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See the editorial comment for this article ‘How far are we from accurate sex-specific risk prediction of cardiovascular disease? One size may not 
fit all’, by B. Huang et al., https://doi.org/10.1093/cvr/cvae135.

Aims Evaluate sex differences in cardiovascular disease (CVD) risk prediction, including use of (i) optimal sex-specific risk predictors and 
(ii) sex-specific risk thresholds.

Methods 
and results

Prospective cohort study using UK Biobank, including 121 724 and 182 632 healthy men and women, respectively, aged 38–73 
years at baseline. There were 11 899 (men) and 9110 (women) incident CVD cases (hospitalization or mortality) with a median 
of 12.1 years of follow-up. We used recalibrated pooled cohort equations (PCEs; 7.5% 10-year risk threshold as per US guidelines), 
QRISK3 (10% 10-year risk threshold as per UK guidelines), and Cox survival models using sparse sex-specific variable sets (via 
LASSO stability selection) to predict CVD risk separately in men and women. LASSO stability selection included 12 variables in 
common between men and women, with 3 additional variables selected for men and 1 for women. C-statistics were slightly lower 
for PCE than QRISK3 and models using stably selected variables, but were similar between men and women: 0.67 (0.66–0.68), 0.70 
(0.69–0.71), and 0.71 (0.70–0.72) in men and 0.69 (0.68–0.70), 0.72 (0.71–0.73), and 0.72 (0.71–0.73) in women for PCE, QRISK3, 
and models using stably selected variables, respectively. At current clinically implemented risk thresholds, test sensitivity was mark
edly lower in women than men for all models: at 7.5% 10-year risk, sensitivity was 65.1 and 68.2% in men and 24.0 and 33.4% in 
women for PCE and models using stably selected variables, respectively; at 10% 10-year risk, sensitivity was 53.7 and 52.3% in men 
and 16.8 and 20.2% in women for QRISK3 and models using stably selected variables, respectively. Specificity was correspondingly 
higher in women than men. However, the sensitivity in women at 5% 10-year risk threshold increased to 50.1, 58.5, and 55.7% for 
PCE, QRISK3, and models using stably selected variables, respectively.

Conclusion Use of sparse sex-specific variables improved CVD risk prediction compared with PCE but not QRISK3. At current risk thresholds, 
PCE and QRISK3 work less well for women than men, but sensitivity was improved in women using a 5% 10-year risk threshold. 
Use of sex-specific risk thresholds should be considered in any re-evaluation of CVD risk calculators.
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1. Introduction
Cardiovascular disease (CVD) is the leading cause of morbidity and mor
tality worldwide.1 Risk stratification via accurate prediction of future 
CVD risk is key to guiding effective early management and prevention, in
cluding lifestyle modifications and lipid-lowering therapeutics. A systematic 
review of CVD prediction models found that the most commonly included 
variables were age, smoking, systolic blood pressure, history of diabetes, 

total cholesterol, and high-density lipoprotein cholesterol.2 Alongside eth
nicity and history of treated hypertension, these variables are included in 
the pooled cohort equations (PCEs), which are used in the USA to predict 
10-year absolute atherosclerotic CVD risk as a decision aid for recom
mending lipid-lowering (statin) therapy, with a treatment threshold of 
7.5% 10-year absolute risk or greater.3,4 In the UK, QRISK3 is used instead 
and incorporates additional variables, with a 10% 10-year absolute risk of 
atherosclerotic CVD used as a statin treatment threshold.5 However, both 
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the US and UK guidelines note that lower treatment thresholds are likely 
to be clinically beneficial.6,7 Furthermore, there is evidence for sex- and 
age-specific treatment thresholds, with worse test sensitivity for younger 
vs. older adults and women vs. men.8,9

Models including additional variables have been proposed to predict in
cident coronary artery disease (CAD), with recent examples combining 
data from electronic healthcare records with polygenic risk scores 
(PRSs) for CAD10 and blood markers.11 Other recent studies have re
ported that PRS for CAD/CVD, when considered in isolation, yield a mo
dest or non-significant improvement in predictive performance for CVD 
risk over traditional risk models.12–16 It has also been suggested that meta
bolomic data may be predictive of incident CVD, although their clinical util
ity in risk prediction remains to be established.17–20

Here, we analyse the UK Biobank data set to evaluate sex differences in 
CVD risk prediction, including use of (i) optimal sex-specific risk predictors 
and (ii) sex-specific risk thresholds.

2. Methods
2.1 Study participants
The UK Biobank recruited 502 536 volunteers aged 38–73 years between 
2006 and 2010. Demographic and lifestyle factors, medical and surgical his
tories, standardized clinical measurements, and blood samples were col
lected at baseline. A panel of laboratory tests was performed on stored 
serum and red blood cells as well as genotyping.21 For the primary analyses, 
we excluded a total of 198 180 participants: 151 806 with prevalent CVD 

or missing data for any of the variables included in PCE or QRISK3,14

45 887 on lipid-lowering agents (as PCE and QRISK3 are used to guide 
the initiation of lipid-lowering therapeutics), and a further 487 who had 
withdrawn consent, leaving 304 356 participants without prior CVD at 
baseline for the present analyses (121 724 men and 182 632 women, 
Figure 1). Among these, a subset of 27 873 men and 40 982 women also 
had data on nuclear magnetic resonance (NMR) metabolic biomarkers 
measured in baseline plasma samples. The study complies with the 
Declaration of Helsinki.

2.2 CVD definition
CVD was defined as myocardial infarction and its sequelae, angina, non- 
haemorrhagic stroke, and transient ischaemic attack.14 Cases (i.e. people 
who had a cardiovascular event during follow-up) were identified using 
linkage to hospital admissions, operation/procedure codes, and death re
gistrations, and prevalent cases were further defined via 
nurse-administered questionnaire at baseline (see Supplementary 
material online, Table S1). Participants who did not have a recorded cardio
vascular event during follow-up are defined here as non-cases, with censor
ing by availability of hospital admission and mortality data (7 April 2021).

2.3 Study variables
Variables included in PCE3,4 are age, ethnicity (White, Black, and Other), 
smoking (never, former, and current), diabetes (prevalent self-reported 
or from hospital records), total and high-density lipoprotein cholesterol, 
systolic blood pressure (mean of two measurements), and use of 

Figure 1 Study design and flowchart. Cases are participants with a CVD event during follow-up including myocardial infarction and its sequelae, angina, 
non-haemorrhagic stroke, and transient ischaemic attack. Data were randomly split into three sex-stratified, non-overlapping sets: (i) variable selection 
data set (40%); (ii) training data set (30%), in which Cox models using selected variables were fitted; and (iii) hold-out test data set (30%), in which the predictive 
accuracy of these models was evaluated and compared with PCEs and QRISK3.
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antihypertensive medication. QRISK35 includes additional variables: stand
ard deviation of systolic blood pressure, body mass index, family history of 
CAD, area-level deprivation score (Townsend), medication use including 
oral steroids and atypical antipsychotics, and self-reported prevalent con
ditions including chronic kidney disease stages 3–5, atrial fibrillation, mi
graine, rheumatoid arthritis, systemic lupus erythematosus, severe 
mental illness, and erectile dysfunction in men. In addition to the above vari
ables, we considered for variable selection 26 further baseline serum bio
chemistry measurements (excluding oestradiol and rheumatoid factor that 
were missing in more than 80% of participants)22,23; 23 baseline haematol
ogy measurements including full blood count and white blood cell differen
tial24; a PRS for CVD developed using lassosum,25 as previously 
described14; and NMR-derived metabolic variables (available in ∼120 000 
randomly sampled participants from the whole UK Biobank cohort). The 
NMR-derived metabolomic profile includes estimated blood levels of 
(N = 168) annotated molecules including lipoprotein lipids, fatty acids, 
and fatty acid compositions, as well as some low-molecular-weight meta
bolites including amino acids, ketone bodies, and glycolysis metabolites.26

2.4 Statistical analyses
We randomly split the data into three sex-stratified and non-overlapping 
sets, constraining the ratio of CVD cases to non-cases to be equal in all 
three data splits (Figure 1): (i) a variable selection data set (40%); (ii) a train
ing data set (30%), in which PCE and QRISK3 were calculated/recalibrated 
(see Supplementary material online, Methods and Figure S1) and unpena
lized Cox models were fit using stably selected variables; and (iii) a hold-out 
test data set (30%), comparing the predictive accuracy of recalibrated PCE 
and QRISK3 with the models using stably selected variables. The Cox mod
els used follow-up time as the underlying time variable with CVD event as 
outcome. In the subset of participants with NMR data, we compared vari
able selection and model performance excluding and including metabolo
mic data. After filtering for highly correlated variables and overlap with 
directly measured blood markers, 18 metabolomic variables were included 
in our analyses (see Supplementary material online, Methods and Figure S2) 
and were available in 68 855 of the 304 356 participants included in our 

study (Figure 1). For biochemical and haematological variables, there was 
up to 20% missingness with similar proportions for CVD cases and non- 
cases (see Supplementary material online, Table S2). Missing values were 
imputed using multiple imputation with predictive mean matching over 
five iterations of chained random forests.27 Skewed variables were log- 
transformed prior to analyses.

2.4.1 Variable selection
For variable selection, we used LASSO penalized regression in a stability se
lection framework28,29 to identify reproducible, parsimonious sets of vari
ables that jointly contribute to CVD risk prediction. Briefly, we fit LASSO 
Cox models on (N = 1000) 50% independent subsamples of the variable se
lection data set and estimated, across subsamples, the per-variable selection 
proportion as a proxy for the variable importance. Model calibration was 
achieved by jointly identifying (i) the penalty parameter λ (controlling the 
sparsity of the LASSO model) and (ii) the threshold in selection proportion 
π (controlling the stability of the model, conditional on the penalty) above 
which a feature was considered as stably selected. These parameters were 
obtained by maximizing a likelihood-based stability score using the sharp 
package in R.29 We also performed sensitivity analyses assessing the reliabil
ity of the LASSO stability selection, using 100 subsampled variable selection 
data sets (see Supplementary material online, Methods).

2.4.2 Predictive performance
We calculated predictive accuracy (C-statistics) as well as sensitivity and 
specificity at relevant risk thresholds for 10-year risk (7.5% threshold for 
PCE, 10% threshold for QRISK3, and both 7.5 and 10% thresholds for 
models using stably selected variables). We used logistic regression models 
to perform receiver operating characteristic (ROC) analyses, reporting the 
mean and 95% confidence intervals of the area under the ROC curve 
(AUC). We also used a nested approach where log hazards from PCE 
and QRISK3, respectively, were forced into the LASSO stability selection 
models in place of their constituent variables. In addition, we calculated 
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sensitivity and specificity at 5% 10-year risk threshold in women across all 
models.

Statistical analyses were performed using R version 4.2.2.30

3. Results
Mean age at baseline in men was 54.4 years in non-cases and 58.9 years in 
cases and 55.2 and 60.0 years, respectively, in women. A total of 11 899 
men and 9110 women were diagnosed with CVD during the period of 
follow-up (median 12.1 years). Descriptive statistics, stratified by sex and 
case status, are shown in Supplementary material online, Table S3. 
Corresponding descriptive statistics for the subset with metabolomic 
data are reported in Supplementary material online, Table S4.

Our stability selection model consistently selected 12 variables in both 
men and women (Figure 2): age, albumin, antihypertensive medication, apo
lipoprotein B, atrial fibrillation, C-reactive protein, current smoker, cystatin 
C, family history of CAD, glycated haemoglobin, systolic blood pressure, 
and a PRS for CVD. In addition, apolipoprotein A1, lipoprotein(a), white 
blood cell count, and deprivation index were selected in men only and tri
glycerides in women only (see Supplementary material online, Table S5). 
Including variables beyond those stably selected did not substantially im
prove model performance (see Supplementary material online, Figure S3).

ROC analyses with logistic models for incident CVD in test data showed 
improvement in predictive accuracy when using stably selected variables vs. 
recalibrated PCE but not for QRISK3: in men, AUCs were 0.67 (0.66–0.68) 
for PCE and 0.70 (0.69–0.71) for QRISK3 vs. 0.71 (0.70–0.72) for models 
using stably selected variables; in women, they were 0.69 (0.68–0.70) for 
PCE and 0.72 (0.71–0.73) for QRISK3 vs. 0.72 (0.71–0.73) for stably se
lected variables (Figure 3).

Table 1 shows 10-year risk prediction reclassification, sensitivity, and 
specificity for LASSO stability selection variables vs. PCE (7.5% risk thresh
old) and QRISK3 (10% risk threshold). Test sensitivity was markedly lower 
in women than men for all models: at 7.5% 10-year risk, sensitivity was 65.1 
and 68.2% in men and 24.0 and 33.4% in women for PCE and models using 
stably selected variables, respectively; at 10% 10-year risk, sensitivity was 
53.7 and 52.3% in men and 16.8 and 20.2% in women for QRISK3 and sta
bly selected variables, respectively. Specificity was correspondingly higher 
in women than men. However, the sensitivity in women at 5% 10-year 
risk threshold increased to 50.1, 58.5, and 55.7% for PCE, QRISK3, and sta
bly selected variables, respectively (Table 2).

In sensitivity analyses where PCE or QRISK3 log hazards were included 
in lieu of the constituent variables, stably selected variables differed slightly 
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Table 1 Reclassification of CVD cases and non-cases in test data 
comparing Cox survival models using LASSO stability–selected variables 
with validated risk prediction algorithms: (A) at 7.5% 10-year risk 
threshold for PCE and (B) at 10% 10-year risk threshold for QRISK3; 
sensitivity and specificity are shown at the relevant risk thresholds

A PCE vs. LASSO

Men

PCE Predicted 
10-year risk (%)

LASSO stability selection

Predicted 
10-year risk (%)

Reclassified (%)

<7.5 ≥7.5

Cases <7.5 808 439 35.2

≥7.5 329 1995 14.2

Non-cases <7.5 16 886 2851 14.4
≥7.5 3610 9601 27.3

LASSO% PCE%

Sensitivity (at 7.5% 10-year risk) 68.2 65.1
Specificity (at 7.5% 10-year risk) 62.2 59.9

Women

PCE Predicted 
10-year risk (%)

LASSO stability selection

Predicted 
10-year risk (%)

Reclassified (%)

<7.5 ≥7.5

Cases <7.5 1631 448 21.5
≥7.5 189 466 28.9

Non-cases <7.5 43 785 3149 6.7

≥7.5 2430 2694 47.4

LASSO% PCE%

Sensitivity (at 7.5% 10-year risk) 33.4 24.0

Specificity (at 7.5% 10-year risk) 88.8 90.2

B QRISK3 vs. LASSO

Men

QRISK3 Predicted 
10-year risk (%)

LASSO stability selection

Predicted 
10-year risk (%)

Reclassified (%)

<10 ≥10

Cases <10 1391 264 16.0

≥10 312 1604 16.3
Non-cases <10 22 431 1499 6.3

≥10 2483 6535 27.5

LASSO% QRISK3%

Sensitivity (at 10% 10-year risk) 52.3 53.7

Specificity (at 10% 10-year risk) 75.6 72.6

Continued  
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Table 1 Continued  

Women

QRISK3 Predicted 
10-year risk (%)

LASSO stability selection

Predicted 
10-year risk (%)

Reclassified (%)

<10 ≥10

Cases <10 2058 218 9.6

≥10 124 334 27.1

Non-cases <10 48 269 1358 2.7
≥10 984 1447 40.5

LASSO% QRISK3%

Sensitivity (at 10% 10-year risk) 20.2 16.8

Specificity (at 10% 10-year risk) 94.6 95.3
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from the main analyses (see Supplementary material online, Figure S4). This 
did not affect model performances, with similar C-statistics, sensitivity, and 
specificity (see Supplementary material online, Table S6).

Among the subset of (N = 68 855) participants with available metabolo
mic data, glycoprotein acetyls was selected in women only, in preference to 
C-reactive protein (see Supplementary material online, Figure S5), with no 
improvement in predictive performance (see Supplementary material 
online, Figures S6 and S7). Assessment of the reliability of LASSO stability 
selection showed similar variable sets across 100 subsampled iterations 
(see Supplementary material online, Methods and Figure S8).

4. Discussion
In this large population-based cohort, use of sex-specific stably selected 
variables improved predictive performance for CVD beyond PCE but 
not QRISK3, although QRISK3 was also developed selecting from an ex
tensive set of risk predictors.5 Among the variables selected in both men 
and women, some are already included in PCE and QRISK3, while 
others used in these risk calculators were not selected (diabetes status, 
ethnicity, high-density lipoprotein, and total cholesterol). At the current 
clinical risk thresholds, sensitivity was much lower in women (with high
er specificity) than in men for both PCE and QRISK3. A higher propor
tion of incident CVD cases might therefore go untreated in women than 
men using a common risk threshold for both sexes, as is current 
practice.

Our results concerning test sensitivity by sex are consistent with previ
ous findings for PCE. In an analysis of PCE among 3685 participants in the 
Framingham Offspring Study, sensitivity was lower in women than men at 
the clinically used 7.5% 10-year risk threshold, except at the oldest ages; 
the authors suggest using a 5% risk threshold at younger ages (40–55 
years).8 In 1685 patients of the YOUNG-MI registry, who had a myocardial 
infarction aged 50 years or below, sensitivity of PCE in women was around 
half that in men at the 7.5% risk threshold. However, sensitivity in women at 
the 5% risk threshold was similar to that in men at the 7.5% threshold.9

Together with our own findings, these results suggest that sex-specific 
risk thresholds should be considered for clinical implementation to avoid 
sex inequality in CVD risk prediction.

Sex-specific differences in CVD risk prediction are not well understood. 
They may reflect underlying physiological differences, including the impact 
of sex hormones, vascular remodelling, lipid metabolism, and endothelial 
function.31,32 In our study, among lipids, triglycerides33 were selected in wo
men only and lipoprotein(a)34,35 and apolipoprotein A136–38 in men only. 
Apolipoprotein B was selected in both men and women, replacing more 
standard lipid measures currently included in PCE and QRISK3, consistent 
with it being a better risk predictor of incident CVD.39,40 In keeping with 
this, both the European Society of Cardiology41 and the 2019 American 
College of Cardiology/American Heart Association guidelines on primary 
prevention of CVD42 have highlighted the utility of apolipoprotein B to im
prove risk stratification.

Systemic inflammation is an important component of CVD risk, and 
some of the selected variables reflect this: while white blood cell count 
was selected in men only, serum albumin,43 C-reactive protein44 (acute 
phase reactants), and cystatin C (a sensitive marker of renal function45,46) 
were selected in both men and women. Among NMR metabolomic 
variables, glycoprotein acetyls47–49 were selected in women only in prefer
ence to C-reactive protein, but this did not improve predictive accuracy. 
In addition, glycated haemoglobin, a biomarker used in the diagnosis 
and monitoring of diabetes and non-diabetic hyperglycaemia50 (both 
pro-inflammatory states),51 was stably selected in preference to diabetes 
status in both men and women, in keeping with it being a continuous 
and therefore more informative variable. Given that glycated haemoglobin 
is increasingly recorded in electronic health records and offers a superior 
predictor of CVD risk, a strong case can be made for its inclusion in CVD 
risk calculators.

Use of PRS in CVD risk prediction remains controversial14,52; here, it 
was stably selected in both men and women but made only modest con
tribution to predictive accuracy, in keeping with previous analyses of UK 
Biobank and other data.14,15 Family history of CAD, which may reflect 
common lifestyle and socio-economic factors as well as genetic risk,34

was also stably selected alongside PRS, indicating that they both jointly 
and independently contribute to CVD risk.

4.1 Limitations
We only included participants aged 38–73 years at baseline who were most
ly of European ancestry; the participants were on average healthier, were 
less deprived, and have lower mortality than the general population and 
therefore may not be fully representative.53 While PCE was developed in 
US cohorts, the present study uses a UK-based cohort; we performed mod
el recalibration to correct for population differences54 and included the 
standard risk prediction tool (QRISK3) used in the UK. Other potentially 
important predictors including coronary artery calcium were not measured, 
and their inclusion may further improve risk prediction or potentially com
pete with variables selected in our models.55 The UK Biobank does not have 
complete prescription data during follow-up, so it is likely that some parti
cipants’ CVD risk would have been modified from baseline through clinical 
management. Cost–benefit and decision analyses would be needed before 
implementing either sex-specific risk thresholds or an enhanced predictive 
score. Variable selection, training, and test data were drawn from the same 
population; external validation in different cohorts and settings would help 
to generalize our findings to other populations.
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Table 2 Reclassification of CVD cases and non-cases in test data 
among women using 5% 10-year risk thresholds: (A) recalibrated PCEs 
and (B) QRISK3 compared with Cox survival models using LASSO 
stability selected variables; (C) shows sensitivity and specificity for each 
model at 5% 10-year risk threshold

A PCE vs. LASSO

PCE Predicted 
10-year risk (%)

LASSO stability selection

Predicted 
10-year risk (%)

Reclassified (%)

<5 ≥5

Cases <5 962 402 29.5

≥5 249 1121 18.2
Non-cases <5 34 755 4306 11.0

≥5 4439 8558 34.2

B QRISK3 vs. LASSO

QRISK3 
Predicted 
10-year risk (%)

LASSO stability selection

Predicted 10-year 
risk (%)

Reclassified (%)

<5 ≥5

Cases <5 959 175 15.4
≥5 252 1348 15.8

Non-cases <5 35 380 2285 6.1

≥5 3814 10 579 26.5

C Sensitivity and specificity at 5% 10-year risk threshold

LASSO% QRISK3% PCE%

Sensitivity (at 5% 10-year risk) 55.7 58.5 50.1

Specificity (at 5% 10-year risk) 75.3 72.4 75.0
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4.2. Conclusions
Use of sparse sex-specific variables improved CVD risk prediction compared 
with PCE but not QRISK3. At current risk thresholds, PCE and QRISK3 work 

less well for women than men, but sensitivity was improved in women using a 
5% 10-year risk threshold. Use of sex-specific risk thresholds should be con
sidered in any re-evaluation of CVD risk calculators.

Translational perspective
Cardiovascular disease risk prediction is an important component of clinical risk management and disease prevention. We find that at risk prediction 
thresholds used by currently applied risk prediction algorithms (pooled cohort equation 7.5% 10-year risk threshold in the USA and QRISK3 10% risk 
threshold in the UK), sensitivity of these risk prediction tools is markedly lower in women than in men. This sex inequality implies that women are 
proportionately less likely to receive appropriate clinical management including lipid-lowering therapy. If the risk prediction threshold is lowered 
to 5% 10-year risk in women, then sensitivity in women is substantially increased.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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