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Abstract

Accurate and reliable registration of longitudinal spine images is essential for assessment of 

disease progression and surgical outcome. Implementing a fully automatic and robust registration 

is crucial for clinical use, however, it is challenging due to substantial change in shape and 

appearance due to lesions. In this paper we present a novel method to automatically align 

longitudinal spine CTs and accurately assess lesion progression. Our method follows a two-step 

pipeline where vertebrae are first automatically localized, labeled and 3D surfaces are generated 

using a deep learning model, then longitudinally aligned using a Gaussian mixture model surface 

registration. We tested our approach on 37 vertebrae, from 5 patients, with baseline CTs and 

3, 6, and 12 months follow-ups leading to 111 registrations. Our experiment showed accurate 

registration with an average Hausdorff distance of 0.65 mm and average Dice score of 0.92.

1. DESCRIPTION OF PURPOSE

Longitudinal lesion monitoring plays a pivotal role in observing changes of metastatic 

vertebrae and disease progression over time. By consistently evaluating the size, shape, 

and characteristics of lesions, healthcare professionals can gain valuable insights into the 

effectiveness of treatments, predict potential complications, and make informed decisions 

about patient care. The primary objective of this research is to conduct a longitudinal study 

focused on lesion growth in metastatic spines. Our approach allows for a comprehensive 

understanding of how metastatic lesions evolve and impact a patient’s clinical course, 

ultimately leading to more personalized and effective medical interventions. The accurate 

tracking of lesions necessitates the alignment of 3D images captured at distinct time points. 

An initial CT scan establishes a baseline at 0 months, and follow-up scans at 3, 6, and 

12-month are registered to this baseline. Registration is required due to altered parameters 

of the CT scan environment, such as origin, resolution, reconstruction methods, field of 
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view, etc. This registration process enables lesion comparison and observation of the lesion 

development over time.

Several notable contributions have been made in the field of advancing medical image 

registration techniques, each with its own limitations that provide valuable insights for 

further refinement and development. The methods described by Hille et al.,1 Cai et 

al.2 and Gueziri et al.3 address medical image registration involving MRI, CT, and 

ultrasound during spine interventions. These techniques are primarily utilized to fuse 

intraoperative images of lower resolution with pre-operative high-resolution scans, resulting 

in improved image quality—typically outperforming the outcomes of purely intraoperative 

CT imaging. However, while such registration methods exhibit speed and precision for 

surgical interventions, they presume a consistent appearance of vertebrae pre- and post-

intervention, which might not align with cases involving lesions. Balakrishnan et al.4 and Hu 

et al.5 developed state-of-the-art learning-based registration strategies that integrate weakly-

supervised segmentations during training, by incorporating them into the loss function. Zhao 

et al.6 introduced SpineRegNet which allows for affine-elastic deformation field estimation 

for spine scans. By registering MRI to CT scans, the method combines rigid vertebral and 

elastic disk registration, ensuring the preservation of spine biomechanics. The framework 

integrates multiple modules for flexible spinal movement, fusion of multiple deformation 

fields, and preservation of vertebrae rigidity.

Previous methods are focused on pre-operative to intraoperative registration. To the best 

of our knowledge, longitudinal registration was first addressed by Glocker et al. in 

2014.7 To overcome the initialization challenges of standard registration techniques for 

cases with small overlap, the authors proposed a registration method that includes a 

prior learning-based classification to estimate vertebrae centroids. This additional semantic 

information significantly improved registration compared to other initialization techniques, 

while applying the same intensity-based registration components. However, using intensity-

based registration methods could be limiting for cases of metastatic spines. Metastatic 

vertebrae can undergo significant changes within a short time period, leading to dramatic 

alterations in their appearance and, consequently, intensity. This could hinder the accuracy 

and effectiveness of the intensity-based registration process.

Our approach was developed to handle cases with large shape and intensity variations by 

utilizing segment-based registration. First, segmentation masks are predicted with a deep 

learning segmentation model that was trained on metastatic spines. Training set included 

spines with significant lesion progression and missing portions of vertebrae. Then, obtained 

segmentation masks are used to register follow-ups into a baseline on vertebra level. Rigid 

registration prevents deformation of bone structure, while segment-level registration ensures 

a unique transformation matrix per vertebra. Thus, the proposed two-step approach can be 

used for metastatic vertebrae undergoing significant shape and intensity changes.
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2. METHODS

2.1 Multi-class Segmentation of Lesioned Vertebrae from CT

Let us define the training set T S = Ii, Lj i composed of CT images Ii of the vertebrae and 

their corresponding labels Li, with i ∈ T S . We train a segmenter S I; θS  with θS being the 

learned parameters for network S. We use this to generate a per-voxel probability map P that 

will associate with each voxel of an image I the probability of that voxel being part of a 

vertebra level.

The network S is a deep CNN that follows a standard 3D U-Net architecture8 with a 

Softmax final layer. Because we are interested in a joint segmentation and classification 

where we can outline the shape of the vertebra and identify its level, we optimize 

a categorical cross-entropy loss function using gradient descent over the parameters θS

following:

L θS, TS = i ∈ TS Ii; θS − Li 2

(1)

We used the nnU-Net9 implementation, a self-adapting framework for 3D full-resolution 

image segmentation based on the U-Net architecture, to train the network (see Fig. 1).

Surface-based Longitudinal Registration—In order to perform the longitudinal CT 

registration, we used triangulated surfaces reconstructed from the segmentation masks 

resulting from S. These surfaces are reconstructed using a marching cubes algorithm, 

followed by an edge collapse-based incremental decimation.10 We generate a surface for 

the baseline CT and the 3-months, 6-month and 12-month follow-ups CTs. We perform a 

pair-wise registration, and align the two surfaces by solving a probability density estimation 

problem.10 The baseline surface represents Gaussian mixture model (GMM) centroids, 

and each follow-up surface represents data points. This can be solved by minimizing 

the negative log-likelihood function based on the GMM approach where we drive the 

surface of the model using implicit surface-to-surface forces, from baseline to follow-ups. 

Formally, assuming the N observations x and M GMM centroids y, we aim at finding 

the transformation of the GMM centroid locations as T ym; R, t, s = sRym + t, where R is a 

rotation matrix, t is a translation vector and s is a scaling parameter. The objective function 

to minimize is as follows:

E R, t, s, σ2 = 1
σ2 m, n = 1

M, N
P ym xn xn − sRym − t 2 + 3Np

2 log σ2

(2)

where P ⋅  denotes the GMM probability density function that smoothly weight the 

correspondences between the two surfaces. Finally, this function is optimized using an 

expectation maximization (EM) algorithm (see Fig. 1).
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3. RESULTS

The segmentation framework was trained on 55 spines using a 5-fold cross-validation 

strategy. The CTs were acquired from 2 manufacturers in 2 hospitals with an image 

resolution of 0.35 × 0.35 mm - 1.0 × 1.0 mm in-plane and 0.5 mm - 1.5 mm thickness. 

We defined 18 classes across vertebral levels from C7 to L5, achieving a validation accuracy 

of 0.886 (± 0.382). Testing the model on 5 unseen spines yielded an average accuracy of 

0.943 (± 0.239), indicating its robust generalization. Then, we used the trained segmentation 

model to predict the baseline and follow-up 3D surfaces for 5 patients without ground true 

segmentations.

By registering the 37 predicted vertebrae individually, we performed 111 registrations, 

aligning 3, 6 and 12 months follow-ups with the baseline images. The mean Dice Similarity 

Coefficient achieved by our registration method is 0.92±0.11. The Dice score provides a 

measure of the overlap between the baseline and a follow-up, indicating the accuracy of 

the registration process. The high mean Dice of 0.92±0.11 signifies a precise alignment 

between the registered vertebrae. The average Hausdorff distance obtained from our method 

was measured at 0.65 mm (95% within 1.74 mm). The Hausdorff distance reflects the 

discrepancy between the points of two sets, indicating the extent of spatial dissimilarity 

between the registered vertebrae. Our method’s low average Hausdorff distance suggests 

excellent alignment of the follow-ups into the baseline. The registration is computationally 

fast with an execution time below 5 seconds. Figure 2 represents our method’s results, 

demonstrating an example of lesion growth over time. Here, an accurate segmentation 

mask and precise follow-up registration enabled longitudinal lesion tracking in a metastatic 

vertebrae, including size, shape and structure monitoring.

Importantly, there is a correlation between segmentation accuracy and subsequent 

registration performance. As evidenced by our experiments, improved segmentation quality 

directly influenced the registration Dice score and Hausdorff distance. When segmentation 

accurately identifies the anatomical boundaries, it provides a more precise representation of 

the target structures, resulting in improved alignment during the registration process.

4. CONCLUSION

In this paper we presented an automated deep-learning-based tool for registration of 

longitudinal spine CT. Analysis on the aligned CTs can be used to visually assess and 

quantify lesion growth and response to treatment. Further studies with larger datasets 

and different types of spinal diseases are warranted to validate the performance of these 

algorithms and their potential in predicting disease progression for improved treatment and 

management. Future work will first consist of providing shape analysis of the longitudinal 

lesion growth. We will also integrate the type of lesion in the classification model to further 

monitor and evaluate the lesion growth. To extend the evaluation of this approach we are 

preparing a larger dataset of longitudinal spine CTs.
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Figure 1: 
Our two-step registration pipeline first classifies and segment the vertebra to generate 3D 

surfaces using, then use a surface-based registration approach to align the longitudinal CTs.
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Figure 2: 
Axial, coronal and sagittal planes showing the lesion progression in one case. The lesion is 

outlined over time (baseline in blue, 3 months in green, 6 months in red) and fused with the 

longitudinal CT set. Top to bottom: baseline, 3 and 6 months.
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