
marine organisms that are cultivated. Its maximum 
weight and length are 318.2 g and 32 cm, respectively 
(Bariche, 2005). 
It is challenging to accurately identify fish and infer 
the evolutionary relationships among species based on 
their morphology in many taxonomic groups that are 
distributed around the world. This is because species 
that are descended from convergent evolution share 
comparable morphological traits, and the pattern of 
speciation is highly complex (Rice and Westneat, 2005; 
Duftner et al., 2007).
Nowadays, it is thought that molecular marker-derived 
genetic information is crucial for the sustainable 
management, exploitation, and conservation of fisheries 
and animals as well as for promoting sustainable 
aquaculture (Casey et al., 2016; Lind et al., 2016).

Species characterization using morphology and 
anatomical characters causes sometimes errors in the 
proper identification of closely related species. Because 
of these issues, molecular markers have been used as 
a complementary tool for taxonomic identification 
(AL-Qurashi and Saad, 2022).
To comprehend biodiversity assessments, conservation 
management, evolutionary patterns, and processes, 
accurate species delimitation, and phylogenetic 
reconstruction are essential (Traldi et al., 2020; McCord 
et al., 2021).
Fish species identification, fish resource management, 
and seafood monitoring are all performed achievable 
by mitochondrial DNA (Teletchea, 2009; Rubinoff 
et al., 2006). 
The mitochondrial 16S rRNA gene was used for 
molecular phylogenetic research in several fish species 
(Li et al., 2013). Because these genes are preserved 
and non-coding, they were crucial in establishing 
phylogenetic relationships (Rathipriya et al., 2022). 
The basic goal of this work was to evaluate the 
phylogenetic linkages of some species of rabbitfishes 
belonging to the family Siganidae by the mean of large 
mitochondrial rRNA (16S rRNA) gene.
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Materials And Methods
Samples collection and species identification 
The study sampling site was the Red Sea, where four 
species of family Siganidae (Siganus argenteus, Siganus 
luridus, Siganus stellatus, and Siganus rivulatus) were 
compiled and identified. In order to isolate DNA, the 
sample muscles were taken out and preserved at –20°C
DNA isolation, and PCR amplification
Using the DNA Mini kit (Qiagen, Germany) according 
to the manufacturer’s instructions, the genomic DNA 
was extracted from the conserved muscles. Using 
previously published primers, PCR was utilized to 
amplify a partial sequence of the mitochondrial 16S 
rRNA (Simon et al., 1991). Using 23 μL of 2X master 
mix, 1 μL of genomic DNA, 1 μL of each primer, and 20 
μL of nuclease-free water, the PCR was finished in 46 
μL. The amplification conditions included five minutes 
of denaturation at 95°C, thirty cycles of denaturation, 
annealing, and extension at 94°C, 48°C, and 72°C, 
respectively, for sixty seconds, and a final extension 
at 72°C for seven minutes. On a 1.5% agarose gel 
containing ethidium bromide and a 100 bp DNA ladder, 
the PCR results were electrophoresed.
Sequences and phylogenetic analysis 
The final sequences were finished by Macrogen (South 
Korea, Seoul). In order to obtain accession numbers, 
the 16S rRNA sequences were deposited into GenBank/
NCBI. The sequences were aligned using CLUSTAL W 
(Thompson et al.,  1994), using the default parameters. 
Using MEGA software version 7.0 (Kumar et al., 
2016), two approaches were used for phylogenetic 
reconstructions: neighbor joining and minimum 
evolution. We employed 1,000 bootstrap iterations of 
Kimura two-parameter distances (Kimura, 1980) to 
finalize the sequence divergences (Felsenstein, 1985).

Results
This work establishes the evolutionary lineages of 
four species of the family Siganidae: S. argenteus, S. 
luridus, S. stellatus, and S. rivulatus. This was achieved 
by employing large subunit ribosomal RNA (16S 
rRNA) sequences.

In all four species, the 16S rRNA-produced bands range 
in length from 521 to 570 bp. The 16S rRNA sequences 
were shown in GenBank/NCBI to obtain the accession 
numbers (PP488874––PP488877). The findings show 
that S. argenteus and S. rivulatus possess the shortest 
sequence (521 bp.) while S. stellatus possesses the 
sequence with the greatest length (570 bp.). Adenine (A), 
thymine (T), cytosine (C), and guanine (G) exhibited 
average frequencies of 28,63, 22.72, 25, and 23.65%, 
respectively. As was shown in Table 1, the average 
attribution for A+T was more significant compared to 
that of C+G. The final alignments comprised 589 base 
pairs. The sites that were variable, and conserved were 
17 and 534, respectively.
The P-distances across the entire fish fluctuated between 
0.0000 and 0.0197%. The distance value was 0.05% 
overall. The P-distances among the Siganus species 
ranged from 0.0000 to 0.0082%. The largest value 
(0.0082) was found between _Siganus_javus and both 
Siganus canaliculatus and S. rivulatus (DQ898115.1). 
The smallest value (0.0000) was found between 
Siganus_canaliculatus and S. rivulatus (DQ898115.1) 
as well as understudied S. stellatus and both S. stellatus 
(KT952627.1) and Siganus punctatus. The P-distances 
among the studied species of Siganus spanned the 
range from 0.0035 to 0.0070%. The largest difference 
(0.0070) was observed between S. stellatus, and S. 
rivulatus. Conversely, S. luridus and S. rivulatus had 
the smallest P-distance (0.0000) (Table 2 and Fig. 1). 
The sequences obtained from four fish in the Siganidae 
family, along with 24 linked sequences and the three out-
group species from GenBank, were used in this work 
for widely combination phylogenetic investigation in 
order to finish the phylogenetic tree investigation using 
the sequence of 16S rRNA sequence. More than one 
phylogenetic technique was employed for the very 
illustrative phylogenetic analysis utilizing the 16S 
rRNA gene: Neighbor Joining and Minimum Evolution. 
Although the support rate varied slightly, the methods 
yielded results that were essentially comparable and 
highlighted two main points: (1) The outgroup species 
creating a distinct cluster. (2) Each species of the studied 
species creating a distinct cluster with the comparable 
species from GenBank (Figs. 2 and 3).

Table 1. Accession number, nucleotide frequencies, A+T contents, and their averages of (16S rRNA) sequence in four species of 
the family Siganidae.

No. Species Accession 
number 

Base pair 
length

Nucleotide frequencies % A+T Content 
(%)A% T% C % G%

1 S. argenteus PP488874.1 521 29.37 22.46 24.56 23.61 51.83
2 S. luridus PP488875.1 540 27.78 22.41 25.74 24.07 50.19
3 S. stellatus PP488876.1 570 28.95 23.51 24.21 23.33 52.46
4 S. rivulatus PP488877.1 521 28.41 22.46 25.52 23.61 50.87

Average % - 538 28.63 22.72 25 23.65 51.35
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Discussion
It can be difficult to identify species in traditional 
taxonomy since there are often arbitrary morpho 
meristic data sets and a lack of guidelines for character 
selection or coding. Under certain circumstances, 
genetic analysis can be employed as a further way of 
establishing taxonomic identity (Basheer et al., 2015).
Due to its slower mutation rate and lower substitution 
rates than other mtDNA genes, mitochondrial 16S rRNA 
has been found to be valuable for studying species, 
populations, and families (Garland and Zimmer, 2002). 
Moreover, fish phylogenetic relationships can be 
estimated at both the species and generic levels using 
the 16S rRNA gene (Moyer, et al., 2004; Chakraborty 
and Iwatsuki, 2006). Therefore, in fish evolutionary 
studies, 16S rRNA is advised for the reconstruction 
of informative phylogenetic links and a proper 
identification system (Saad et al., 2019).
This study showed that the average bidder for the fish 
that were understudied was (A+T) rather than (C+G). 
This aligned with multiple research investigations. In 
contrast to C+G, the entire 16S rRNA gene displays A+T 
affluence, according to Bo et al. (2013). Basheer et al. 
(2015) found that 16S rRNA had a lower C+G value 
than A+T in their investigation of Rastrelliger species. 

Additionally, Mar’ie and Allam (2019) discovered 
a greater A+T ratio than C+G in two puffer fish. In 
some species of catfish, Mahrous and Allam (2022) the 
proportion of A+T was greater than that of C+G.
The C+G concentration of the 16S rRNA gene varied 
between 48.52 and 50.09 in our data. The four species 
in the family Siganidae’s GC variety may indicate 
adaptation (Ali et al., 2021).
High levels of conservation were found in the final 
alignments of partial 16S rRNA sequences in the four 
species belonging to the Siganidae family. Using 
16S rRNA aligned sequences, Basheer et al. (2015) 
discovered 575 consistent sites of 590 bp in three 
Rastrelliger species. Using a phylogenetic analysis of 
Cichlids and the 16S gene, Sokefun (2017) discovered 
337 conserved sites comprising 463 bp of alignment. 
Numerous highly conserved regions are revealed 
by aligning the partial 16S rRNA sequences of eight 
Carangid fishes (Alyamani et al., 2023). The research 
done by Ramadan et al., (2023) showed that the four 
species of Lutjanus fish have an average (A+T) that is 
higher than the average (C+G). 
According to (Kaleshkumar et al., 2015), strongly 
related species had low genetic distance values, whereas 
cases with great genetic divergence are caused by the 

Table 2. Pairwise distances using 16S rRNA gene among four species of the family Siganidae, and the outgroup.

Fig. 1. Heatmap visualization of The P-distances among four species of the family Siganidae by employed 
the 16S rRNA gene.
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Fig. 2. Neighbour joining phylogenetic tree among four species of the family Siganidae, and the outgroup with the outgroup by 
employed the 16S rRNA gene.

Fig. 3. Minimum evolution phylogenetic tree among four species of the family Siganidae, and the outgroup with the outgroup by 
employed the 16S rRNA gene.
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highest genetic distance. The low genetic distance 
between S. luridus and S. rivulatus indicated a close 
linkage between them.
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