
Reliable prediction of childhood obesity using only routinely collected
EHRs may be possible

Mehak Gupta a, Daniel Eckrich b, H. Timothy Bunnell b, Thao-Ly T. Phan b,1,
Rahmatollah Beheshti c,1,*

a Southern Methodist University, Dallas, TX, USA
b Nemours Children’s Health, Wilmington, DE, USA
c University of Delaware, Newark, DE, USA

A R T I C L E I N F O

Keywords:
Childhood obesity
Electronic health records
Deep learning

A B S T R A C T

Background: Early identification of children at high risk of obesity can provide clinicians with the information
needed to provide targeted lifestyle counseling to high-risk children at a critical time to change the disease
course.
Objectives: This study aimed to develop predictive models of childhood obesity, applying advanced machine
learning methods to a large unaugmented electronic health record (EHR) dataset. This work improves on other
studies that have (i) relied on data not routinely available in EHRs (like prenatal data), (ii) focused on single-age
predictions, or (iii) not been rigorously validated.
Methods: A customized sequential deep-learning model to predict the development of obesity was built, using
EHR data from 36,191 diverse children aged 0–10 years. The model was evaluated using extensive discrimi-
nation, calibration, and utility analysis; and was validated temporally, geographically, and across various
subgroups.
Results: Our results are mostly better or comparable to similar studies. Specifically, the model achieved an
AUROC above 0.8 in all cases (with most cases around 0.9) for predicting obesity within the next 3 years for
children 2–7 years of age. Validation results show the model’s robustness and top predictors match important
risk factors of obesity.
Conclusions: Our model can predict the risk of obesity for young children at multiple time points using only
routinely collected EHR data, greatly facilitating its integration into clinical care. Our model can be used as an
objective screening tool to provide clinicians with insights into a patient’s risk for developing obesity so that
early lifestyle counseling can be provided to prevent future obesity in young children.

1. Introduction

Childhood obesity is a major public health problem across the globe
and in the US. Obesity affects almost 1 in 5 and about 14.7 million
children and adolescents, for children and adolescents of 2–19 years of
age [1]. Despite evidence of potentially modifiable risk factors that
contribute to the development of obesity in children, children are often
referred for obesity interventions after their obesity is well established
and when intervention is less likely to be successful [2]. Prior studies
show that less than 30 % of children with overweight or obesity are

identified by their provider at primary care visits and less than 10 % of
children have a diagnoses code for overweight or obesity placed during
visits [3–6]. While pediatric providers frequently use recommended
CDC or WHO age and sex-specific BMI charts, they do not often recog-
nize or address weight concerns until children cross overweight and
obesity thresholds on these charts [7].

Primary barriers to effective diagnoses and management of obesity in
pediatric systems are reported as lack of time, limited resources, and
uncertainties about the level of risk or challenges in having conversa-
tions about risk with families due to differences in perception about a
child’s weight [6,8–10]. Tools that can reliably predict a patient’s risk
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for obesity can help primary care providers identify patients at risk of
developing obesity and have these conversations with families to pre-
vent the development of obesity before it has been established [11–15].
Further, predictive models can also identify risk factors affecting a pa-
tients’ rate of weight gain to help providers address certain risk factors
as part of prevention efforts.

Clinical predictive models for obesity, designed using artificial in-
telligence and machine learning methods, are being considered to un-
derstand the contributing factors to the obesity epidemic and inform
more effective interventions [16–24]. One major limitation of existing
obesity prediction models is that they use features that, despite their
importance, are generally not available in EHRs or are difficult and
time-consuming to collect, such as genetic background, parental data,
and children’s lifestyle behaviors. This limits their utility in real-world
settings where this type of data may not be readily available. Another
limitation is that they mostly focus on predicting the risk of obesity at
only one age point (e.g., at age five) and are not flexible in allowing
obesity screening for patients at different ages. Additionally, large-scale
and rigorously validated predictive models of obesity are rare [18,23].

In this work, we aim to demonstrate the possibility of achieving
reliable estimates of the future risks of childhood obesity using
commonly available (unaugmented) EHR elements across multiple age
ranges. As a child’s obesity is associated with obesity into adulthood
[25], we focus our study on children up until the age of 10 years. This
age range also includes a few years after the “adiposity rebound” pat-
terns observed in children’s weight [26,27]. We rigorously evaluate our
model through an extensive series of temporal, geographic, and sub-
group validations and explore the most important predictors of obesity
in our model. The overarching aim of our study is to offer a general
(practice-agnostic) predictive model that can be integrated within any
healthcare system’s EHR to reliably predict children’s risk for obesity
throughout early childhood to support clinical decision-making and
obesity prevention at the point of care.

2. Materials and methods

2.1. Data source and study cohort selection

The EHR data used in this analysis was extracted from Nemours
Children’s Health; a large pediatric healthcare network in the United
States (US) spanning the states of Delaware, Florida, Maryland, New
Jersey, and Pennsylvania. The IRB panel at Nemours approved this
research study. We used encounters between January 1, 2002, to
December 31, 2019, obtained prior to the pandemic to avoid any short-
term influence that the pandemic had on weight gain patterns [28]. A
total of 68,029 children with 44,401,791 encounters were selected after
excluding children with especially complex diseases that require mul-
tiple medications and hospitalizations (type 1 diabetes, cancer, sickle
cell disease). Of them, 37,844 children were included having at least two
routine infant checkups and at least one checkup between 2 to age 10
with recorded weight and length/height measurements. Of them, 1,653
children were excluded whose year of birth could not be verified,

leaving 36,191 children. These exclusions were necessary for the accu-
racy of our supervised machine learning models, which require enough
data points in the observation and prediction windows to train the
model. On analysis of the demographics of patients excluded, we found
that they were not significantly different than the patients we included
in our study. The final cohort was separately divided for temporal and
geographic validation. More details about the Nemours EHR dataset are
provided in Supplementary A (including the steps we took to extract our
cohort of 36,191 patients for the model construction).

2.2. Feature selection and data preprocessing

We extracted clinically-relevant features to childhood obesity, by
using a data-driven approach coupled with input from clinical experts
[29]. Details about this process are presented in Supplementary B. The
final EHR features consisted of 138 diagnoses (patient conditions and
family-history conditions associated with obesity), 84 ATC3 (Anatom-
ical Therapeutic Chemical Classification Level-3) medication groups,
and 51 measurements (vitals and labs).

Following prior studies [15], the EHR features before age 2, were
segmented into 5 windows. These 5 sliding windows correspond to 0–4
months, 4–8 months, 8–12 months, 12–18 months, and 18–24 months.
All EHR features after age 2 were segmented into 1-year windows due to
the lower frequency of medical visits (compared to before 2).

Weight and height data were converted to Weight-for-length (WFL
%) which is used to classify nutritional and adiposity status in children
below 2 years of age and BMI% for children above 2 years of age as
defined by WHO and CDC, respectively. These values were considered
Missing Completely at Random (MCAR) and imputed with carry-
forward of the most recent value. WFL% and BMI% were categorized
into underweight, normal, overweight, and obesity categories. We
defined cutoffs for normal weight, overweight, and obesity per the
CDC’s standard thresholds of the 85th and 95th percentiles for over-
weight and obesity, respectively. Because WFL% and BMI% trajectories
can help determine the risk of obesity [30–33], we also engineered a
WFL% change feature that calculates the change in WFL% values be-
tween 5 windows defined above for model input. Table 1 shows the
characteristics of the final cohort used.

The EHR data also included demographic information about sex
(male or female), race (categorized as White, Black, Asian, and other),
ethnicity (categorized as Hispanic or non-Hispanic), and payer (cate-
gorized as public and private insurance). We also included the Child
Opportunity Index (COI) by geolocating the last address of patients
before age 2 [34]. COI combines indicators of educational opportunity,
health and environment, and socioeconomic opportunity for all US
neighborhoods. COI ranges from 1 to 100, with higher numbers repre-
senting neighborhoods with more opportunities.

A binary representation (not MCAR) was used for all features, where
the presence of a value for the variable was captured with a 1, and
0 otherwise. We used quintile binning for all numeric measurement
features to divide each measurement into 5 categorical features. In total,
we generated 506 binary features: 138 (diagnoses) + 84 (medications)
+ 51*5 (measurements in 5 percentile bins) + 10 (demographic cate-
gories) + 4 (underweight, normal, overweight, and obesity) + 5 (WFL%
changes in 5 percentile bins) + 10 (COIs in 10 percentile bins). A
detailed process to select features is discussed in Supplementary B.

2.3. Descriptive analysis

To study the transition of obesity status, we analyzed the distribution
of children with BMI% ≥ 95 at age 3 to 10 that transitioned from
different WFL% status (WFL% < 5, 5 ≤ WFL% < 85, 85 ≤ WFL% < 95,
and WFL% ≥ 95) at age 2. Fig. 1 shows that 22 % of children with
obesity at age 3 had normal weight at infancy and this percentage in-
creases with increasing age, where nearly half (49 %) of children with
obesity at age 10 had normal weight at infancy.

Abbreviations

AUPRC Area Under Precision-Recall (PR) Curve
AUROC Area Under the Receiver Operating Characteristic
BMI Body Mass Index
CDC Centers for Disease Control and Prevention
EHR Electronic Health Record
US United States
WFL Weight-for-length
WHO World Health Organization
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2.4. Deep learning model training

We adopted our encoder-decoder2 deep neural network model and
the training procedure presented in detail in prior work [24,35]. The
encoder part consists of long short-term memory (LSTM)3 cells and the
decoder consists of a feed-forward network with two fully-connected
layers.

To train the model, we first trained the encoder network on the input
EHR data from 0 to 2 years. EHR data for every year after age 2 until the
age that the prediction was performed (i.e., the end of the observation

Table 1
Statistics for the study cohort (full), as well as the cohorts used for temporal and geographic validation. Counts with the percentage prevalence in the respective cohort
for last obesity status before age 2, sex, race, ethnicity, and payer are shown. In the bottom part, the mean (standard deviation) for the number of times that weight,
height, diagnoses, medications, and lab measurements were recorded before and after age 2 are shown.

Temporal Train (n =

26,786)
Temporal Test (n =

9405)
GeographicTrain (n =

32,848)
Geographic Test (n =

3343)
All (n =

36,191)

Last obesity Status before age 2
Underweight (WFL< 5 %) Count

(%)
376 (1.4) 128 (1.36) 399 (1.2) 105 (3.14) 504 (1.39)

Normal (5 %<= WFL< 85 %) Count
(%)

13,781 (51.44) 5108 (54.31) 17,067 (51.9) 1822 (54.5) 18,889
(52.19)

Overweight (85 %<= WFL< 95 %) Count
(%)

5811 (21.69) 1979 (21.04) 7164 (21.8) 626 (18.72) 7790 (21.52)

Obesity (WFL>= 95 %) Count
(%)

6818 (25.45) 2190 (23.28) 8218 (25.01) 790 (23.62) 9008 (24.89)

Sex:
Female Count

(%)
1,2643 (47.20) 4,355 (46.30) 15,549 (47.33) 1,449 (43.34) 16,998

(46.96)
Male Count

(%)
14,143 (52.79) 5,050 (53.69) 17,299 (52.66) 1,894 (56.65) 19,193

(53.03)
Ethnicity:
Hispanic Count

(%)
3,475 (12.97) 1,323 (14.06) 4,277 (13.02) 521 (15.58) 4,798

(13.25)
Non-Hispanic Count

(%)
23,197 (86.60) 8,012 (85.18) 28,432 (86.55) 2,777 (83.06) 31,209

(86.23)
Race:
Asian Count

(%)
472 (1.76) 191 (2.03) 610 (1.85) 53 (1.58) 663 (1.83)

Black Count
(%)

11,524 (43.02) 3,721 (39.56) 14, 694 (44.73) 551 (16.48) 15,245
(42.12)

White Count
(%)

11,352 (42.38) 4,088 (43.46) 13,496 (41.08) 1,944 (58.15) 15,440
(42.66)

Other Count
(%)

3048 (11.37) 1,216 (12.92) 3,812 (11.60) 452 (13.52) 4,264
(11.78)

Payer:
Private Count

(%)
11,114 (41.49) 3,850 (40.93) 13, 483 (41.04) 1, 481 (44.30) 14,964

(41.34)
Public Count

(%)
15,624 (58.32) 5,539 (58.89) 19,314 (58.79) 1, 849 (55.30) 21,163

(58.47)

Weight and height measurements before
age 2

Mean
(SD)

9.80 (2.30) 10.11 (2.24) 10.04 (2.20) 8.28 (2.53) 9.88 (2.29)

Weight and height measurements
between age 2 and 10

Mean
(SD)

22.10 (22.23) 17.07 (19.16) 21.15 (20.56) 17.86 (15.47) 20.83
(21.36)

Diagnoses available before age 2 Mean
(SD)

2.95 (3.41) 3.32 (3.59) 2.92 (3.38) 4.46 (4.0) 3.03 (3.44)

Diagnoses available between age 2 and 10 Mean
(SD)

4.82 (7.52) 3.87 (6.16) 4.49 (7.18) 5.81 (7.80) 4.58 (7.20)

Medications available before age 2 Mean
(SD)

7.66 (5.40) 9.97 (7.87) 8.51 (6.25) 5.27 (5.25) 8.27 (6.23)

Medications available between age 2 and
10

Mean
(SD)

11.33 (8.19) 10.75 (8.87) 11.45 (8.35) 7.99 (7.93) 11.18 (9.36)

Labs available before age 2 Mean
(SD)

25.04 (29.54) 26.81 (29.54) 24.77 (28.67) 32.70 (35.66) 25.50
(29.47)

Labs available between age 2 and 10 Mean
(SD)

60.00 (45.56) 43.95 (31.46) 54.69 (40.41) 66.99 (61.44) 55.83
(42.93)

Fig. 1. Study of the distribution of children with obesity (BMI% ≥ 95) at age 3
to 10. We analyze what percentage of children with obesity at ages 3 to 10 had
WFL% < 5, 5 ≤WFL% < 85, 85 ≤WFL% < 95, and WFL% ≥ 95 at age 2. X-axis
shows the distribution of the cohort with obesity at every age from 3 to age 10.
Four categories of WFL% at age 2 are shown on the right.

2 An encoder-decoder refers to a design, where an initial network (encoder)
receives input and maps (compresses) that to a lower dimension representation.
Then a second network (decoder) learns from the encoder output to generate
output.

3 LSTMs are a type of (deep) neural network used for processing sequential
data types.

M. Gupta et al. Obesity Pillars 12 (2024) 100128 

3 



window) were then combined (concatenated) with the n-dimensional
vector representation derived from the encoder for 0–2 years of EHR
data. The number of years of data after age 2 depends on the length of
the patient’s recorded medical history. Using this design, all the prior
data for each patient was used for model training to predict the risk of
obesity for the next 3 years. A detailed description of the architecture
design and parameter settings is provided in Supplementary C.

3. Experiments and results

3.1. Setup

We extensively evaluated our predictive model by studying its
discrimination power, calibration, and robustness. We validated our
model temporally and geographically and studied the model’s perfor-
mance across subpopulations (which can also capture the model’s fair-
ness across these groups), using separate test datasets. When using the
entire cohort, the data was split with an 80:20 train and test regime, with
5 % of the training data as a validation set to fix the best model. Model
performance was reported exclusively on the test dataset. The confi-
dence intervals (CI) are calculated using 100 bootstrapped replicates.

Baseline comparison – Similar to prior work [13,32], we consider
only using the last WFL% (below 2 years) and BMI% (above 2 years)
available in the observation window as a baseline. This scenario mimics
what is generally used in clinical practice for screening children (i.e.,
viewing weight, height, and BMI data at each time point on growth
curves) [36–39].

Discrimination power – We report prediction performance using
Area Under Receiver Operating Characteristic (AUROC), Area Under
Precision-Recall Curve (AUPRC), sensitivity, and specificity. We provide
sensitivity and specificity at different binary classification thresholds,
demonstrating the trade-off between false negatives (patients who
develop obesity but are not predicted to develop obesity by the model)
and false positives (patients who do not develop obesity but are pre-
dicted to develop obesity by the model). Specifically, we fixed either
sensitivity or specificity at 90 % and 95 % and measured the value of the
other metric.

Utility and calibration – We perform decision curve analysis [40] to
demonstrate the tradeoffs (costs and benefits) of using the prediction
model to analyze the clinical utility at various thresholds. Related to the
above approach, we provide calibration metrics to help quantify how
well the predicted probabilities of an outcome match the true proba-
bilities observed in the data [41,42].

Temporal validation – To study our model’s robustness across time
shifts, we divided our cohort according to the date of birth of the chil-
dren. The data for 26,786 children who were born between January 1,
2002, and December 31, 2009, were included as a training set; and the
data for 9405 children who were born between January 1, 2010, and
December 31, 2015, were included in the test set. We report AUROC for
the temporal validation in Table 2.

Geographic validation – We additionally validated our model
across two different geographic regions in the US. We used 32,848
children seen in Delaware Valley sites, located in the northeastern US, as
a training set and 3343 children seen in Florida, located in the south-
eastern US, as a test set. We report AUROC for the geographic validation
in Table 2.

Robustness across subpopulations – Robustness across sub-
populations (group fairness) is evaluated by comparing model AUROCs
in the test dataset across five groups determined by the: last WFL%
category before age 2 (underweight, normal weight, overweight,
obesity), race (Black, White, Asian, Other), ethnicity (Hispanic, Non-
Hispanic), sex (female, male), and payer (private, public).

Net-benefit Analysis – Net-benefit analysis allows the analysis of
the clinical utility of adopting a clinical prediction model at different
probability thresholds. Here, a threshold such as 10 % means that for
every 10 children evaluated for risk of obesity by the predictive model,

the health service is willing to risk the cost of mistakenly prescribing 9
children [32]. The health service provider can now use the net benefit
analysis to decide if the net benefit of utilizing our predictive model is
more than other treatment strategies such as intervention for all
(treatment for all) and intervention for none (no treatment for all) or
baseline strategy (only looking at WFL and BMI growth curves).

3.2. Evaluation results

We trained our deep learning model using 36,191 eligible children to
predict the risk of obesity using 6 different lengths of observation win-
dows from age 0–2 to 0–7. The observed AUROC, sensitivity, specificity,
and net benefit for all prediction ages are presented in Table 2. Focusing
on a popular setting that is heavily studied in the literature[13,17,32],
we specifically present discrimination results for 0–2 years observation
window and obesity prediction at age 5 in Fig. 2. Notably, our model
outperforms the presented baseline based on a child’s last WFL%with an
AUROC and AUPRC of 0.81 and 0.61 compared with 0.71 and 0.56,
respectively. Our model also dominates over other strategies (baseline,
intervention for all, and intervention for none as explained in Section
3.1) across various net benefit threshold probabilities, with significant
margins above the 15 % threshold probability regime.

Fig. 3 compares the AUROC of our model on different subpopulations
of children for prediction at age 5, across the 5 groups mentioned in
Section 3.1. AUROCs among each group show minimal deviation of
0.04, 0.04, 0.01, 0.001, and 0.008, respectively, showing the robustness
of our model across each group.

3.3. Analyzing model predictors

We investigated the risk factors identified by the model by analyzing
which predictors most attribute to the model’s prediction. We used the
attention scores [43,44] obtained from the LSTM cells, as a way to
determine which features are given more attention (importance) by the
model to predict the output (more details are provided in Supplementary
D.1).

We present the mean of the importance scores of all features inside
each of the 7 input feature categories (diagnoses, family-history di-
agnoses, medications, measurements, demographics, last obesity status
before age 2, and WFL% changes before age 2 for the entire cohort) in
Fig. 4A. Clinical diagnoses and WFL% changes were the top 2 important
predictor groups. We also present the ranking for the top 20 predictors
based on the mean importance scores for the predictors in the entire
cohort in Fig. 4B. Previous weight percentile measurements and weight
gain patterns were among the top 5 features; in addition to weight-
related diagnoses and diagnoses of elevated blood pressure, gastro-
esophageal reflux disease, developmental delay, hypothyroidism, and
asthma. Among the family history diagnoses, a family history of hy-
pertension, cardiac disorder, and depression was important. Our engi-
neered feature (WFL% change before age 2) was also among the top 10
predictors.

We evaluated partial dependency plots (PDP4) for the WFL% change
before age 2, and child opportunity index, as a function of the predicted
risk of (the probability of developing) obesity at age 5 for the test
dataset. Specifically, Fig. 4C shows that an increase in the WFL% before
age 2 increases the risk of obesity at age 5. Fig. 4D shows that the risk of
obesity decreases with increasing COI score.

4. Discussion

In this study, we developed and extensively validated a model that
can predict obesity reliably in early childhood using a large EHR dataset

4 Demonstrates the marginal effect of the different values of the feature of
interest on the predicted outcome.
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Table 2
Predictive performance across six different observation windows. Results are shown for prediction for the
next 1, 2, and 3 years. The fixed values for sensitivity and specificity are highlighted. The net benefits are
shown at three thresholds of 20, 40, and 60%.
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with over 36,000 children using deep learning methods. Our descriptive
analysis in Section 2.3 underscores the importance of having a tool that
includes other elements beyond a static WFL% or BMI% to identify
children at high-risk for developing obesity. Our model used around 500
clinically relevant features from the EHR and demonstrated strong
performance across multiple age ranges, chronological time periods,
geographies, and demographic subgroups. Because our model only le-
verages unaugmented EHR data collected as part of routine clinical care,
which is what is practically and widely available to clinicians without
the burden of collecting additional information, it can be integrated into

common EHRs. Our model also provides flexibility in the age at which
the model is applied to support the implementation of preventive
measures before a child develops obesity between 3 to age 10.

As an example of how the information from this model might be used
clinically, we provide the following case scenario (Fig. 5). A pediatric
primary care provider is seeing a 4-year-old girl with no significant past
medical history for her well-child visit. The girl’s BMI percentile has
increased from the 74th to 77th percentile from 2 to 3 years and from the
77th to the 84th percentile from 3 to 4 years. The primary care provider
is not sure whether to bring up healthy lifestyle recommendations to the
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family. Using our model, the provider learns that the girl’s risk for
developing obesity in the next three years is 85% and that her main risk
factors for developing obesity are a rapid increase in BMI percentile,
family history of diabetes, and living in a disadvantaged neighborhood.
This gives the primary care provider the confidence he needs to proceed
with talking to the family about healthy lifestyle behaviors, framed in
the context of health and diabetes risk and addressing social risk factors
like food insecurity.

To date, there has been limited research on using deep learning
methods with large longitudinal EHR data to predict childhood obesity

[18,24,45]. There is a large body of studies that use logistic regression to
predict the development of obesity at a certain age, most commonly 5
years. Three of the most comparable ones are presented by Liebert et al.
[46], Robson et al. [47], and Hammond et al. [13] with AUROC of 0.67,
0.78, and 0.81, respectively. While these studies used a smaller set of
features, they also used features like parental weight, parental smoking
habits, prenatal history, and infant dietary habits which are not avail-
able in many EHRs. Several advanced ML-based models were compared
by Dugan et al. [14] and Pang et al. [15] using 167 features (anthro-
pometric measures and questionnaire data), and 102 features (maternal

Fig. 2. Evaluation of obesity prediction model to predict obesity at age 5 using 0–2 years of data: A. AUROC curve of the model (blue) and a baseline model based on
the last available WFL% or BMI% measurement in the observation window (orange line), B. AUPRC curve of the model (blue) and a baseline model based on the last
available WFL% measurement before age 2 (orange line), C. Decision curve analysis for different strategies of treatment, D. Calibration curve. The dotted line
represents ideal calibration and the orange line for before calibration and the green line after calibration. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 3. Evaluating the predictive model’s robustness by comparing AUROCs (in the test dataset) across five groups (13 subgroups): last WFL before age 2 (3 cat-
egories), race (Asian, Black, White, Other), ethnicity (Hispanic, Non-Hispanic), sex (female, male), and payer (private, public).
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and EHR data), respectively for children before age 2. They reported an
accuracy of 0.85 using a decision-tree method at age 3 and an AUROC of
0.81 b using XGBoost for ages 2–7.

Our study improves on prior studies in several ways. Our predictive
model achieves an AUROC of 0.85 (0.84–0.86), 0.83 (0.82–0.84), and
0.81 (0.80–0.82) for predicting the risk of obesity at 3, 4, and age 5,
respectively, using 0–2 years of data. Our predictive model also dem-
onstrates high accuracy for estimating the risk of obesity for the next 3
years across a wide age range from 2 to 7 years of age (Table 2). Indeed,
our model provides the flexibility of learning from as much data as
available for patients before the time of screening, which is a method
referred to as a “flexible window design” that our team developed in a
prior paper [35]. Because of this flexibility, it provides a tool to screen
children at different ages and with enough of a time window before the
development of obesity for preventive interventions to be effective [48,
49].

Beyond demonstrating the accuracy and flexibility of our model, we
demonstrated the validity of our model across temporal, geographic

shifts, multiple demographic strata and the last WFL% before age 2 and
demonstrated our model’s sensitivity in predicting obesity. As a
screening tool, having a highly sensitive model is preferred to ensure
that young children at risk for developing obesity are identified and
preventive measures like parenting interventions, lifestyle behavior
counseling, and weight checks can be implemented on time. Notably,
the sensitivity of the model does mean that there is a possibility of false
positives; however, because obesity prevention measures are generally
low-cost and beneficial for all children no matter their weight status, we
believe this is an acceptable trade-off as long as discussion about a
child’s risk for developing obesity is done in a family-centered,
thoughtful, and positive way and prevent any weight-related stigma
that could otherwise occur.

Another important strength of our model is that it utilizes only EHR
data that is collected as part of routine clinical care. While the data used
is already available in the EHR to providers, our model uniquely ex-
amines the complex and longitudinal relationships between this data to
predict an individual child’s risk of obesity. Our feature selection

Fig. 4. Feature Importance Analysis for all samples to predict obesity at age 5 using 0–2 years of data. (A) Feature importance ranking of 7 feature groups, (B) Top
20 feature importance ranking, and (C) Change in WFL% before age 2 over 5 percentile categories (Dividing the numeric data (WFL%) into 5 bins (aka quintiles)
such that there are an equal number of observations in each bin. This would produce a categorical object indicating quantile membership for each data point. The x-
axis shows the range of each bin.), (D) child opportunity index (COI) at age 2 over COI-decile (Dividing the numeric data into 10 bins (aka deciles) such that there are
an equal number of observations in each bin. This would produce a categorical object indicating decile membership for each data point. The x-axis shows the range of
each bin.) categories.
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process can be applied to any EHR dataset that contains common data
elements of basic demographics, diagnosis codes, medications, and
measurements. This is advantageous compared to prior models which
may require extensive data collection or data linkages that are not
feasible outside of the research setting. Only using available EHR data
increases the feasibility of deploying these predictive models in the
clinical setting and increases the generalizability of our model to other
clinical settings that collect similar EHR data. For example, our team is
developing prototype tools applying this model to EHR data to inform
clinical decision-making. Such a tool could be very valuable in helping
primary care providers decide who to initiate conversations about
healthy lifestyles with given the time constraints of primary care visits. It
can also help justify to payers the need for early healthy lifestyle in-
terventions to prevent future obesity as recommended by the AAP
Clinical Practice Guidelines.

Similar to other studies [43,50], our evaluation of the importance of
the EHR features to our model also allows us to better understand what
risk factors are important to a child’s risk of obesity, which can facilitate
the provision of more personalized interventions. For example, stressing
healthy lifestyles for infants whose family has a strong cardiovascular
history could be an effective intervention based on our model. In addi-
tion to certain diagnoses and family history, our results demonstrated
that change inWFL% in infancy is an important feature to calculate from
EHR measurements to determine a child’s risk of obesity. Being able to
learn from these longitudinal engineered and other EHR features is an
advantage of our deep learning model.

We also found that the risk of obesity decreases with the increasing
child opportunity index (COI), corroborating the importance of social
determinants of health on childhood obesity [51,52]. While COI may not
be part of routine EHR data, it is easily calculated with information that
is in the EHR (through ZIP codes) and our study demonstrates the
importance of accounting for the influence of neighborhood environ-
ments on child health outcomes.

Our study does have some limitations. First, our study is retrospec-
tive and may be affected by changes in healthcare delivery over time.
However, we were able to temporally validate the model to account for
time shifts between children born between 2002-2009 and 2010–2015.
Second, the dataset included information from a single healthcare sys-
tem. Despite this, the dataset did include children from five different

states in different geographic regions and we were able to validate our
model between these geographic regions. Third, a large number of
children were excluded due to inadequate or missing height and weight
measurements before age 2 and this may have introduced sample bias.
Finally, our dataset did not contain information on lifestyle behaviors,
prenatal variables, or other sociodemographic variables, which we know
are important to a child’s risk for the development of obesity. However,
our focus was to use an EHR dataset that included only data collected
during routine clinical care, to increase the potential that the model
could be integrated into existing EHR systems to provide clinical deci-
sion support for providers in identifying children at risk for obesity
without the need to collect additional data to facilitate early prevention
efforts across many pediatric healthcare settings. Our team is actively
working on partnering with other healthcare institutions to validate the
model across multiple healthcare systems and creating a CDS (clinical
decision support) tool on the SMART on FHIR (Fast Healthcare Inter-
operability Resources) platform [53], allowing its wider adoption and
integration in clinical practice and increasing its interoperability. An
interactive demo of our model is available at fhir-obesity.com.

5. Conclusion

This study presents an extensively validated predictive model for
identifying obesity risk in early childhood using a large electronic health
record (EHR) dataset and customized deep learning techniques.
Compared to existing research, our study demonstrates advancements in
predictive accuracy, robustness, and flexibility, particularly through the
use of a “flexible window design.” Integrating our model with pediatric
workflows can meaningfully inform prevention intervention of child-
hood obesity.
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