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Abstract

A primary challenge to the data-driven analysis is the balance between poor generalizability 

of population-based research and characterizing more subject-, study- and population-specific 

variability. We previously introduced a fully automated spatially constrained independent 

component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. 

NeuroMark has been successfully applied in numerous studies, identifying brain markers 

reproducible across datasets and disorders. The first NeuroMark template was constructed based 

on young adult cohorts. We recently expanded on this initiative by creating a standardized 

normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve 

generalizability and comparability across studies involving diverse cohorts. While a unified 

template across the lifespan is desirable, a comprehensive investigation of the similarities 
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and differences between components from different age populations might help systematically 

transform our understanding of the human brain by revealing the most well-replicated and 

variable network features throughout the lifespan. In this work, we introduced two significant 

expansions of NeuroMark templates first by generating replicable fMRI templates for infants, 

adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion 

MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 

resting-state scans from four datasets. This is the first attempt to create robust ICA templates 

covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used 

two large publicly available datasets including more than 30,000 scans to build reliable templates. 

We employed a spatial similarity analysis to identify replicable templates and investigate the 

degree to which unique and similar patterns are reflective in different age populations. Our results 

suggest remarkably high similarity of the resulting adapted components, even across extreme age 

differences. With the new templates, the NeuroMark framework allows us to perform age-specific 

adaptations and to capture features adaptable to each modality, therefore facilitating biomarker 

identification across brain disorders. In sum, the present work demonstrates the generalizability 

of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental 

health research and advance our understanding of lifespan and cross-modal alterations.
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1. Introduction

Resting-state functional connectivity (FC) (Biswal et al., 1995), which evaluates the 

statistical relationships between spontaneous BOLD fluctuations from distributed brain 

regions, has dramatically advanced our understanding of the organization of the functional 

brain, both in health and psychopathology (Bluhm et al., 2007; Buckner et al., 2013; Honey 

et al., 2009; Raichle and Snyder, 2007). Unlike voxel-based analysis, such as the first- and 

second-level analysis using general linear models (Ashburner et al., 2021), the amplitude of 

low-frequency fluctuation (Zou et al., 2008), and regional homogeneity (Zang et al., 2004), 

most FC studies require the definition of brain regions to extract regional time courses 

for measuring their statistical relationships. Atlas-based analysis and decomposition-based 

analysis (e.g., independent component analysis [ICA]) are the two most used strategies for 

the segmentation of the brain into regions of interest (ROIs). Atlas-based analysis based 

on prior knowledge of functional or structural information (Faria et al., 2012; Lord et al., 

2016; Rolls et al., 2020), assumes fixed ROIs across subjects and populations (e.g., controls 

vs. patients) for the investigation of FC. However, subjects and even different scans from 

the same subject can exhibit distinct spatial coactivation patterns, which implies that fixed 

brain regions might over-simplify the variation in ROIs across subjects. ICA is an alternative 

method based on the data-driven decomposition that allows for variations in ROIs across 

subjects as well as their overlap with one another (Calhoun et al., 2001; Jafri et al., 2008). 

Combining group ICA with back-reconstruction strategies, one can estimate comparable 

ROIs across subjects while retaining inter-subject variation in the individual-level ROIs 

(Beckmann et al., 2009; Du and Fan, 2013).
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Benefiting from technological advances, neuroscience studies have successfully 

characterized individual differences in FC related to the variation in complex 

neurodevelopmental and psychological phenotypes (Marek et al., 2022). The most 

challenging topic in recent neuroscience is the reproducibility of population-based research 

(Aarts et al., 2015; Masouleh et al., 2019; Poldrack et al., 2017). Many neuroimaging 

consortia have collected much larger samples than before (Barch et al., 2018; Sudlow 

et al., 2015; Van Essen et al., 2012), providing unprecedented opportunities to perform 

large-scale analysis across datasets and studies. However, the replicability requirement for 

biomarker development might be a great challenge to decomposition-based studies because 

the components identified by data-driven methods can vary across datasets or even across 

runs. This discrepancy hinders the validation of results and the automation of biomarker 

development, which might temper the translational values of the findings to clinical usage.

To address this, we developed a fully automated hybrid ICA-based framework called 

NeuroMark, which can address this issue in previous ICA methods (Du et al., 2020). By 

incorporating a robust spatial template (NeuroMark_fMRI_1.0) with intra-subject spatially 

constrained ICA, this framework extracts individual-level functional imaging features 

comparable across subjects, studies, and datasets. NeuroMark retains the benefits of data-

driven strategies by adapting to an individual scan, thus mitigating the pitfalls of fixed ROIs 

which may not correspond well to the underlying data (e.g., voxels are not coherent), and 

simplifies the data-driven approach by providing an additional constraint that enables us 

to fully automate the approach. The independence of individual-level feature extraction in 

NeuroMark is also useful for classification as it is a single-subject approach, and thus avoids 

concerns about leakage between training and testing data.

NeuroMark_fMRI_1.0 has been successfully applied to many studies, e.g., (Dhamala et al., 

2023; Du et al., 2021; Fu et al., 2021d, 2021a, 2023c; Levey et al., 2022; Salman et al., 

2023; Tu et al., 2020; Vaidya et al., 2023; Yan et al., 2023; Zhao et al., 2022), capturing 

functional network features associated with a wide range of brain disorders. By applying 

NeuroMark_fMRI_1.0 to subjects with mild cognitive impairment due to Alzheimer’s 

disease before and after atomoxetine treatment, Levey et al. showed that resting-state 

FC showed significantly increased within-network FC due to atomoxetine between the 

insula and the hippocampus (Levey et al., 2022). Vaidya and colleagues implemented 

NeuroMark_fMRI_1.0 on cross-sessional data including children, adolescents, and young 

adults, and found negative associations between arsenic exposure and resting-state FC 

(Vaidya et al., 2023). They further suggested that the within-network FC mediated the 

alterations in executive function. We subsequently expanded NeuroMark by leveraging a 

substantial cohort of over 100,000 subjects to create a reproducible and replicable normative 

template for intrinsic connectivity networks (ICNs) encompassing multiple spatial scales 

(NeuroMark_fMRI_2.0). The purpose of this template was to augment the generalizability 

and comparability of functional connectivity studies across diverse cohorts, while also 

accommodating subject variability. Additionally, we substantiated the existence of the ICN 

templates in data from individuals who did not meet the quality control (QC) criteria, 

highlighting the practicality and reliability of our findings. To enhance accessibility and 

facilitate the dissemination of our research outcomes, we released distinct versions of this 

multiscale template at https://trendscenter.org/data/. In sum, the NeuroMark framework has 
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proved to be a powerful tool to extract robust FC features for different neuroimaging 

consortia and datasets.

Neuroimaging studies recruit cohorts in different age groups because brain disorders 

can have different incidence rates in different age populations. For example, autism and 

ADHD studies might recruit children or adolescent participants (Durston and Casey, 2006; 

Konrad and Eickhoff, 2010; Pandolfi et al., 2014; Dardo Tomasi and Volkow, 2012), 

while neurodegeneration studies might target the aging cohorts (Kitani-Morii et al., 2021; 

Samra and Ramtahal, 2012; Stern, 2002). Existing literature has suggested the changes in 

functional networks throughout the lifespan (Cao et al., 2014; Chan et al., 2018; Rieck 

et al., 2021; Schlee et al., 2012). Although NeuroMark templates have been successfully 

applied to developmental and aging cohorts (Du et al., 2020, 2021; Zening Fu et al., 2020; 

Levey et al., 2022; Vaidya et al., 2023) because the adaptive-ICA technique (Du and Fan, 

2013) implemented can mitigate the age mismatch between the reference template and 

the data, there is still an open question of how network templates change throughout the 

lifespan and whether the NeuroMark templates can capture the reliable network activations 

if the cohorts show a different age distribution. In addition, different imaging modalities 

can provide complementary information to each other that might reveal different aspects of 

disease mechanisms (Gao et al., 2018; Teipel et al., 2015). Previous NeuroMark templates 

mainly focused on the fMRI data, and it is worth expanding the existing template to different 

modalities. ICA-based methods have been applied to other modalities, and similarly, because 

these studies were completely data-driven, the identified components varied across datasets. 

In contrast, a strength of our guided framework is it can enhance replication, validation, and 

comparison of the findings across studies. For example, source-based morphometry (SBM) 

(Xu et al., 2009), which applies ICA to a group of T1 gray matter data to capture “covaried 

voxels” (spatially distinct regions with common covariation among subjects/sessions), has 

been successfully utilized in many studies with a variety of components identified (Fornito 

et al., 2009; Murley et al., 2020; Sui et al., 2012). Developing a gray matter template as a 

reliable reference for fully automated SBM analyses will help to link the structural features 

across datasets and studies, which will help advance our understanding of the brain. ICA 

is also useful for analyzing diffusion MRI (dMRI) data (Jeong et al., 2013; Schouten et 

al., 2017). Building a reliable dMRI template is another ongoing effect that will boost the 

imaging analysis across brain disorders.

In this study, we constructed four-dimensional (age × 3D brain) functional templates 

(NeuroMark_fMRI_3.0) using more than 6000 high-quality fMRI scans from 1800 subjects 

by four different datasets. The 4D functional templates covered the dynamic brain 

development in three critical time points, i.e., infant (birth ~ nine months), developmental 

cohorts (five ~ 21 years), and aged cohorts (36 ~ 100 years). In addition to this, we 

introduced templates for other modalities constructed based on the T1w scans and diffusion 

scans. A structural SBM template (NeuroMark_sMRI_3.0) and a diffusion SBM (d-SBM) 

template (NeuroMark_dMRI_3.0) were built using > 30000 samples from two large 

neuroimaging consortia (UK biobank and HCP). To show the robustness of the templates, 

we evaluated the reproducibility of components across data. We also investigated the unique 

and shared patterns reflected in the functional templates for different age populations. 

This work represents the first attempt to introduce spatiotemporal functional templates and 

Fu et al. Page 4

Neuroimage. Author manuscript; available in PMC 2024 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



templates for structural and diffusion data compatible with the adaptive ICA framework, 

providing a powerful framework for capturing robust imaging makers in brain function and 

structure.

2. Materials and Methods

2.1. NeuroMark Framework

The NeuroMark framework, including the construction of templates and the application 

to neuroimaging datasets to capture reproducible brain features, is shown in Fig. 1. First, 

data from different modalities were preprocessed using our well-established preprocessing 

pipelines. Next, for each modality, ICA was performed on each data. After obtaining 

independent components (ICs) for each data, we identified the replicable ICs using a 

greedy spatial correlation analysis. Then the replicated ICs were labeled by evaluating 

their peak activations and the low-frequency fluctuations. Meaningful ICs, ICN for fMRI, 

SBM for sMRI, and d-SBM for dMRI, were used to build the template. Finally, the robust 

templates were used as the reference in an adaptive ICA approach on the target datasets 

to extract single-subject/scan imaging features. Imaging features from different modalities 

(e.g., functional network connectivity [FNC], SBM loadings, and d-SBM loadings) can be 

compared between subjects, datasets, and studies.

2.2. Building the Developmental Template (5 ~ 21 years)

We adopted the resting-state fMRI dataset from the human connectome project development 

(HCP-D, https://www.humanconnectome.org/study/hcp-lifespan-development) to build the 

NeuroMark template for developmental studies (NeuroMark_fMRI_Develomental_3.0). 

The HCP-D dataset has enrolled 652 healthy children, adolescents, and young adults 

aged between five years and 21 years old to study brain development in childhood and 

adolescence. We preprocessed the raw data using a combination of the SPM12 toolbox and 

the FSL toolbox, where detailed information is provided in the supplementary materials, 

section “Preprocessing of fMRI Data”.

The HCP-D dataset contains four resting-state sessions collected in the AP or PA direction 

(Func1_AP, Func2_PA, Func3_AP, and Func4_PA), suitable for searching replicable ICs 

to build the template. We ran the NeuroMark QC on all the preprocessed functional data 

to select scans with good imaging quality for the analysis. Specifically, we first excluded 

scans with relatively large head motions. Scans with head motions larger than 3° rotations 

or 3 mm translations or with mean framewise displacement (FD) larger than 0.3 mm were 

excluded. Then we examined the similarity between the single-scan mask and the group 

mask to check whether they have good normalization to the Echo-planar imaging (EPI) 

template (Du et al., 2020). Scans were excluded for further analysis if they did not have 

high enough similarities to the group-averaged mask. Details of QC are described in the 

supplementary materials, section “Examining Mask of Individual Scan and Average Mask 

for Subject Selection”. After the QC, we have in total of 2252 scans for the construction 

of the developmental template, including 562 Func1_AP scans, 569 Func2_PA scans, 557 

Func3_AP scans, and 564 Func4_PA scans. The demographic information of each session is 

provided in Table 1. In this work, we did not balance the number of males and females when 
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constructing the templates because we wanted to include as many subjects as possible to 

obtain reliable group-level ICs. As an additional analysis, we performed the same procedure 

using gender-balanced samples, which can be found in the supplementary materials, section 

“ICA on Gender-balanced Samples shows Highly-similar Network Patterns”. The results 

demonstrate that all the networks from the NeuroMark 3.0 templates can be reproducible in 

gender-balanced samples.

Group ICA was performed on each session data respectively, resulting in four groups of 

components for building the template. For each session, principal component analysis (PCA) 

was performed on each scan to reduce fMRI data to 120 principal components (PCs), 

which preserved more than 95% variance of the original data. Individual-level PCs were 

concatenated across subjects, and then a second-level PCA was performed to reduce the 

group data to 100 PCs. The Infomax algorithm (Bell and Sejnowski, 1995) was implemented 

on the 100 PCs to estimate 100 ICs, where this procedure was repeated 20 times based on 

the ICASSO method (Himberg and Hyvärinen, 2003). Finally, the best ICA run was used 

to generate 100 reliable group ICs for each session. After having the four groups of ICs, 

we examined the replicability of ICs for the template construction. We chose Func1_AP 

as the reference data and the other three sessions as the replication data. We also used the 

other sessions as the reference data for validation, where the results were highly consistent. 

For each IC from the reference data, we calculated the absolute value of the correlation 

coefficient between its spatial map and the spatial maps of the ICs from the other sessions. 

Based on the spatial correlation, we identified the matched IC from each replication data 

that showed the maximum correlation value. Therefore, for each IC from the reference 

data, there are three matched ICs from the three replication sessions. After identifying the 

matched ICs, we considered the reference IC replicable if it has a average spatial correlation 

with the matched ICs larger than 0.4, a stricter threshold than previous work (Smith et al., 

2009). The replicable ICs were further labeled as meaningful ICNs or noise components by 

evaluating their spatial activations. The ICNs were finally clustered into different functional 

domains according to prior functional and anatomical knowledge (Allen et al., 2014) and 

were taken to build the template for the developmental cohorts. The ICNs captured from 

the Func1_AP session were used to build the template, but it should be noted that ICNs 

from other sessions show similar spatial patterns that can be used as the template as well. 

Hereinafter, we use Nd to denote the number of ICNs in the template.

2.3. Building the Aging Template (36 ~ 100+ years)

The NeuroMark template for aging cohorts (Neuro-Mark_fMRI_Aging_3.0) was built using 

the resting-state fMRI dataset from the lifespan human connectome project aging (HCP-A, 

https://www.humanconnectome.org/study/hcp-lifespan-aging). The HCP-A dataset recruited 

725 healthy subjects aged between 36~100+ years old to investigate the healthy aging of 

brain function. We preprocessed the HCP-A data using the same pipelines for the HCP-D 

data.

The same QC criteria were applied to the preprocessed data to select scans for the 

construction of the aging template. We had in total of 2395 scans for building the aging 

template, including 589 Func1_AP scans, 626 Func2_PA scans, 573 Func3_AP scans, and 
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607 Func4_PA scans. The demographic information for each session is provided in Table 2. 

Group ICA was performed on each session to estimate the ICs respectively. Four groups of 

ICs were obtained, each with 100 ICs showing the coactivation patterns across subjects. The 

Func1_AP session was the reference data, and the other three sessions were the replication 

data. We performed the spatial correlation analysis introduced above and then inspected the 

replicable ICs as the ICNs, which were used to build the NeuroMark aging template. The 

ICNs captured from the Func1_AP were used as the network template. We use Na to denote 

the number of ICNs in the aging template. Results were highly consistent when we used the 

other session data as the reference. We also split the HCP aging samples into middle-aged 

adults (36 ~ 64 years) and older adults (65 ~ 100+ years) and then built the template for each 

age group. The results were summarized in the supplementary materials, section “Aging 

Templates for Middle-aged Adults (36 ~ 64 years) and Older Adults (65 ~ 100+ years)”.

2.4. Building the Infant Template (newborn ~ nine months)

To build the infant template (NeuroMark_fMRI_Infant_3.0), we used our infant datasets, 

namely the Neuroimaging of Infants at High- and Low-Risk for ASD (NI-HLA) and the 

ACE Center 2017: Project 3 – Neuroimaging (ACE), collected at the Center for Systems 

Imaging at Emory University School of Medicine using a 32-channel head coil (Feinberg et 

al., 2010; Moeller et al., 2010). Infants were scanned during natural sleep at multiple time 

points between birth and nine months of age. The preprocessing of infant datasets has a 

slight difference, which is mainly in the normalization of the images. The other steps are the 

same as the preprocessing of HCP datasets. Details of the preprocessing are provided in the 

supplementary materials, section “Preprocessing of fMRI Data”.

We performed similar QC on the preprocessed infant data to select good scans for building 

the infant template. We excluded scans with head motions larger than 3° rotations or 3 

mm translations and scans with bad normalization to the MNI space. After the QC, we 

had 155 scans from 45 subjects for the NI-HLA dataset and 175 scans from 60 subjects 

for the ACE dataset. The demographic information for each dataset is provided in Table 

3. Group ICA was first performed on each dataset. The replicability of the group ICs 

between datasets was examined using a similar spatial correlation analysis. Here, we used 

the NI-HLA dataset as the reference data and the ACE dataset as the replication data. We 

searched for the matched ICs from the replication data based on the maximum correlation 

value. ICs were reproducible if their matched ICs showed spatial correlations larger than 0.4. 

The replicable ICs were further inspected and labeled as ICNs if their peak activations fell 

into the well-known gray matter regions (Allen et al., 2014). There are ICNs captured from 

both datasets, but in the present work, we used the ICNs from the NI-HLA dataset to build 

the infant template. We use Ni to denote the number of ICNs in the infant template.

2.5. Similarity across Functional Templates from Different Age Populations

After having the developmental, aging, and infant functional templates, we explored how 

and what similar and different patterns are shared across them. Specifically, we used the 

developmental template as the reference and measured its spatial similarities with the other 

two templates. For each ICN from the developmental template, we calculated its correlation 

coefficients with ICNs from the aging and infant templates. We identified the matched ICN 
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from the aging and infant templates, which showed the maximum correlation values with 

the ICN from the developmental template. If the matched ICN showed a correlation higher 

than 0.4, we consider this developmental ICN reproducible in either the aging or infant 

template, or both templates. We repeated this analysis by setting the aging template and 

infant template as the reference, respectively. This procedure allows us to comprehensively 

investigate the shared and unique patterns across NeuroMark templates for different age 

groups.

2.6. Structural Template for Adult Cohorts

The structural template (NeuroMark_sMRI_3.0) was built using two large 

datasets, namely the human connectome project 1200 subject release (HCP, https://

www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release) 

and the UK-biobank project (UKB, https://www.ukbiobank.ac.uk/). The HCP 1200 subject 

release includes 3T MRI data from healthy young adult participants aged 22 ~ 35 years 

old collected from 2012 to 2015. We downloaded the raw T1 images from the HCP official 

website (https://www.humanconnectome.org/). The UKB data includes a population-based 

cohort of over 500,000 individuals aged 39 ~ 73 years old from 22 centers across the United 

Kingdom between 2006 and 2010. For building the structural template, we focused on a 

subset of healthy participants who have completed T1 MRI data. UKB subjects having 

any ICD-10 coded neurological/psychiatric diseases or congenital neurological disorders, 

reporting themselves that they were told to have a specific neurological/psychiatric disorder 

(which may or may not have been ICD-coded), and with incomplete MRI data were 

excluded. Our study is under Application ID 34175. We downloaded the raw T1 data 

from the UKB access management system and preprocessed the data using the SPM12 

toolbox. Detailed preprocessing steps are provided in the supplementary materials, section 

“Preprocessing of sMRI Data and dMRI Data”.

We ran QC on the preprocessed structural data to select scans with good imaging quality 

for the analysis. After QC, we have 34822 T1 scans for the UKB data and 1110 scans 

for the HCP data. The demographic information of each data is provided in Table 4. For 

each dataset, PCA was performed to reduce the data into 120 principal components (PCs) 

which preserve more than 95% variance of the original data. The infomax ICA algorithm 

was conducted to decompose the 120 PCs into 100 ICs and such procedure was repeated 

20 times in ICASSO, in which the best run was selected to ensure the estimation stability. 

ICs from the two datasets were matched by comparing their corresponding spatial maps. 

We used the UKB data as the reference and the HCP data as the replication. For each IC 

from the UKB data, we first identified the best-matched IC from the HCP which shows the 

highest spatial similarity to the reference. This was achieved by using a greedy elimination 

approach to match the ICs starting with the highest correlation values in the pair-wise 

correlation matrix of the ICs from UKB and HCP. If the spatial correlation of the matched 

IC from HCP is larger than 0.4, we consider this UKB IC replicable. We then labeled those 

replicable ICs as SBM networks if they exhibit peak activations in gray matter and have low 

spatial overlap with known vascular, ventricular, motion, and susceptibility artifacts. Finally, 

the SBMs from the UKB dataset were used to construct the structural template.
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2.7. Diffusion Template for Adult Cohorts

The diffusion template (NeuroMark_dMRI_3.0) was constructed using the same datasets, 

i.e., the HCP1200 release and the UKB project, described in ‘Structural Template for Adult 

Cohorts’. Note that, for building the diffusion template, we only selected a subset of 1135 

healthy subjects from the UKB data, as it is computationally infeasible to run group ICA 

on such big diffusion data. The preprocessing of dMRI data involved a series of steps using 

FSL (www.fmrib.ox.ac.uk/fsl) and ANTs (Avants et al., 2022), which are detailed in the 

supplementary materials, section “Preprocessing of sMRI Data and dMRI Data”.

After the inspection of the preprocessed fractional anisotropy (FA) maps, we have 1000 

dMRI scans for the UKB data and 1006 scans for the HCP data retained for building the 

diffusion template. The demographic information of each data is provided in Table 5. For 

each dataset, PCA was performed to reduce the data to 100 PCs which preserved more than 

95% variance of the original data. The infomax ICA algorithm was conducted to decompose 

PCs to 100 ICs and such procedure was repeated 20 times in ICASSO, in which the best run 

was selected to ensure the estimation stability (Luo et al., 2020). ICs from the two datasets 

were matched by comparing their corresponding spatial maps. We used the UKB data as 

the reference and the HCP data as the replication. For each IC from the UKB data, we first 

identified the best-matched IC from the HCP which shows the highest spatial similarity to 

the reference IC. This was achieved by using a greedy elimination approach to match the 

ICs starting with the highest correlation values in the pair-wise correlation matrix of the ICs 

from UKB and HCP. If the spatial correlation between the UKB IC and its matched IC from 

HCP is larger than 0.4, we consider this IC replicable. We characterized those replicable ICs 

as ‘diffusion source-based morphometry’(d-SBM) networks if they exhibit peak covariations 

in white matter and have low spatial overlap with known vascular, ventricular, motion, and 

susceptibility artifacts. Finally, the d-SBMs estimated from the UKB dataset were chosen to 

construct the FA template.

2.8. Applying NeuroMark Templates to Extract Single-subject Brain Imaging Features

With the network templates, the hybrid NeuroMark framework can extract individual-

level imaging features from the MRI data. Individual-level imaging feature extraction is 

performed independently for each scan, which can avoid information leakage between 

training and testing data that might bias the analysis, such as the classification and 

prediction. Multiple methods incorporated in our group ICA of fMRI toolbox (GIFT) 

(http://trendscenter.org/software/) can estimate individual-level ICs using the NeuroMark 

templates as guidance. Semi-blind spatial constrained ICA was the first algorithm available 

in the toolbox utilizing the prior spatial information to perform ICA (Lin et al., 2010). 

This method is within the framework of constrained ICA with fixed-point learning and 

enables robust estimation of consistently identified spatial networks. This method can 

more accurately detect some brain networks compared to conventional ICA approaches. 

The most commonly used approach in NeuroMark studies is the group-information-guided 

ICA (GIG-ICA) (Du and Fan, 2013). GIG-ICA consists of two objective functions, one 

is to optimize the independence of single-subject ICNs, and the other is to optimize the 

correspondence between single-subject ICNs and the template prior. This method improves 

accuracy and intra-class coefficients (ICCs) in single-subject IC estimation compared to 
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other network back-reconstruction methods (Du et al., 2017, 2016). GIG-ICA can capture 

more single-subject variation in network features that might be beneficial for classifying 

patients from healthy cohorts (Salman et al., 2019). Two newer methods are available 

in the toolbox for estimating single-subject components, namely constrained entropy 

bound minimization (cEBM) and constrained independent vector analysis (cIVA). cEBM 

adds increased flexibility by making use of the available prior knowledge in the spatial 

maps while allowing flexible density modeling of the sources without an orthogonality 

requirement for the demixing matrix (Yang et al., 2023). cIVA is an effective two-stage 

method to extract spatial and temporal features using IVA, mitigating the problems with big 

data while preserving the variability across subjects and time (Bhinge et al., 2019). It can 

use the NeuroMark template in a parameter-tuned constrained IVA to estimate time-varying 

representations of these signals while preserving the variability by tuning the constraint 

parameter.

Implementing NeuroMark with the new templates, brain features from different modalities 

can be calculated from multiple studies and datasets. Researchers only need to choose 

the appropriate template that best fits their datasets and study designs. For example, if a 

study focuses on ASD-related functional brain alterations in adolescents, the developmental 

template might be appropriate. NeuroMark can capture network features, such as spatial 

networks, functional network connectivity (FNC) between networks, frequency information 

of network fluctuations, etc., from both static and dynamic perspectives. Static FNC can 

be measured by computing the Pearson correlations between time courses (TCs) of ICNs, 

representing inter-relationships between different ICNs. Dynamic FNC is estimated via a 

sliding window approach (Allen et al., 2014; Fu et al., 2019), in which a tapered window 

obtained by convolving a rectangle with a Gaussian is used to segment the entire TCs into 

multiple short periods. If a study is interested in the white matter injury in dementia datasets, 

it can use the NeuroMark framework with the diffusion template. Reliable and comparable 

FA features can be extracted for the exploration of abnormal diffusion in radiographically 

normal-appearing regions across disorders.

3. Results

3.1. Functional Template for Children and Adolescents

Fig. 2 displays the matching results of ICs of different session data from the HCP-D cohorts. 

Fig. 2A shows the spatial correlation between the matched ICs, where the Func1_AP session 

is the reference data and the other sessions are the replication data. The first subplot displays 

the correlations between all 100 ICs and their best-matched ICs from each replication data. 

Most ICs are highly replicable across sessions with spatial similarity > 0.4. Specifically, all 

100 ICs have replicable ICs in the other sessions with mean correlations larger than r = 

0.4. 94 ICs have replicable ICs with mean correlations larger than r = 0.6, and 76 ICs have 

replicable ICs with mean correlations larger than r = 0.8. The spatial correlation reflects the 

similarity between matched components obtained by using the brain voxels within the brain 

mask.

Among the replicated ICs, 67 ICs were characterized as meaningful ICNs by examining 

their spatial activation and the low-frequency fluctuations in the TCs. These results are 
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highly consistent if we used other session data as the reference. The second subplot in Fig. 

2A displays the correlations for the 67 ICNs, sorting from highest replicability to lowest 

replicability (maximum average correlation is 0.9937, and the minimum average correlation 

is 0.5964). We labeled these networks from ICN1 to ICN67, which were used to construct 

the developmental template. In the third subplot of Fig. 2A, we provided the labels of the 

ten most replicable ICNs and ten least replicable ICNs, along with their spatial correlations. 

Postcentral gyrus (PoCG), paracentral gyrus (ParaCG), precentral gyrus (PreCG), putamen 

(Puta), vermis8_9 (Vermis), insula (Insu), precuneus (PreCu) and superior temporal gyrus 

(STG) are the most replicable ICNs in the developmental template. In contrast, the 

hippocampus (Hipp), inferior frontal gyrus (IFG), middle temporal gyrus (MTG), vermis 

4_5 (Vermis), middle cingulate cortex (MCC), middle occipital gyrus (MOG), fusiform 

gyrus (Fusi) and post cingulate cortex (PCC) are the least replicable ICNs. Fig. 2B provides 

several examples of the most and least replicable ICNs across reference and replication data. 

The overall results suggest that ICNs from the developmental template are highly replicable, 

showing similar spatial activation patterns across sessions.

3.2. Functional Template for Aging Cohorts

Fig. 3 shows the matching results of the ICs of different sessions from the HCP-A data. 

Fig. 3A provides the spatial correlations of the matching ICs between the reference and the 

replication data. Again, most ICs are highly replicable, showing consistent spatial activations 

across sessions. 99 ICs from the reference data (Func1_AP) are replicable in the other 

three sessions, with the most matching ICs showing mean spatial correlation > 0.4. 93 ICs 

have replicable ICs with mean correlations larger than r = 0.6, and 73 ICs have replicable 

ICs with mean correlations larger than r = 0.8. 56 of the 99 replicable ICs were identified 

as ICNs, which were used to construct the NeuroMark aging template. These ICNs show 

a maximum correlation of 0.9904 and a minimum correlation of 0.4662 (averaged across 

replication data). These results are highly consistent if we use other session data as the 

reference data. We observed that ICs from the data collected in the same phase-encoding 

direction show higher similarity than those from the data collected in different directions. 

In the aging template, inferior occipital gyrus (IOG), PoCG, Calcarine gyrus (CalG), STG, 

amygdala (Amyg), ParaCG, thalamus (Thal), and Precu are the most replicable ICNs. 

Anterior cingulate cortex (ACC), MCC, Caudate (Caud), PCC, PreCu+MOG, inferior 

parietal lobule (IPL), cerebellum, Rolandic operculum (RO), and inferior opercular frontal 

gyrus (IOFG) are the least replicable ICNs. Although ICNs might show variations across 

sessions, they are highly similar across the reference and the replication data.

3.3. Functional Template for Infants

Fig. 4 displays the spatial similarities of ICs estimated from two infant datasets. Unlike 

the developmental and aging templates built on the data from different sessions, the infant 

template was built using different datasets. Therefore, relatively smaller correlations were 

identified between these two groups of ICs. However, most ICs are still highly replicable. 99 

of the 100 ICs from the NI-HLA data have the best-matched ICs from the ACE data showing 

a spatial correlation larger than 0.4. 86 ICs have replicable ICs with correlations larger 

than r = 0.6, and 43 ICs have replicable ICs with correlations larger than r = 0.8. Different 

from the developmental and aging cohorts with aggregated networks, infant components 
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showed more widely distributed patterns. We labeled 72 reproducible ICs as meaningful 

ICNs, sorted in descending order in Fig. 4B. The most replicable ICN is the left CalG, which 

shows spatial similarity as 0.9592, while the least replicable ICN is the left PostCG, which 

shows spatial similarity as 0.4452. PostCG, IFG, superior medial frontal gyrus (SMFG), 

ParaCG, right PostCG, left PreCG, Cuneus (Cune), STG, and IOG are the most replicable 

ICNs. Supramarginal gyrus (SMG), Insu, Hipp, Precu, PCC, IPL, Fusi, MTG, and middle 

frontal gyrus (MFG) are the least replicable ICNs in the infant template.

3.4. Comparison of Functional Templates

Fig. 5 displays the composite spatial maps of 72 ICNs from the infant template, 67 ICNs 

from the developmental template, and 56 ICNs from the aging template. In each template, 

the ICNs were labeled and arranged into different domains according to the prior functional 

and anatomical information (Allen et al., 2014; Du et al., 2020). In line with our previous 

work, we first defined the seven most commonly used domains as the subcortical domain 

(SC), auditory domain (AUD), sensorimotor domain (SM), visual domain (VS), cognitive-

control domain (CC), default-mode domain (DM), and cerebellar domain (CB). In addition 

to these domains, we introduced two domains, the hippocampal domain (HP) and the 

parietal domain (PA), which have attracted increasing attention in current neuroscience. 

Therefore, ICNs of each template were finally assigned to nine domains for the visualization 

of their spatial activations. The activation map of each ICN represented the voxels that 

mostly contributed to the ICN because the skewness of each ICN was changed to be 

positive. Specifically, the infant template includes seven ICNs in SC, five ICNs in HP, eight 

ICNs in AUD, eight ICNs in SM, 12 ICNs in VS, 16 ICNs in CC, six ICNs in PA, five 

ICNs in DM, and five ICNs in CB. The developmental template includes eight ICNs in SC, 

six ICNs in HP, four ICNs in AUD, eight ICNs in SM,12 ICNs in VS, 11 ICNs in CC, five 

ICNs in PA, eight ICNs in DM, and five ICNs in CB. The aging template includes seven 

ICNs in SC, seven ICNs in HP, five ICNs in AUD, six ICNs in SM, seven ICNs in VS, nine 

ICNs in CC, four ICNs in PA, seven ICNs in DM, and four ICNs in CB. The detailed label, 

peak coordinate, and spatial map of each ICN are provided in the supplementary materials, 

sections “Template and Intrinsic Connectivity Networks”.

We observed that ICNs show highly similar patterns across templates, although the younger 

template tends to be more segregated while the older template tends to be more aggregated. 

We investigated the shared and unique aspects of the lifespan functional templates by 

examining their spatial similarities. Fig. 6 displays the comparison results across templates. 

We first used the infant template as the reference and found most infant ICNs replicated 

in the developmental and aging templates. 81.9% of ICNs (59 out of 72) from the infant 

template are observed in the developmental and aging templates (r > 0.4). Nine infant 

ICNs can only be replicated in the developmental template, while two infant ICNs can only 

be replicated in the aging template. Two ICNs, namely high MFG (ICN 70, averaged r 

with older templates = 0.2989) and low MTG (ICN 71, averaged r with older templates = 

0.3042), cannot be identified in the older templates. 97% of ICNs (65 out of 67) from the 

developmental template are replicable in the infant and aging templates (r > 0.4), except for 

two ICNs. ICN 15 from the developmental template, labeled as lingual gyrus (LingG), is 

not identified in the infant template. ICN 21, which is more likely an aggregated network 
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combining PreCG with the supplementary motor area (SMA), is not captured in the infant 

and aging templates. 100% of ICNs from the aging template have replicated ICs from the 

developmental template. Six aging ICNs are not identified in the infant template, most of 

which are aggregated networks containing both frontal and parietal regions. For example, 

ICN 17 and ICN 51 from the aging template, which covers the posterior brain including 

the right IPL and angular gyrus (AG), and the anterior brain including the frontal gyrus, 

cannot be observed in the infant template. Fig. 6B shows some examples of ICNs across 

the NeuroMark templates along the lifespan. While most ICNs are highly replicable across 

the templates, there are some ICNs with specific activations to given age populations, which 

further proves the importance of introducing NeuroMark templates for different age groups 

for better capturing the brain functional features across the lifespan.

3.5. NeuroMark Structural and Diffusion Templates

Fig. 7 shows the spatial correlations between the best-matched ICs from the UKB and HCP 

datasets. Out of the 100 ICs identified from the UKB dataset, 66 components were replicable 

in the HCP dataset, having the best-matched ICs with spatial correlation larger than 0.4. All 

66 replicable ICs show covariations in the meaningful gray matter areas and were labeled as 

SBM networks for building the structural template. The most replicable IC was the CalG (r 

= 0.91), which is also one of the most replicable ICs in the functional templates. Other top 

replicable ICs include inferior temporal gyrus (ITG), SMFG, and SMA. The least replicable 

SBM networks were Precuneus, IOG, and Fusi. As seen in Fig. 7B, the replicable SBMs 

show highly similar covariations despite being captured from two independent datasets.

Fig. 8 shows the spatial correlations between the best-matched diffusion ICs from the UKB 

and HCP datasets. Out of the 100 ICs identified from the UKB dataset, 69 components 

were replicable in the HCP dataset, having the best-matched ICs with a spatial correlation 

larger than 0.4. All the 69 replicable ICs show covariations in the meaningful white matter 

areas and therefore were labeled as d-SBM networks for building the diffusion template. 

Two white matter atlases (Laboratory of Brain Anatomical MRI, Johns Hopkins University, 

FSL6.0) were used for labeling. As the d-SBM networks were derived from ICA in FA 

maps, the labeling in Fig. 8 referred to the 50-region ICBM-DTI-81 white-matter labels 

atlas, which were originally generated from diffusion tensor maps as well. In addition, to 

seek better grouping, we used a 20-tract JHU white-matter tractography atlas to separate 

all 69 d-SBM networks into more detailed categories (commissure, association, and project) 

based on the highest overlapping and tract orientations. More details on the labeling and 

grouping are provided in the supplementary materials, section “Diffusion Template and 

Source-based Morphometry Networks”. The most replicable ICs were the left and right 

posterior thalamic radiation (including optic radiation) (r = 0.91, and r = 0.90), which are, 

intriguingly, directly connected to the (or one of) most replicable ICs, i.e., CalG, in both 

the functional and structural templates. Other top replicable ICs include tapetum, genu 

of corpus callosum, and pontine crossing tract. The least replicable among the d-SBM 

networks were inferior frontal-occipital fasciculus, superior corona radiata, and superior 

longitudinal fasciculus. As seen in Fig. 8B, the replicable d-SBM networks show highly 

similar covariations between two independent datasets.

Fu et al. Page 13

Neuroimage. Author manuscript; available in PMC 2024 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9 shows the composite maps of 66 SBMs from the structural template and 69 

d-SBMs from the diffusion template. Similar to the functional templates, the SBMs 

from the structural template were grouped into nine domains. Specifically, the structural 

template includes three ICNs in SC, one ICN in HP, eight ICNs in AUD, four ICNs 

in SM, 12 ICNs in VS, 13 ICNs in CC, four ICNs in PA, eight ICNs in DM, and 

13 ICNs in CB. On the other hand, the d-SBMs from the diffusion template were 

grouped into eight categories, which are, Commissure-prefrontal (forceps minor) to occipital 

(forceps major) tracts including 16 d-SBMs, Association-inferior longitudinal and inferior 

frontal-occipital fasciculi including nine d-SBMs, Association-superior longitudinal fasciculi 

(parietal) including 12 d-SBMs, Association-superior longitudinal fasciculi (temporal) 

including 11 d-SBMs, Association-cingulum including four d-SBMs, Projection-thalamic 

radiations including seven d-SBMs, Projection-anterior radiations including five d-SBMs, 

and Projection-cerebellar and corticospinal tracts including five d-SBMs.

4. Discussion

4.1. Automating and Hybrid NeuroMark Approach

In this study, we expanded the NeuroMark framework by introducing the first 4D functional 

templates (NeuroMark_fMRI_3.0), as well as the first structural (NeuroMark_sMRI_3.0) 

and diffusion templates (NeuroMark_dMRI_3.0). With these templates, NeuroMark can 

capture features according to the age of the populations and across modalities, which might 

boost accuracy in mental health research and advance our understanding of lifespan and 

cross-modalities alterations.

ICA is a promising data-driven approach widely used in neuroscience to extract meaningful 

imaging features across imaging modalities (Calhoun et al., 2009; Liu et al., 2009; Sui et 

al., 2011). However, there is a potential limitation in the conventional ICA approach that 

the components estimated by the data-driven method might change across runs, making 

the results difficult to compare and validate across studies. With the development of 

neuroscience, there is an increasing need for comparing the results between brain disorders 

and validating the results across studies and datasets (Marek et al., 2022; Weller and 

Kinder-Kurlanda, 2016). Precise characterization of reliable neuroimaging features holds 

great promise in predicting brain disorders and advancing our understanding of complex 

human behavior (Aarts et al., 2015). In addition, there is a consensus that many brain 

disorders show clinically overlapping and unique symptoms, reflected by the similarity 

and distinction in their neuroimaging data. For example, autism spectrum disorder (ASD) 

and Schizophrenia (SZ) have overlapping clinical features (Konstantareas and Hewitt, 

2001) and similar brain alterations (Fu et al., 2020; Mastrovito et al., 2018; Yoshihara 

et al., 2018), which were previously regarded as the same brain disorders in different 

stages (Eisenberg and Kanner, 1956). SZ also shares overlapping symptoms with bipolar 

disorder (BP), where 60% of bipolar patients have psychotic features (Goes et al., 2007) 

and similar neurocognitive deficits (Glahn et al., 2004). SZ and BD show similar brain 

alterations in motor and parietal regions but were separated by functional differences in the 

medial frontal and visual cortex (Sui et al., 2011). Alzheimer’s disease (AD) and vascular 

cognitive impairment and dementia (VCID) are the two most common causes of dementia in 
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elderly individuals, which share similar brain lesions, symptoms, and progressive course that 

confound the clinical distinction (Fu et al., 2020; Rosenberg et al., 2016). From a clinical 

perspective, it would be greatly beneficial to investigate and compare brain changes among 

brain disorders for increased sensitivity and specificity and further advancing diagnosis and 

accurate treatments. Neuroimaging consortia have collected many large sample data, such 

as UK Biobank (Douaud et al., 2021), ABCD (Casey et al., 2018), HCP (Van Essen et al., 

2012), ADNI (Jack et al., 2008), OASIS (O’Connor and Davitt, 2012; Tullai-McGuinness 

et al., 2009), ABIDE (Di Martino, 2012), BSNIP (Mokhtari et al., 2016), and ADHD200 

(Milham et al., 2012), providing an unprecedented opportunity for the investigation of 

comparability and reproducibility of population-based research. The development of current 

neuroscience magnifies the potential problem of conventional ICA approaches, which might 

hinder the replication and comparison of imaging features.

In this context, we developed the NeuroMark framework (Du et al., 2020), which makes 

use of the pre-defined reference and the data-driven method to extract reliable imaging 

features that can be linked to brain disorders and complex human behavior. Unlike 

conventional ICA-based approaches, NeuroMark relies on pre-defined templates to extract 

imaging features for each scan. The use of the pre-defined template not only guarantees the 

correspondence of imaging features across measurements but also increases the likelihood 

of detecting meaningful biomarkers by reducing the search space. The use of data-driven 

approaches in feature extraction allows the NeuroMark to retain more subject-specific 

variations benefiting the characterization of inter-subject variability (Du and Fan, 2013). The 

NeuroMark framework, therefore, absorbs the strengths of the ICA-based and atlas-based 

approaches and has shown promising abilities to capture functional biomarkers in many 

recent applications. It has successfully extracted a wide range of imaging features, including 

spatial activation of networks (Du et al., 2020; Hajjar et al., 2022), time-courses of the 

networks (Hajjar et al., 2022; Zhao et al., 2022), static FNC (Du et al., 2021; Levey et al., 

2022; Rahaman et al., 2023; Vaidya et al., 2023), and dynamic FNC (Dini et al., 2021; Fu 

et al., 2021d, 2021c, 2021b; Tu et al., 2020, 2019), across healthy populations (Abrol et 

al., 2023; Lewis et al., 2023; López-Vicente et al., 2021) and many brain disorders, such as 

mild cognitive impairment (MCI) (Levey et al., 2022; Li et al., 2021), SZ (Du et al., 2021; 

Fu et al., 2020; Fu et al., 2021b; M.S.E. Sendi et al., 2021a), ASD (Du et al., 2021; Fu 

et al., 2020), COVID-19 (Fu et al., 2021d), AD (Hajjar et al., 2022; M.S.E. Sendi et al., 

2021b), and major depressive disorder (MDD) (Fu et al., 2023a, 2023b, 2021c; Mohammad 

S.E. Sendi et al., 2021), etc. The imaging features captured by the NeuroMark framework 

have been combined with many advanced analytic approaches to quantify the compatibility, 

reproducibility, and reliability of brain makers across studies and datasets.

4.2. 4D Functional Templates, from Infant to Aging Cohorts

Although NeuroMark brings a lot of conveniences to standardize biomarker development, 

there are still concerns about the template used in previous studies. We have listed all 

the available NeuroMark templates and their brief information in Table 6. The previous 

NeuroMark_fMRI_1.0 is constructed using two large-sample healthy populations from the 

HCP and GSP datasets, where the subjects’ average age is 28.79 years old and 21.54 years 

old. NeuroMark_fMRI_1.0 mainly reflects the network structure for young adults at 20–30 
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years old. However, this template has been applied to many datasets where the participants 

are in significantly different age groups. For example, this template has been used in AD and 

MCI studies where the participants are most likely aging cohorts. Recent work has adopted 

this template on the MCI participants aged 50–90 years old for characterizing atomoxetine-

associated functional brain connectivity changes (Levey et al., 2022). NeuroMark has also 

been used to extract ASD-related imaging features, in which subjects are typically children 

or adolescents (Fu et al., 2020). More recently, a study focusing on Arsenic exposure 

has implemented this template to different age populations for the exploration of brain 

abnormalities among children, adolescents, and young adults in India (Vaidya et al., 2023). 

Normal aging in functional brain networks has long been appreciated in literature (Chan et 

al., 2018; Schlee et al., 2012), where age-related dedifferentiation can manifest as neural 

representations showing reductions in the specialization and specificity of networks (Goh, 

2011). Functional network differences between children and adults have also been reported 

in many studies (Jolles et al., 2011; Liu et al., 2018; Sato et al., 2021). There is an open 

question of whether a common template in NeuroMark can capture reliable functional 

activations reflected in different age populations.

Therefore, in this work, we introduced age-specific templates adaptable to the NeuroMark 

framework and examined their similarities and differences. The new functional templates 

were built using 5000 scans from subjects aged from infancy to aging. To the best of 

our knowledge, this is the first study that introduced network templates for different age 

populations that provide hypothesis-driven references to the hybrid data-driven approach. 

We applied a common normalization strategy to wrap the data into a standard MNI 

space that can make the resulting templates comparable across age groups. Meanwhile, 

we replicated the components across data, which therefore generated more reliable ICN 

templates for future neuroimaging studies. As shown in the comparison of NeuroMark 

templates for different age groups, the infant, developmental, and aging templates 

encompass highly similar ICNs. More than 80% of the ICNs are replicable across templates 

built for different age populations. NeuroMark has an objective function that optimizes 

feature extraction based on single-subject data properties (Du and Fan, 2013). This helps 

to reduce differences (such as age, conditions, etc.) between the target data and the 

template. As a result, we believe that NeuroMark templates are suitable for use with 

various clinical datasets to capture reliable neuroimaging features. Future studies using 

datasets in a wide age range can also concentrate on those shared ICNs that reliably 

exist along the lifespan. NeuroMark_fMRI_3.0 also shows age-specific ICNs, which might 

provide important network information at an appropriate age or for a specific population. 

Age-specific templates combined with the NeuroMark framework might precisely capture 

the functional network features in various applications.

An interesting finding in this work is that the infant template is more likely to split 

the widespread regions into different networks, which implies that the infant brain might 

show more functional segregation. On the contrary, the aging template contains networks 

with coactivated voxels located at distributed brain regions. This result might explain the 

phenomenon of more ICNs captured in the younger template and fewer ICNs captured in the 

older template (because an ICN in the aging template might split into multiple networks in 

the infant template). This finding also provides evidence supporting dedifferentiation of the 
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aging brain (Koen and Rugg, 2019), where the functional dedifferentiation theory suggests 

that functional networks in the elderly are characterized by increased coupling between 

remote regions from different networks (Chan et al., 2014; Geerligs et al., 2015; Grady et al., 

2016; D. Tomasi and Volkow, 2012), such as the default-mode, salience, and frontoparietal 

networks.

4.3. Structural and Diffusion Templates for Capturing Brain Markers from Other 
Modalities

In addition to the 4D functional templates, we introduced network templates for other 

MRI modalities. Multimodal neuroimaging techniques might provide complementary 

information, aiding in the detection of brain changes related to mental health and complex 

human behavior. Recent neuroscience has been paying increasing attention to cross-modality 

analysis and believes that different modalities represent different perspectives of the 

functional, structural, or anatomical properties, potentially revealing the latent biomarkers 

that might be missed from unimodal analysis (Calhoun and Sui, 2016). The investigation 

of brain imaging across modalities can inform us how brain structure shapes brain function 

or the reverse and advance our understanding of how functional or structural aspects of 

physiology could drive human behavior and cognition.

Similar to functional analysis, one can combine information across voxels of structural 

or diffusion data to identify networks and perform testing on the subject covariation of 

these networks rather than testing each voxel separately. As a multivariate extension to 

voxel-based morphometry (VBM) (Ashburner and Friston, 2000), SBM (Xu et al., 2009) 

is a data-driven approach that captures the covariations of brain voxels across scans. SBM 

has been successfully applied to many studies, identifying imaging biomarkers that are 

linked to a wide range of brain disorders (Duan et al., 2021; Gupta et al., 2015; Park et 

al., 2022; Steenwijk et al., 2016; Sui et al., 2012). However, as an ICA-based method, 

SBM shares the same weakness in that the identified components vary across datasets and 

studies, significantly influencing the replication and validation of the results. Therefore, 

we built robust sources to guide the individual source computation in sMRI and dMRI. 

Two large datasets, UKB and HCP were used for constructing the network templates. 

NeuroMark_sMRI_3.0 and NeuroMark_dMRI_3.0 allow for the extraction of covaried 

voxels from the gray matter volume (GMV) data and the FA data, where the resulting 

network features are comparable across subjects, studies, and datasets. With the structural 

and diffusion templates, the NeuroMark framework can automate the searching of structural 

and diffusion biomarkers within and across clinical conditions. In addition, studies can also 

combine ICA-based features from different modalities with advanced analytic approaches, 

such as machine learning methods, which can distill a rich set of imaging features into a 

single index for accurately predicting human behavior (Sui et al., 2020). Machine learning 

and multivariate methods have been successfully applied to neuroimaging studies in recent 

years, identifying robust biomarkers for complex human behavior (Chen et al., 2022; Chopra 

et al., 2022; Jiang et al., 2022b, 2022a; Kucyi et al., 2021; Lee et al., 2021; Woo et al., 

2017b, 2017a). Multivariate associations between brain features and behavioral variables 

are robustly related to univariate effect sizes (r = 0.79, p < 1.0 × 10−3) (Marek et al., 
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2022), suggesting the potential to integrate univariate and multivariate analyses to reveal 

mechanistic linkages between brain imaging and behavior.

4.4. Limitations and Future Directions

NeuroMark_fMRI_3.0 introduces functional templates for different age populations. We 

note that temporal information should also be considered for other modalities. Future 

NeuroMark will develop structural and diffusion templates for different age groups and 

comprehensively investigate the similarities and differences across ages. NeuroMark can 

also focus on building templates for different clinical cohorts, which might capture disorder-

specific network covariation patterns. Although previous applications of NeuroMark in 

many brain disorders have shown that the data-driven approach in NeuroMark can adapt 

to populational differences, it would be of great interest to allow NeuroMark to adapt 

to disorder-specific networks. Literature has demonstrated evidence of different network 

covariations, underlying distinct disorders, and disease mechanisms (Nomi and Uddin, 2015; 

Rubinov and Bullmore, 2013; Skidmore et al., 2011; Tijms et al., 2013). However, it is also 

useful to preserve the correspondence to control groups, to do this we can potentially adjust 

the framework to allow for this additional aspect.

In our future studies, we plan to extend our UKB application to gain full access to the dMRI 

data. The process of developing cross-modality templates can be divided into two parts. 

Firstly, the templates can be constructed using the same subjects while only considering 

the unimodal imaging variation. Then, the templates will be matched and compared to 

investigate the overlapping and unique patterns across modalities. Secondly, we can develop 

multimodal fusion templates that can be placed on a spectrum that ranges from analyzing 

each modality separately in the context of a similar study to the symmetric analysis of 

multimodalities to extract the joint information that is often hidden.

There are currently numerous approaches to multimodal fusion, and many are now being 

applied to systematically evaluate neuroimaging biomarkers of brain disorders, such as 

joint ICA (Calhoun et al., 2006), parallel ICA (Liu et al., 2009), and multiset canonical 

correlation analysis (mCCA) (Correa et al., 2010). However, data-driven approaches can 

suffer from variability across runs and studies, which can hinder the development and 

replication of fusion studies.

More recently, we introduced a hybrid multimodal fusion method, namely mCCA with 

reference plus joint ICA (mCCAR+jICA) (Calhoun, 2018), which can jointly analyze the 

shared components while linking the patterns to the behavioral or symptom variable. This 

idea can be easily extended to the hybrid NeuroMark fusion framework by considering the 

covariations across fMRI, sMRI, and dMRI.

Different from the post-analysis on the NeuroMark features that are extracted independently 

from each modality, the benefit of the hybrid NeuroMark fusion framework in this context 

is the ability to decompose components considering the intermodal relationship and the 

hypothesis-driven reference, in which the covarying networks are comparable and replicable 

while still benefiting from data-driven methods. Therefore, constructing priori fusion-based 
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multimodal templates to guide the individual joint sources computation will be an ongoing 

effort.

5. Conclusion

The mixture of big data, algorithmic advances, and neuroinformatics solutions has propelled 

the neuroimaging field forward rapidly. Undoubtedly, employment of neuroimaging 

biomarkers will move from single data types to incorporating all relevant available data, 

in essence developing multimodal fingerprints. While we have not advanced as quickly as 

we might have hoped in explicating the mysteries of neurological and mental disorders, 

there is considerable reason to be optimistic about the not-too-distant future. The brain 

is extremely complex, which makes focusing on brain disorders even more challenging. 

NeuroMark, combining a priori neuroimaging and data-driven methods, is a promising 

tool that provides a way forward here, continuously advancing the field. The NeuroMark 

3.0 templates, which include spatiotemporal functional templates and templates from other 

modalities, will have plenty of applications in future neuroimaging studies. For example, 

the 4D NeuroMark_fMRI_3.0 template will be very important for investigating lifespan 

patterns of the brain that might advance our understanding of brain aging in healthy and 

disease cohorts. Secondly, the NeuroMark_sMRI_3.0 and NeuroMark_dMRI_3.0 templates 

can be applied to MRI data from different modalities to generalize and standardize the 

calculation of network features that leverage the benefits of a data-driven approach and 

provide comparability across multiple analyses. Taken together, we believe that NeuroMark 

3.0 templates can complement and exploit the richness of neuroimaging data, which will 

shed light on the biological mechanisms of the linkages between brain image and human 

behavior.
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Data and Code Availability Statement

The HCP developmental and aging data used in the present study can be accessed 

upon application from NDA (https://nda.nih.gov/) with the approval of the ABCD 

consortium. The HCP 1200 release data can be accessed upon application from 

Connectome Coordination Facility (https://www.humanconnectome.org/). The UK biobank 

data can be accessed upon application from UK biobank biomedical database (https://

www.ukbiobank.ac.uk/).

NeuroMark 3.0 templates are accessible on our official website (https://trendscenter.org/

data/) and GitHub (https://github.com/trendscenter/gift/tree/master/GroupICAT/icatb/

icatb_templates). The codes of the NeuroMark framework have been integrated into the 
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group ICA Toolbox (GIFT 4.0c, https://trendscenter.org/software/gift/). Other MATLAB 

codes of this study can be obtained from the corresponding author.

Data availability

Data will be made available on request.
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Fig. 1. 
NeuroMark framework to extract comparable brain features from different image modalities. 

A) Construction of NeuroMark templates for different imaging modalities. Raw imaging 

data is preprocessed using standard pipelines and then normalized to the common 

Montreal Neurological Institute (MNI) space. Group-level independent components (ICs) 

are estimated from different data. ICs are matched between data for searching replicable 

components. Replicable ICs are identified as intrinsic connectivity network (ICN) or 

source-based morphometry (SBM) or diffusion SBM (d-SBM) templates by evaluating the 

component maps. B) Extracting individual-level imaging features by taking the templates as 

the reference. Group-information-guided back-reconstruction methods are adopted to single 

scan to extract imaging features comparable across datasets and studies.

Fu et al. Page 30

Neuroimage. Author manuscript; available in PMC 2024 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Spatial matching results of the ICs of different sessions from the HCP-D data. A) Spatial 

correlations between matched ICs from the reference data (Func1_AP) and the replication 

data. Correlations between meaningful ICNs are also displayed (average r > 0.4 for the 

replication data), sorted by the average correlation. ICNs are used for the construction of 

the developmental template. B) Examples of the most and the least replicable ICNs between 

reference and replication data. ICNs show robust activation patterns across sessions.
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Fig. 3. 
Spatial matching results of the ICs of different sessions from the HCP-A data. A) Spatial 

correlations between matched ICs from the reference data (Func1_AP) and the replication 

data. Correlations between meaningful ICNs are also displayed (average r > 0.4 for the 

replication data), sorted by the average correlation. ICNs are used for the construction of the 

aging template. B) Examples of the most and the least replicable ICNs between reference 

and replication data. ICNs show consistent activation patterns across sessions.
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Fig. 4. 
Spatial matching results of the ICs from two infant datasets. A) Spatial correlations between 

matched ICs from the reference data (NI-HLA) and the replication data (ACE). Correlations 

between meaningful ICNs are also displayed (r > 0.4 for the replication data), sorted by the 

correlation value. ICNs are used for the construction of the infant template. B) Examples 

of the most and the least replicable ICNs between the reference and replication data. ICNs 

show similar activation patterns between datasets.
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Fig. 5. Composite maps of the identified ICNs for the infant, developmental and aging templates.
ICNs covered almost the whole brain are clustered into nine functional domains, including 

1) subcortical domain, 2) hippocampal domain, 3) auditory domain, 4) sensorimotor domain, 

5) visual domain, 6) cognitive-control domain, 7) parietal domain, 8) default-mode domain, 

and 9) cerebellar domain. One color in the composite maps corresponds to an ICN.
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Fig. 6. 
Similarities and differences across lifespan NeuroMark templates. ICNs show both similar 

and unique patterns across templates. A) Spatial correlations between ICNs from the 

reference template and the other templates. Most of the ICNs are replicable across age 

groups. B) Examples of shared and unique ICNs across the infant, developmental and aging 

templates. Infant ICNs tend to be distributed across the whole brain, while aging ICNs tend 

to be aggregated, covering multiple distanced brain regions.
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Fig. 7. 
Spatial matching results of the ICs from two structural datasets. A) Spatial correlations 

between matched ICs from the reference data (UKB) and the replication data (HCP). 

Correlations between meaningful SBM networks are also displayed (r > 0.4 for the 

replication data), sorted by the correlation value. SBM networks are used for the 

construction of the NeuroMark structural template. B) Examples of the most and the least 

replicable SBM networks between the reference and replication data. SBM networks show 

similar covariation patterns of gray matter between datasets.
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Fig. 8. 
Spatial matching results of the ICs from two diffusion datasets. A) Spatial correlations 

between matched ICs from the reference data (UKB) and the replication data (HCP). 

Correlations between meaningful d-SBM networks are also displayed (r > 0.4 for the 

replication data), sorted by the correlation value. d-SBM networks are used for the 

construction of the NeuroMark diffusion template. B) Examples of the most and the least 

replicable d-SBM networks between the reference and replication data. d-SBM networks 

show similar covariation patterns of white matter between datasets.

Fu et al. Page 37

Neuroimage. Author manuscript; available in PMC 2024 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Composite maps of SBMs and d-SBMs for the structural and diffusion templates. SBMs and 

d-SBMs are clustered into different categories. One color in the composite maps corresponds 

to an SBM or d-SBM.
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Table 1

Basic Demographics of HCP-Development Data.

Basic Demographics Func1_AP Func2_PA Func3_AP Func4_PA

Total Subject 562 569 557 564

Age (month) 179.34 ± 46.26 179.34 ± 45.88 179.04 ± 45.95 177.63 ± 46.43

Gender (F/M) 308/254 312/257 304/253 311/253

Race (W/B/A/O) 361/59/43/99 368/57/42/102 358/60/43/96 366/58/42/98

Mean FD 0.16 ± 0.05 0.14 ± 0.05 0.16 ± 0.05 0.14 ± 0.05

F = female; M = male; W = white; B = black or African American; A = Asian; O = others or unknown; FD = framewise displacement.
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Table 2

Basic Demographics of HCP-Aging Data.

Basic Demographics Func1_AP Func2_PA Func3_AP Func4_PA

Total Subject 589 626 573 607

Age (month) 712.77 ± 186.96 720.41 ± 186.04 718.47 ± 187.35 720.15 ± 184.88

Gender (F/M) 336/253 361/265 325/248 355/252

Race (W/B/A/O) 424/80/45/40 461/80/45/40 416/74/44/39 450/75/43/39

Mean FD 0.18 ± 0.05 0.17 ± 0.05 0.19 ± 0.05 0.17 ± 0.06

F = female; M = male; W = white; B = black or African American; A = Asian; O = others or unknown; FD = framewise displacement.
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Table 3

Basic Demographics of Infant Data.

Basic Demographics NI-HLA Dataset ACP Dataset

Scans 155 175

Subjects 73 70

Age (month) [scans] 3.78 ± 1.81 3.66 ± 1.72

Gender (F/M) [scans] 66/89 82/93

Mean FD [scans] 0.17 ± 0.08 0.23 ± 0.07

F = female; M = male; FD = framewise displacement. Age, gender, and mean FD information is measured across scans.
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Table 4

Basic Demographics of Structural Data.

Basic Demographics UKB Dataset HCP Dataset

Subjects 34882 1110

Age (year) 60.64 ± 15.23 28.79 ± 3.69

Gender (F/M) 19095/15727 603/507

Race (W/B/O) 32162/198/2462 830/165/115

F = female; M = male; W = white; B = black or African American; O = others or unknown.
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Table 5

Basic Demographics of Diffusion Data.

Basic Demographics UKB Dataset HCP Dataset

Subjects 1000 1006

Age (year) 56.42±7.29 26.89±3.44

Gender (F/M) 512/488 540/466

Race (W/B/O) 975/3/22 764/133/109

F = female; M = male; W = white; B = black or African American; O = others or unknown.
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