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BACKGROUND Aortic valve stenosis (AS) is a progressive chronic disease with progression rates that vary in patients

and therefore difficult to predict.

OBJECTIVES The aim of this study was to predict the progression of AS using comprehensive and longitudinal patient

data.

METHODS Machine and deep learning algorithms were trained on a data set of 303 patients enrolled in the PROGRESSA

(Metabolic Determinants of the Progression of Aortic Stenosis) study who underwent clinical and echocardiographic

follow-up on an annual basis. Performance of the models was measured to predict disease progression over long (next

5 years) and short (next 2 years) terms and was compared to a standard clinical model with usually used features in

clinical settings based on logistic regression.

RESULTS For each annual follow-up visit including baseline, we trained various supervised learning algorithms in

predicting disease progression at 2- and 5-year terms. At both terms, LightGBM consistently outperformed other models

with the highest average area under curves across patient visits (0.85 at 2 years, 0.83 at 5 years). Recurrent neural

network-based models (Gated Recurrent Unit and Long Short-Term Memory) and XGBoost also demonstrated strong

predictive capabilities, while the clinical model showed the lowest performance.

CONCLUSIONS This study demonstrates how an artificial intelligence-guided approach in clinical routine could

help enhance risk stratification of AS. It presents models based on multisource comprehensive data to predict disease

progression and clinical outcomes in patients with mild-to-moderate AS at baseline. (JACC Adv. 2024;3:101234) © 2024

The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
N 2772-963X https://doi.org/10.1016/j.jacadv.2024.101234

m the aCentre hospitalier universitaire de Québec – Université Laval, Québec City, Québec, Canada; bUniversité Côte d’Azur,

ia, CNRS, I3S, Maasai, Sophia Antipolis, France; cInstitut universitaire de cardiologie et de pneumologie de Québec - Université

val, Québec City, Québec, Canada; and the dCardiovascular Division, Department of Medicine, University of California, San

ncisco, California, USA *Drs Sanabria, Tastet, and Pelletier have contributed equally to this work.

e authors attest they are in compliance with human studies committees and animal welfare regulations of the authors’

titutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information,

it the Author Center.

nuscript received February 19, 2024; revised manuscript received July 12, 2024, accepted July 26, 2024.

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jacadv.2024.101234
https://www.jacc.org/author-center
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jacadv.2024.101234&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ABBR EV I A T I ON S

AND ACRONYMS

AI = artificial intelligence

AS = aortic valve stenosis

AUC = area under curve

AVA = aortic valve area

AVR = aortic valve

replacement

BSA = body surface area

BMI = body mass index

DL = deep learning

GRU = Gated Recurrent Unit

LSTM = Long Short-Term

Memory

ML = machine learning

LV = left ventricle

RNN = recurrent neural

network

SAVR = surgical aortic valve

replacement

TAVI = transcatheter aortic

valve implantation

Vpeak = peak aortic jet velocity
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A ortic valve stenosis (AS) is a chronic
progressive disease and is the most
prevalent valvular heart disease in

high-income countries.1 In North America, it
is estimated that 3 million individuals are
affected by AS, and its prevalence as well as
its ensuing health and economic burden are
expected to increase substantially over the
next decades.2 Currently surgical aortic valve
replacement (SAVR) and transcatheter aortic
valve implantation (TAVI) remain the only
therapeutic options.3,4 Echocardiography is
the primary imaging modality for diagnosis,
assessment of hemodynamic severity and
progression rate of AS, which determine the
timing of intervention.3,4 However, predict-
ing the hemodynamic progression of AS re-
mains challenging, as disease progression
varies widely from one patient to another.
Consequently, there is an urgent need to
develop novel approaches to enhance predic-
tion of AS progression and risk stratification
to optimize the timing of follow-up and inter-
vention in AS.
Artificial intelligence (AI) algorithms have been
previously used for various tasks in cardiology
including risk prediction and optimization of deci-
sion-making.5,6 Several studies reported the applica-
bility and accuracy of such algorithms to detect AS in
various settings.7-9 In addition, we previously
demonstrated the usefulness of a machine learning
pipeline that integrates a few echocardiographic pa-
rameters to improve risk stratification of AS.10 How-
ever, the ability of such algorithms to predict AS
progression has not yet been explored. Recurrent
neural networks (RNN), usually implemented for
problems where temporal sequences are involved,
could provide a promising approach to apply deep
learning for predicting disease progression over time,
relevant for therapeutic decision-making. Addition-
ally, tree-based algorithms like XGBoost and
LightGBM, which also have demonstrated strong
performance with temporal data,11,12 may deliver ac-
curate predictions in our context.

In the present study, we integrated comprehensive
clinical and echocardiographic data from patients
with years of follow-up into a RNN and tree-based
algorithms to predict AS progression and then
improve the risk prediction of clinical events
compared to well-known cardiovascular risk factors
and standard echocardiographic parameters.
METHODS

STUDY SAMPLE. Patients with at least mild AS (ie
peak aortic jet velocity [Vpeak] $2.0 m/s), with no or
mild symptoms, were prospectively recruited in the
PROGRESSA (Metabolic Determinants of the Progres-
sion of Aortic Stenosis) study (NCT01679431), started
in 2005 and ongoing, at the Institut universitaire de
cardiologie et de pneumologie de Québec–Université
Laval and underwent Doppler echocardiography
annually. The purpose and design of the PROGRESSA
study have been previously described.13,14 Patients
were excluded if they had symptomatic AS, moderate
or greater aortic regurgitation, or mitral valve disease
(stenosis or regurgitation), left ventricular ejection
fraction < 50%, and if they were pregnant or
lactating. None of the patients had an indication for
aortic valve intervention at baseline. Among the 351
patients recruited until January 2020, 303 patients
had follow-up visit(s) with comprehensive clinical
and imaging data for the present subanalysis of the
PROGRESSA study. No patients were lost in follow-up
after enrollment. The study was approved by the
Ethics Committee of the Institut universitaire de
cardiologie et de pneumologie de Québec–Université
Laval (Québec, CANADA) and all patients signed a
written informed consent at the time of enrollment.

CLINICAL DATA. Clinical data included age, sex,
body surface area (BSA), body mass index (BMI),
and functional status (ie, NYHA functional classifi-
cation) at the time of index echocardiography.
Clinical comorbidities were documented at baseline
visit and included hypertension, diabetes mellitus,
history of smoking, coronary artery disease, atrial
fibrillation, and other clinical risk factors. The
clinical identification of patients with features of
the metabolic syndrome was assessed as previ-
ously described.14

LABORATORY DATA. From fasting blood samples,
plasma levels of glucose, creatinine, N-terminal pro
B-type natriuretic peptide, high-sensitivity troponin
T, standard lipid profile, apolipoprotein B, apolipo-
protein A-I, and standard hematology profile were
measured using automated techniques standardized
with the Canadian reference laboratory.

ECHOCARDIOGRAPHIC DATA. Comprehensive Doppler
echocardiography exams were conducted by the same
team of sonographers and cardiologists using
commercially available ultrasound systems; images
were analyzed in a core laboratory by experienced

https://clinicaltrials.gov/study/NCT01679431


TABLE 1 Baseline Characteristics of the Study Sample

All Patients
(N ¼ 303)

Clinical Events
(n ¼ 169)

Clinical data

Age, y 64 � 14 67 � 11

Female 85 (28) 41 (24)

Body surface area, m2 1.89 � 0.20 1.90 � 0.19

Body mass index, kg/m2 29 � 5 29 � 4

NYHA functional class I or II 298 (99) 164 (98)

Systolic blood pressure, mm Hg 137 � 18 139 � 17

Diastolic blood pressure, mm Hg 77 � 9 77 � 8

Hypertension 209 (69) 127 (75)

Diabetes mellitus 77 (25) 46 (27)

Metabolic syndrome 62 (21) 32 (19)

History of smoking 183 (60) 107 (63)

Coronary artery disease 90 (30) 56 (33)

History of atrial fibrillation 39 (13) 22 (13)

Medication data

ACE inhibitors 82 (27) 53 (31)

ARBs 91 (30) 53 (31)

Beta-blockers 94 (31) 55 (33)

Lipid-lowering agents 200 (66) 112 (66)

Anticoagulants 21 (7) 12 (7)

Laboratory data

LDL-C, mmol/L 2.17 (1.75-2.73) 2.20 (1.80-2.77)

apoB, g/L 0.80 (0.70-0.99) 0.81 (0.73-1.00)

Triglycerides, mmol/L 1.27 (0.90-1.74) 1.30 (0.95-1.77)

Fasting glucose, mmol/L 5.4 (5.0-6.1) 5.4 (5.0-6.1)

Creatinine, mmol/L 81 (70-94) 83 (73-95)

NT-proBNP, pg/mL 83 (41-204) 108 (50-236)

High-sensitivity troponin T, ng/L 8.1 (5.4-12.3) 9.1 (5.9-13.6)

Echocardiographic data

Bicuspid aortic valve 75 (26) 30 (18)

Stroke volume index, mL/m2 42 � 7 43 � 7

Peak aortic jet velocity, cm/s 274 � 52 295 � 56

Mean gradient, mm Hg 18 � 8 21 � 9

Aortic valve area, cm2 1.27 � 0.31 1.18 � 0.27

Indexed aortic valve area, cm2/m2 0.67 � 0.16 0.63 � 0.14

AS severity

Mild AS 202 (67) 86 (51)

Moderate AS 36 (12) 32 (19)

Severe AS 7 (2) 7 (4)

Low-gradient severe AS 58 (19) 44 (26)

LV mass index, g/m2 105 � 23 109 � 24

E/e’ ratio 11.2 � 3.8 11.9 � 4.2

LV ejection fraction, % 64 � 6 65 � 6

Values are mean � SD, n (%), or median (25th–75th percentiles).

ACE ¼ angiotensin-converting enzyme; apoB ¼ apolipoprotein B; ARB ¼ angiotensin receptor blocker;
AS ¼ aortic valve stenosis; LDL-C ¼ low-density lipoprotein cholesterol; LV ¼ left ventricular;
NT-proBNP ¼ N-terminal pro B-type natriuretic peptide.
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readers, as previously described.13,15 The aortic valve
phenotype (ie, bicuspid versus tricuspid) was recor-
ded. Stroke volume was calculated by multiplying the
LV outflow tract area by the flow velocity-time inte-
gral and was indexed to BSA (stroke volume index).
The Doppler-echocardiographic parameters of AS
severity included Vpeak, mean pressure gradient, and
aortic valve area (AVA) calculated by the standard
continuity equation and indexed to BSA, as recom-
mended by guidelines.16 AS severity was primarily
classified mild (Vpeak 2.0-2.9 m/s or
gradient <20 mm Hg and AVA >1.5 cm2), moderate
(Vpeak 3.0-3.9 m/s, gradient 20-39 mm Hg or AVA 1.0-
1.5 cm2), high-gradient severe (Vpeak $4.0 m/s or
gradient $40 mm Hg), or low-gradient severe
(Vpeak <4.0 or gradient <40 mm Hg, and
AVA#1.0 cm2) AS were classified as severe. Patients
with Vpeak <3.0 m/s but AVA <1.5 cm2 were classified
as moderate AS. LV dimensions and mass were
measured according to the recommendations of the
American Society of Echocardiography and European
Association of Cardiovascular Imaging.17 LV ejection
fraction was measured with the use of the biplane
Simpson method. E- and A-wave peak velocities from
the mitral inflow profile were measured using pulsed
wave Doppler according to guidelines.18 Early dia-
stolic velocity of the mitral annulus (e’) was obtained
by Doppler tissue imaging at the lateral and septal
aspects of the annulus and then averaged for each
patient. Total E/e’ ratio was then calculated.

DATA PREPROCESSING. Our database contains 127
measures (so-called features) from 3 different sour-
ces: clinical, laboratory, and echocardiographic data
(Table 1). None of these features contained more than
5% missing data. The categorical features (ie, features
having a finite set of possible values) were trans-
formed to one-hot encoding vectors, ie, categorical
values become features and values are binarized with
0 and 1 in each new feature. After this transformation,
our data set presented 176 features. Finally, each
feature was normalized between �1 and 1 and the
missing values were replaced by �1 to indicate the
absence of data, clearly distinguishing them from the
other values, hence helping the model differentiate
between actual data and missing values.19

About follow-up, patients had between 1- and 10-
year follow-up (between 1 and 11 visits spaced 1 year
apart). But less than 25% of the patients have more
than 5 years of follow-up (6 visits) (Supplemental
Figure 1), therefore only the data for the first 6 visits
were used for the training.

DEFINITION OF STUDY END POINT. We defined 2
main clinical end point events: 1) the occurrence of
aortic valve intervention (SAVR or TAVI) or all-cause
mortality; and 2) a change in AS hemodynamic
severity (ie increase of AS grade from mild to mod-
erate or mild/moderate to severe between baseline
and last imaging follow-up).

To predict the occurrence of clinical end points in
the next 5 years, all patient visits are labeled as class 1
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if any of the end points are reached during any of
their visits. Thus, the training was performed on a
composite of aortic valve intervention, all-cause
mortality, or AS hemodynamic progression. Consid-
ering that 5 years is a long-term event, we also trained
a model to predict if a patient will have a clinical
event in the next 2 years. Thus, if the patient matches
at least one of the clinical end points in the next
2 years, the current visit was labeled as 1, otherwise 0.

GENERATION OF MACHINE AND DEEP LEARNING

MODELS. Following deep learning terminology, each
patient is a sample, and the visits are the time steps.
Using Keras,20 we trained Gated Recurrent Unit (GRU)
(Supplemental Figure 2) and Long Short-Term Mem-
ory (LSTM) models to predict the occurrence of a
clinical end point in the next 5 years and next 2 years.
Moreover, using scikit-Learn,21 we trained the
following machine learning classifiers to predict the
same end points: XGBoost, LightGBM, Naive Bayes,
and Logistic regression. These models were trained
on individual visits, treating each visit as an inde-
pendent instance, using all features from the previ-
ously described data. This noncumulative approach
means that each training instance consisted of data
from a patient at a specific visit, without incorpo-
rating information from previous visits. We also
conducted a cumulative analysis for the machine
learning models. In this approach, features from each
visit were added to the model incrementally, so that
with each new visit, the number of features
increased, reflecting the accumulation of data over
time. All model’s hyperparameters are provided in
Supplemental Table 1.

To train the clinical model to mirror current prac-
tice accuracy, we performed logistic regression using
scikit-learn library with a specific subset of features.
Based on previous findings,22 we selected clinically
relevant features that are associated with faster pro-
gression of AS: age, sex, BMI, systolic blood pressure,
hypertension, metabolic syndrome, diabetes, antico-
agulant therapy, lipid-lowering agents, plasma level
of low-density lipoprotein, triglycerides, apolipopro-
tein B, creatinine, serum calcium and phosphate, and
AS hemodynamic severity (ie, Vpeak). We used logistic
regression because it is a standard and widely used
method for binary classification tasks, especially for
clinical problems,23,24 allowing us to establish a
baseline for comparison with more complex models.

For all trainings, the data set was split into 70%,
15%, 15% train, validation, and test sets, using
random stratified sampling, where each set preserves
original class balance. Deep learning training was
stopped when the loss on the validation set stopped
by early stopping on 150 consecutive epochs with a
maximum of 1,000 epochs. We executed models 100
times with new random splits and reported the
average performance on the test sets in the results.

STATISTICAL ANALYSIS. Continuous variables were
presented as mean � SD or median (IQR) for non-
normally distributed variables. Continuous variables
were compared between groups with Student’s t-test,
or with Wilcoxon-Mann-Whitney test or Kruskal-
Wallis test followed by Dunn’s post hoc test for non-
normally distributed variables. Categorical variables
were presented as frequencies and percentages and
were compared with chi-square test or Fisher’s exact
test as appropriate. We used receiver operating
characteristic and area under curve (AUC) on the test
sets to illustrate the diagnostic ability of the RNN
model. A 2-tailed P value <0.05 was considered sig-
nificant. Statistical analyses were performed with
Stata software, version 14.2 (StataCorp). All metrics
shown in the Results section were obtained with the
Python package scikit-learn.21 Two-sided bootstrap
CIs (95% CI) were computed using the stats.bootstrap
function of the scipy Python package with
default parameters.

RESULTS

STUDY SAMPLE CHARACTERISTICS. Table 1 de-
scribes the baseline characteristics of the 303 patients
included in this analysis. The mean age was
64 � 14 years and 28% were women. Most of the pa-
tients had no or mild symptoms at baseline (99% of
New York Heart Association class I or II). Comorbid-
ities including hypertension, coronary artery disease,
diabetes, and atrial fibrillation were present in 69%,
30%, 25%, and 13% of the study sample, respectively.
Bicuspid aortic valve was present in 26% of patients.
AS was hemodynamically mild (Vpeak 2.0-2.9 m/s or
gradient <20 mm Hg and AVA >1.5 cm2) in 67% of
patients, moderate (Vpeak 3.0-3.9 m/s, gradient 20-
39 mm Hg or AVA 1.0-1.5 cm2) in 12%, severe
(Vpeak $4.0 m/s or gradient $40 mm Hg) in 2%, and
19% had severe low-gradient AS (Vpeak <4.0 or
gradient <40 mm Hg, and AVA#1.0 cm2). None of the
patients with severe AS had a class I or IIa indication
for intervention at baseline.

PREDICTIVE PERFORMANCE OF MACHINE AND DEEP

LEARNING ALGORITHMS. During a mean follow-up of
4.4 � 2.6 years (median: 4.0 years [IQR: 2.3-6.0]), a
total of 198 (65%) patients had worsening of AS he-
modynamic severity grade, 104 (34%) underwent
AVR, and 24 (8%) died. The composite end point
(ie any of the clinical events) occurred in a total of



FIGURE 1 Performance of the Trained Models Over 5 Years to Predict AS Progression in a 5-Year Term

ROC curve analysis of the lightGBM and GRU models for each visit predicts the final clinical end point within 5 years using all features, compared with logistic regression

using the 22 clinical features (ie the clinical model); the orange and blue areas illustrate ROC curves from 100 test sets for all both models. Only 3 models are shown

here, other ROC curves for all models are presented in Supplemental Figure 4. AS ¼ aortic valve stenosis; AUC ¼ area under curve; GRU ¼ Gated Recurrent Unit;

ROC ¼ receiver operating characteristic.
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260 (86%) patients. LightGBM and XGBoost, followed
by GRU and LSTM demonstrated high predictive
performance to predict the risk of clinical events on
the test sets with better accuracy than the logistic
regression model. Test sets were composed of 46, 46,
38, 29, 20, and 17 patients for years 1 to 5,
respectively. Out of the 100 training runs, the
optimal epoch, on average, occurred at approxi-
mately epoch 187.

The best performance results were obtained with
the noncumulative approach, so when all visits have
been used for training. For each annual follow-up



TABLE 2 XGBoost, GRU, Logistic Regression, LightGBM, LSTM, Naïve Bayes Models, and the Clinical Model in Predicting Clinical Outcomes at Different Visit

Intervals Over a 5-Year Term Using the Noncumulative Approach

Visit

Prediction at 5-Year Term

XGboost GRU Logistic Regression LightGBM LSTM Naïve Bayes Clinical Model

Baseline 0.80 (0.79-0.81) 0.73 (0.72-0.74) 0.73 (0.72-0.75) 0.80 (0.79-0.81) 0.72 (0.71-0.74) 0.72 (0.70-0.73) 0.70 (0.69-0.72)

1 year 0.83 (0.82-0.84) 0.82 (0.81-0.83) 0.80 (0.79-0.81) 0.84 (0.83-0.85) 0.81 (0.80-0.82) 0.79 (0.78-0.80) 0.71 (0.70-0.73)

2 years 0.83 (0.82-0.84) 0.82 (0.81-0.83) 0.80 (0.79-0.82) 0.84 (0.83-0.85) 0.81 (0.80-0.82) 0.77 (0.76-0.79) 0.72 (0.71-0.74)

3 years 0.84 (0.83-0.86) 0.82 (0.81-0.84) 0.79 (0.78-0.81) 0.85 (0.83-0.86) 0.81 (0.80-0.83) 0.77 (0.75-0.78) 0.66 (0.64-0.67)

4 years 0.79 (0.77-0.81) 0.78 (0.76-0.80) 0.75 (0.73-0.78) 0.80 (0.78-0.81) 0.78 (0.76-0.80) 0.76 (0.74-0.77) 0.64 (0.62-0.65)

5 years 0.81 (0.78-0.83) 0.82 (0.80-0.84) 0.81 (0.79-0.84) 0.83 (0.80-0.85) 0.82 (0.79-0.84) 0.72 (0.69-0.75) 0.58 (0.57-0.60)

Average 0.82 (0.80-0.83) 0.80 (0.79-0.81) 0.78 (0.77-0.80) 0.83 (0.81-0.84) 0.79 (0.78-0.81) 0.76 (0.74-0.77) 0.67 (0.66-0.69)

Values are AUC (95% CI). Bold represent the best score of a row. If scores matches, the one with the higher 95% CI is bold. If score and 95% CI match between 2 scores, then both are bold.

AUC ¼ area under curve; GRU ¼ Gated Recurrent Unit; LSTM ¼ Long Short-Term Memory.

TABLE 3 XGBoost, G

Intervals Over a 2-Ye

Visit XGb

Baseline 0.73 (0.

1 year 0.83 (0.8

2 years 0.86 (0.

3 years 0.88 (0.8

4 years 0.88 (0.8

5 years 0.85 (0.

Average 0.84 (0.

Values are AUC (95% CI).

Abbreviations as in Tabl
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visit, the LightGBM model consistently provided
higher AUCs compared to the clinical model, with an
average of 0.83 (95% CI: 0.81-0.84) and 0.67 (95% CI:
0.66-0.69), respectively, across visits (Figure 1,
Tables 2 and 3). LightGBM average performance was
closely followed by XGBoost (0.82 [95% CI: 0.80-
0.83]), GRU (0.80 [95% CI: 0.79-0.81]), LSTM (0.79
[95% CI: 0.78-0.81]), Logistic regression (0.78 [95%
CI: 0.77-0.80]), and Naive Bayes (0.76 [95% CI: 0.74-
0.77]). The calibration data of the GRU model are
presented in Supplemental Figure 3. We obtained
equivalent trends when predicting the risk of future
clinical events over a 2-year term, which necessitated
a class modification based on clinical end point date.
As shown in Figure 2 and Table 4, LightGBM model
consistently provided higher AUCs compared to the
clinical model, with an average of 0.85 (95% CI: 0.83-
0.86) and 0.67 (95% CI: 0.66-0.69), respectively,
across visits. LightGBM performance was closely fol-
lowed by XGBoost (0.84 [95% CI: 0.83-0.85]), GRU
(0.81 [95% CI: 0.79-0.82]), LSTM (0.81 [95% CI: 0.79-
0.82]), Logistic regression (0.78 [95% CI: 0.76-0.80]),
and Naive Bayes (0.72 [95% CI: 0.70-0.74]).

In a cumulative approach (Supplemental Figures 5
and 6, Table 3), LightGBM and XGBoost performance
RU, Logistic Regression, LightGBM, LSTM, Naïve Bayes Models, and the

ar Term Using the Noncumulative Approach

Prediction at 2-Year

oost GRU Logistic Regression LightGBM

72-0.74) 0.66 (0.64-0.67) 0.67 (0.65-0.68) 0.74 (0.72-0.7

2-0.84) 0.81 (0.79-0.82) 0.79 (0.78-0.80) 0.84 (0.83-0.8

85-0.87) 0.85 (0.83-0.86) 0.82 (0.81-0.83) 0.87 (0.85-0.8

7-0.90) 0.85 (0.84-0.87) 0.84 (0.82-0.85) 0.89 (0.88-0.9

6-0.89) 0.86 (0.84-0.87) 0.79 (0.77-0.81) 0.88 (0.87-0.9

83-0.87) 0.83 (0.81-0.85) 0.77 (0.74-0.80) 0.85 (0.83-0.8

83-0.85) 0.81 (0.79-0.82) 0.78 (0.76-0.80) 0.85 (0.83-0.8

Bold represent the best score of a row. If scores matches, the one with the higher 95% CI

e 2.
remained consistently high. GRU and LSTM, which
use historical data (past visits), maintained robust
performance but did not significantly outperform
LightGBM and XGBoost models. Finally, the clinical
model had the lowest AUC scores.

We further stratified the analysis based on age and
sex. When compared according to the median age of
the whole cohort (ie 68 years), the average AUC per-
formance over all visits of the models in predicting
the risk of events on a 5-year term was slightly higher
for younger (#68 years) patients (0.84 [95% CI: 0.82-
0.86]) compared to older patients (0.81 [95% CI: 0.78-
0.83]), but not different on a 2-year term (Table 4).
Between women and men, the model provided a
better performance to predict women at 5- and 2-year
terms at almost every visit (Table 5).

Finally, a substantial proportion (26%) of the pa-
tients included in this cohort had a bicuspid aortic
valve. We observed a slight significant performance
difference between models trained with tricuspid or
with bicuspid samples at a 2-year term (0.78 [95% CI:
0.74-0.83] and 0.86 [95% CI: 0.84-0.88], respectively),
but not at 5 years (Supplemental Tables 3A to 3Z).

Finally, while we determined the best models
based on AUCs performance, we generally obtained
Clinical Model in Predicting Clinical Outcomes at Different Visit

Term

LSTM Naïve Bayes Clinical Model

5) 0.65 (0.64-0.67) 0.61 (0.60-0.63) 0.64 (0.62-0.65)

5) 0.80 (0.79-0.81) 0.75 (0.74-0.77) 0.72 (0.71-0.74)

8) 0.84 (0.83-0.85) 0.76 (0.74-0.77) 0.72 (0.71-0.73)

0) 0.85 (0.84-0.87) 0.73 (0.71-0.76) 0.70 (0.68-0.71)

0) 0.86 (0.84-0.88) 0.73 (0.71-0.75) 0.66 (0.65-0.68)

7) 0.83 (0.81-0.85) 0.73 (0.71-0.76) 0.59 (0.58-0.61)

6) 0.81 (0.79-0.82) 0.72 (0.70-0.74) 0.67 (0.66-0.69)

is bold. If score and 95% CI match between 2 scores, then both are bold.



FIGURE 2 Performance of the Trained Models Over 5 Years to Predict AS Progression in a 2-Year Term

ROC curve analysis of the lightGBM and GRU models for each visit predicts the final clinical end point within 2 years using all features, compared with logistic regression

using the 22 clinical features (ie, the clinical model); the orange and blue areas illustrate ROC curves from 100 test sets for all both models. Only 3 models are shown

here, other ROC curves for all models are presented in Supplemental Figure 5. Abbreviations as in Figure 1.
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similar observations in terms of Matthew’s Correla-
tion Coefficient (also called Phi Coefficient) perfor-
mance (Supplemental Tables 4A to 4Z) and sensitivity
(Supplemental Tables 5A to 5Z).

FEATURES IMPORTANCE. We also evaluated the
importance of each feature using SHapley Additive
exPlanations (SHAP)25 used by the 5-year term
LightGBM model during the prediction phase
(Table 6). This analysis was performed on validation
data from each clinical visit. We chose the features
based on SHAP values that are important in the pre-
diction, ie greater than 0.1 explainability, for a total of
29 features related to severity of aortic stenosis,



TABLE 4 Performance of the LightGBM Model Over Time According to the Median Age of the Sample Population to Predict AS Progression

Over the 5-Year Term

Visit

Prediction at 5-Year Term With LightGBM Prediction at 2-Year Term With LightGBM

#68 >68 #68 >68

Baseline 0.82 (0.81-0.83) 0.77 (0.75-0.79) 0.75 (0.73-0.77) 0.73 (0.71-0.75)

1 year 0.84 (0.83-0.86) 0.84 (0.82-0.85) 0.84 (0.82-0.86) 0.85 (0.83-0.86)

2 years 0.84 (0.82-0.86) 0.84 (0.82-0.86) 0.86 (0.84-0.87) 0.87 (0.85-0.89)

3 years 0.83 (0.81-0.85) 0.86 (0.84-0.88) 0.88 (0.86-0.90) 0.90 (0.88-0.92)

4 years 0.83 (0.80-0.86) 0.76 (0.72-0.79) 0.92 (0.90-0.94) 0.83 (0.81-0.86)

5 years 0.87 (0.83-0.90) 0.78 (0.73-0.83) 0.84 (0.81-0.87) 0.85 (0.81-0.88)

Average 0.84 (0.82-0.86) 0.81 (0.78-0.83) 0.85 (0.83-0.87) 0.84 (0.82-0.86)

Values are AUC (95% CI). Bold represent the best score of a row. If scores matches, the one with the higher 95% CI is bold. If score and 95% CI match between 2 scores, then
both are bold. The patients of the test set were divided according to the median age of the cohort (68 years) and then the performance of the model was analyzed.

Abbreviation as in Table 1.
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hemodynamic stress, left ventricular structure and
function, general health status, age, and meta-
bolic milieu.

DISCUSSION

The present study is, to our knowledge, the first to
develop and validate machine and deep learning-
based algorithms with multisource data including
clinical, laboratory, and imaging features from a
prospective longitudinal cohort study of patients
with AS. We demonstrated that the tree-based models
and RNNs are highly effective in predicting the future
risk of rapid disease progression and adverse clinical
events in AS (Central Illustration). This supports the
clinical utility of an AI-guided approach to improve
prediction of disease progression, risk stratification,
and therapeutic decision-making in AS.

AI APPROACH FOR RISK STRATIFICATION IN AS.

Previous studies have evaluated the ability of AI to
improve detection of AS severity by various diag-
nostic modalities but also for risk stratification, with
better performances than conventional clinical risk
scores.7-9,26 However, predicting the progression of
TABLE 5 Performance of the LightGBM Model Over Time According t

5-Year Term

Visit

Prediction at 5-Year Term With LightGBM

Women Men

Baseline 0.84 (0.82-0.87) 0.79 (0.77-0.8

1 year 0.87 (0.85-0.89) 0.83 (0.82-0.8

2 years 0.85 (0.83-0.87) 0.84 (0.82-0.8

3 years 0.86 (0.83-0.90) 0.84 (0.82-0.8

4 years 0.84 (0.80-0.88) 0.78 (0.76-0.8

5 years 0.97 (0.94-1.00) 0.75 (0.72-0.7

Average 0.87 (0.85-0.90) 0.81 (0.79-0.8

Values are AUC (95% CI). Bold represent the best score of a row. If scores matches, the o
both are bold. The patients of the test set were split according to their sex and then th

Abbreviation as in Table 1.
AS remains an unmet need. Previous studies reported
that the AS progression is extremely variable from
one patient to the other and difficult to predict.27-29

The most important predictor of AS progression re-
ported in these previous studies is the baseline he-
modynamic/anatomic severity. However, such
factors explain only a fraction of the variance in AS
progression. Our analysis shows that incorporating a
broader array of data sources significantly enhances
predictive performance, with the logistic regression
model using extensive features substantially out-
performing the clinical model with fewer features.
Additionally, the integration of historical data
generally yielded comparable or slightly reduced
performance across most tested models, except for
the clinical model, which showed improved accuracy
with cumulative data. These observations emphasize
the uncertainty in AS progression prediction and
suggest potential integration of machine learning al-
gorithms with clinical and echocardiographic assess-
ments for a better monitoring of disease progression.

IMPORTANCE OF FEATURES FOR RISK PREDICTION.

Compared to previous studies, we used clinical,
metabolic, and echocardiographic data as input for
o Sex of the Sample Population to Predict AS Progression Over the

Prediction at 2-Year Term With LightGBM

Women Men

0) 0.73 (0.70-0.77) 0.74 (0.72-0.76)

4) 0.83 (0.81-0.85) 0.85 (0.84-0.86)

5) 0.91 (0.88-0.93) 0.85 (0.84-0.86)

6) 0.89 (0.87-0.92) 0.89 (0.88-0.90)

0) 0.90 (0.86-0.94) 0.88 (0.86-0.90)

9) 0.93 (0.89-0.97) 0.80 (0.77-0.84)

2) 0.87 (0.84-0.90) 0.84 (0.82-0.85)

ne with the higher 95% CI is bold. If score and 95%CI match between 2 scores, then
e performance of the model was analyzed in the 2 groups.



TABLE 6 Average Importance of Each Feature Across Visits

Using SHapley Additive exPlanations (SHAP) Values in the 5-Year

Term LightGBM Model

Feature Name
Average

SHAP Value

Peak aortic jet velocity 0.070

Aorta time velocity integral 0.058

Transvalvular mean gradient 0.036

Change in aortic peak velocity over tertiles 0.036

Aortic valve area 0.030

Aorta ascending 0.029

Platelets 0.026

Age 0.024

AVA index 0.023

Left ventricular outflow tract diameter 0.022

Cholesterol total 0.020

Moderate AS progression echo 0.018

Serum creatinine 0.017

C-reactive protein 0.016

Echo heart rate 0.015

Left ventricular posterior wall diastole 0.015

Left ventricular mass indexed to body surface area 0.014

Aortic root diameter 0.013

Fasting insulin level 0.013

Interventricular septum diastole 0.013

Body mass index 0.013

White blood cells 0.012

Left ventricular mass 0.012

Red globules 0.012

Collagen-adenosine interaction time 0.011

Serum phosphate 0.011

Mitral valve A wave 0.010

Left ventricular dimension in diastole 0.010

Mean glomerular volume 0.010

Only features with a 0.1 score explainability were retained. The Table with all visits
is presented in Supplemental Table 2.

AVA ¼ aortic valve area; other abbreviation as in Table 1.
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our models, as AS is a complex and multifaceted
disease with several risk and/or associated factors for
the development and progression of the dis-
ease.22,30,31 Indeed, older age, degree of valve steno-
sis and/or calcification, lipid-related factors,
metabolic syndrome, vitamin K antagonists, renal
disease, osteoporosis, or calcium-phosphate dysme-
tabolism are among the factors identified as pre-
dictors for faster progression of AS.15,22,27-29,32-37

In the present study, top features (Table 6) were
echocardiographic parameters either related to the
degree or change in AS severity, anatomical and
functional cardiac damage, including: Vpeak and AVA,
LV posterior and interventricular septal wall thick-
ness, ascending aorta diameter, or A wave velocity of
the mitral annulus measured by Doppler tissue im-
aging. These findings further place Doppler echocar-
diography as a first-line imaging modality for disease
monitoring and risk stratification. Other features
reveal the presence of hemodynamic stress in the left
ventricular structure and function, including left
ventricular mass and outflow tract diameter, inter-
ventricular septum diastole, left ventricular posterior
wall diastole, and left ventricular dimension in dias-
tole are related to left ventricular structure and
function. These findings correlate with previous
studies.38,39 Few features related to metabolic milieu
have been also identified, including BMI, plasma level
of total cholesterol, serum creatinine, C-reactive
protein, fasting insulin level, white blood cells, red
globules and serum phosphate, which is consistent
with prior results.14,40-42 These findings provide
further support to the contribution of lipid-related
biomarkers to the development and/or progression
of AS. Other “traditional” metabolic factors previ-
ously linked to faster progression rate of AS were not
among these top features, suggesting that they may
not be major drivers of disease progression and
associated outcome. However, further research is
needed to determine whether the accuracy of the
developed models can be enhanced by incorporating
additional imaging biomarkers such as aortic valve
calcification measured by computed tomography,
along with emerging blood biomarkers.

MODEL PERFORMANCE ACCORDING TO SAMPLE

POPULATION. Cohen-Shelly et al9 reported better
performance of their AI-enabled electrocardiogram
for AS screening in older patients as well as women,
supported by other findings that confirm that the
clinical presentation, pathophysiological responses,
and clinical outcomes of AS are different in women
versus men, and in older versus younger pa-
tients.30,43,44 In our study, regarding age-related
performance, younger patients were slightly easier
to predict, though the CIs overlapped, indicating a
nonsignificant difference. However, we found that
models predicting AS progression provide much bet-
ter performances in women compared to men at
5 years. Several potential reasons could explain these
differences. The features included in the model might
capture factors that are more predictive of AS pro-
gression in women. Additionally, AS may have
different patterns or risk factors in women, which the
model may detect more effectively. Variations in
clinical presentation, disease progression, or the
quality and type of data available for men versus
women may also contribute. These insights empha-
size the need for demographic-specific adjustments in
predictive models to enhance the accuracy and reli-
ability of AS progression predictions and provide
personalized and effective clinical interventions.



CENTRAL ILLUSTRATION Artificial Intelligence Algorithms to Predict Aortic Stenosis Progression

Sanabria M, et al. JACC Adv. 2024;3(10):101234.

Schematic representation of the study, machine and deep learning algorithms chosen and overall performance to predict the risk of aortic valve stenosis progression

and related outcome. AI ¼ artificial intelligence; LSTM ¼ Long Short-Term Memory; other abbreviations as in Figure 1.
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CHOOSING THE RIGHT LEARNING APPROACH: DEEP

VERSUS MACHINE ALGORITHM. Our study highlights
the efficacy of advanced machine learning algo-
rithms, particularly models like LightGBM and
XGBoost, in noncumulative or cumulative ap-
proaches, demonstrating their strength in handling
accumulated data effectively to predict clinical out-
comes more accurately than traditional methods.
RNN models, which use historical data, maintain
robust performance but do not outperform the top
noncumulative models. Furthermore, deep learning
algorithms generally require large amounts of data,
because of their complex architectures and numerous
parameters, to effectively learn and generalize pat-
terns. This contrasts with classical machine learning
models, which often perform well even with smaller
data sets due to their simpler structures and fewer
parameters. These approaches hold promise to un-
ravel complex pathophysiological mechanisms
implicated in disease progression.

STUDY LIMITATIONS. The cohort used for this anal-
ysis was predominantly composed of patients with
mild or moderate AS. However, the most important
unmet need in terms of risk stratification and indi-
vidualization of the timing of follow-up and man-
agement is more in this subset with mild/moderate AS
rather than in severe AS. It is now well known that
most patients with severe AS had adverse outcomes
in the short term and should be considered for early
AVR. Accordingly, the guidelines now include several
class IIa indications for early AVR in asymptomatic
patients with severe AS.3 In the present study, we
thus only included the patients with severe AS who
had no indication (I or IIa) for AVR at baseline. Early



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: In patients with

mild-to-moderate AS at baseline, machine and deep learning

algorithms applied to multisource clinical, laboratory, and im-

aging data outperform traditional clinical models to predict

future AS progression.

TRANSLATIONAL OUTLOOK: Future research should vali-

date these models across diverse AS populations and integrate

them into clinical workflows. This AI-guided approach could

contribute to optimize patient risk stratification and monitoring,

paving the way for tailored and personalized clinical manage-

ment of mild-to-moderate AS.
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AVA is not yet recommended in patients with mod-
erate AS. However, several trials (TAVR-UNLOAD
[Transcatheter Aortic Valve Replacement to UNload
the Left Ventricle in Patients With ADvanced Heart
Failure], PROGRESS [Management of Moderate Aortic
Stenosis by Clinical Surveillance or TAVR], and
EXPAND TAVR II Pivotal Trial [NCT05149755]) are
currently assessing the timing of AVR in patients
with moderate AS. The results of these trials have
the potential to change and improve the clinical
management of these patients. These trials provide
support to the relevance and utility of the AI-based
predictive model that we proposed and validated
in the present study.

While our study shows promising results, the
relatively small sample size may limit the generaliz-
ability of our findings, especially considering a new
cohort may vary across different clinical settings and
samples. In the future, we plan to expand our cohort
by including more patients, which will help to
confirm the validity of the proposed models.

CONCLUSIONS

This study shows that machine and deep learning
algorithms based on multisource comprehensive data
provide high accuracy to predict disease progression
and clinical outcomes in patients with mild-to-
moderate AS at baseline. These findings further sup-
port the implementation of the AI-guided approach in
clinical routine to enhance risk stratification and help
for identifying the best timing for intervention in
patients with AS.
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