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Abstract

Background: Patients with deleterious variants in MYSM1 have an immune deficiency 

characterized by B-cell lymphopenia, hypogammaglobulinemia, and increased radiosensitivity. 

MYSM1 is a histone deubiquitinase with established activity in regulating gene expression. 

MYSM1 also localizes to sites of DNA injury but its function in cellular responses to DNA 

breaks has not been elucidated.

Objectives: This study sought to determine the activity of MYSM1 in regulating DNA damage 

responses (DDRs) to DNA double-stranded breaks (DSBs) generated during immunoglobulin 

receptor gene (Ig) recombination and by ionizing radiation.

Methods: MYSM1-deficient pre– and non–B cells were used to determine the role of MYSM1 in 

DSB generation, DSB repair, and termination of DDRs.

Results: Genetic testing in a newborn with abnormal screen for severe combined immune 

deficiency, T-cell lymphopenia, and near absence of B cells identified a novel splice variant 

in MYSM1 that results in nearly absent protein expression. Radiosensitivity testing in patient’s 

peripheral blood lymphocytes showed constitutive γH2AX, a marker of DNA damage, in B cells 

in the absence of irradiation, suggesting a role for MYSM1 in response to DSBs generated during 

Ig recombination. Suppression of MYSM1 in pre–B cells did not alter generation or repair of 
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Ig DSBs. Rather, loss of MYSM1 resulted in persistent DNA damage foci and prolonged DDR 

signaling. Loss of MYSM1 also led to protracted DDRs in U2OS cells with irradiation induced 

DSBs.

Conclusions: MYSM1 regulates termination of DNA damage responses but does not function in 

DNA break generation and repair.
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MYSM1; DNA breaks; DNA damage signaling; DNA damage response; RAG; B cells; inborn 
error of immunity

Inborn errors of immunity provide unique opportunities to investigate the role of identified 

genes in development and function of the immune system. In this regard, variants in 

MYSM1 (Myb-like SWIRM and MPN domains 1) have been identified in patients 

with immune deficiency characterized by B-cell lymphopenia, hypogammaglobulinemia, 

defective hematopoiesis, and increased sensitivity to genotoxic agents.1–5 Patients may 

also have reduced T cells, short stature, developmental delay, and skeletal abnormalities; 

although occurrence of these abnormalities is variable. Mysm1-deficient mice have 

lymphopenia and bone marrow failure similar to human disease.6–11 Cell type–specific 

MYSM1 loss in early B cells blocks development at the pro– and pre–B cell stages.7,9 

In contrast, Mysm1 deletion in mature B cells does not alter numbers or function.7 Thus, 

MYSM1 is critical for early B-cell development.

MYSM1 is a histone H2A deubiquitinase (DUB) that was identified as a transcriptional 

regulator.12–14 Monoubiquitination of H2A on lysine 119 (H2AK119Ub) represses 

transcription, and MYSM1 catalyzes removal of this ubiquitin moiety to initiate gene 

expression.11–14 In early B cells, MYSM1 promotes expression of Ebf1, a critical 

transcriptional regulator of B-cell differentiation.9,15–18 However, MYSM1 deficiency 

results in increased markers of DNA damage and increased sensitivity to genotoxic stress, 

which are not seen with loss of Ebf1.2,10 Therefore, immune defects in MYSM1 deficiency 

are not explained solely by dysregulated Ebf1.

MYSM1-deficient lymphocytes have higher baseline (no exposure to genotoxins) levels of 

phosphorylated histone H2AX (γH2AX), a marker of DNA damage, as well as increased 

p53 and cell death after irradiation.2,10 Deletion of p53 rescues B-cell populations in 

MYSM1-deficient mice.19 These findings suggest that activation of cell death downstream 

of DNA damage may contribute to the lymphopenia observed with MYSM1 deficiency. 

MYSM1 has been shown to localize to DNA double-stranded breaks (DSBs) and to interact 

with ubiquitinated H2A at irradiation-induced DNA damage, but little is known about 

MYSM1 activity in a DNA damage response (DDR).20,21 The potential impact of MYSM1 

on DDR and contribution of this activity to the observed immune deficiency have not been 

explored.

Developing B cells must induce DSBs at immunoglobulin receptor gene (Ig) loci and 

resolve them in a timely fashion to survive and mature.22–24 This process occurs in 

pro– and pre–B cells, the developmental stages impacted by loss of Mysm1.7,9 Ig gene 
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recombination occurs through generation of DSBs by the RAG endonuclease (composed of 

RAG1 and RAG2) in the G1 phase of the cell cycle.23–25 RAG-induced DSBs are repaired 

by nonhomologous end joining to ensure proper gene assembly and ongoing lymphocyte 

development.23,24 A highly conserved signaling network coordinates cellular responses to 

DSBs.22–24,26–28 The primary signaling protein activated by DSBs in G1-arrested cells is 

the ATM kinase, which orchestrates chromatin modifications at the site of DNA injury, 

including phosphorylation of histone H2AX and ubiquitination of H2A.26–30 In response 

to DSBs, H2A is ubiquitinated on lysines 13 and 15 (abbreviated as H2AK15Ub) by the 

ubiquitin ligases RNF8 and RNF168.29–33 H2AK15Ub serves as a binding site for 53BP1 

(protein product of TP53BP1), which in turn recruits numerous proteins that coordinate DSB 

repair and activation of DDR.31–37 Following DSB resolution, these DDR complexes (or 

foci) dissipate to terminate DDR. If DSBs are not repaired, DDR foci persist and promote 

activation of p53 and induction of apoptosis.27,28 DDR foci are inactivated by DUBs, which 

remove ubiquitin chains from H2A and other targets.21,29,30,38 In many cell types, USP51 

resolves H2AK15Ub and terminates DDR.39 Homologous proteins (USP3, USP37, USP44, 

and USP49) may have similar roles.21,30,38–43 However, the DUBs that regulate DDR in 

developing B cells are not known. The marked B-cell lymphopenia and increased DNA 

damage signals observed in MYSM1 deficiency suggest that MYSM1 may regulate DDR 

during B-cell development.

We present a patient with a novel homozygous deleterious variant in MYSM1 that results in 

nearly absent MYSM1 protein and increased DDR signaling in B cells even in the absence 

of exogenous DNA damaging agents. To investigate the function of MYSM1 in cellular 

responses to physiologic and genotoxic DNA injury, we suppressed MYSM1 in pre–B cells 

and non–B cells, respectively. We find that MYSM1 does not function in DSB generation 

or repair, but, rather, it regulates cessation of DDR signaling. Loss of MYSM1 results in 

prolonged DDR signals that may be detrimental to lymphocyte development and to cellular 

responses to genotoxins, more broadly. These findings provide new insights into B-cell 

lymphopoiesis and have important implications for clinical management of patients with 

MYSM1 deficiency.

METHODS

Patient information

Written informed consent was obtained. Data was collected from the St Louis Children’s 

Hospital Immunodeficiency Database and the medical record. Study (#201107235) was 

approved by the Washington University School of Medicine Institutional Review Board.

Clinical testing of DNA damage responses

DNA damage signaling in patient’s PBMCs was assessed as previously described.44 Briefly, 

PBMCs were rested overnight at 37°C in 5% CO2 then reserved as unirradiated or subjected 

to 2 Gy irradiation in a cesium Cs 139 irradiator. At indicated times, samples were stained 

for surface markers and intracellular phosphoproteins, then quantified by flow cytometry. 

Anti-CD45, anti-CD3, and anti-CD19 were from Beckman Coulter (Indianapolis, Ind). Anti-

NKp46 was from BioLegend (San Diego, Calif). Anti-pATM (Ser1981) and anti-gH2AX 
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(Ser139) were from Thermo Fisher Scientific (Waltham, Mass). In the patient’s sample, 

B-cell identity was confirmed by costaining with anti-HLA-DR (BioLegend). A minimum 

of 200 CD19+ B-cell events in the patient’s PMBCs were collected for analysis at each time 

point.

Genetic testing

Chromosome microarray was performed by Washington University Cytogenetics and 

Molecular Pathology Laboratory using Affymetrix CytoScan HD array. NextGen sequencing 

with concurrent deletion/duplication testing for panel of 26 genes associated with inborn 

errors of immunity and trio whole exome sequencing were performed by GeneDx 

(Stamford, Conn).

Cell lines.—Rag1−/−:Bcl2 and Art−/−:Bcl2 Abelson-kinase transformed murine pre–B cells 

(abl pre–B cells) were previously described.45,46 Wild-type abl pre–B cells were generated 

by transduction of bone marrow cells from mice expressing a Bcl2 transgene with a 

retrovirus expressing the v-abl kinase as previously described.47,48 Abl pre–B cells were 

cultured in Dulbecco modified Eagle medium with 10% FBS, 1% PenStrep, 1% sodium 

pyruvate, 1% nonessential amino acids, 1% L-glutamine, and 0.0004% β-mercaptoethanol. 

To induce cell cycle arrest and induction of RAG DSBs, abl pre–B cells were treated 

with 3 μmol/L imatinib (106 cells/mL) for indicated times.45–49 U2OS cells were cultured 

in Dulbecco modified Eagle medium with GlutaMAX, 10% FBS, and 1% PenStrep. To 

generate DSBs, U2OS cells were exposed to 5 or 10 Gy irradiation using a cesium Cs 

139 irradiator. All cell lines were verified by genotyping and confirmed to be free of 

Mycoplasma.

shRNA and cDNA expression.—pMSCV-INV-GFP retroviral plasmid was a gift 

from Barry Sleckman.47 For abl pre–B cells, short hairpin RNA (shRNA) targeting 

mouse Mysm1 (5′-ACAGGAAAATTCTGGGTTAATA-3′) was cloned into the MSCV-

hCD2-mir30 retroviral vector.50 For U2OS cells, shRNA targeting human MYSM1 (5′- 
ACCAGATGGCTCTTATCGCTTA-3′) was cloned into lentiviral pFLRu-U6-YFP-Puro 

vector. cDNA encoding 5′ FLAG-tagged MYSM1 or MYSM1ΔE16 (MYSM1 mRNA/cDNA 

with splicing of exon 15 to exon 17 and absence of intervening exon 16) was cloned into the 

pOZ-IRES-hCD25 retroviral vector.51 pEGFP-MYSM1 plasmid was a gift from Dr Stephen 

Jackson.21 Retrovirus and lentivirus were produced in PlatE cells (Cell Biolabs, San Diego, 

Calif) and 293T cells, respectively, by transfection of the viral plasmids with Lipofectamine 

2000 (Life Technologies, Carlsbad, Calif). For lentivirus, pCMV-VSV-G and pCMV-d8.2R 

were included in the transfection.46,52 Viral supernatant was collected and pooled from 24 to 

72 hours after transfection. Cells were transduced with unconcentrated virus in media with 5 

μg/mL polybrene (Sigma-Aldrich, St Louis, Mo) as previously described.50 Transduced cells 

were identified by flow cytometric assessment of hCD2, hCD25, or YFP. Abl pre–B cells 

expressing hCD2 were sorted using anti-hCD2 magnetic beads (Miltenyi Biotec, Bergisch 

Gladbach, Germany) according to the manufacturer’s protocol. U2OS cells transduced with 

pFLRu vector were selected by culture with 1 μg/mL puromycin until all nontransduced 

cells died.
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Western blot analyses.—Western blots were done on whole cell lysates as previously 

described using anti-phospho-KAP1 antibody (Bethyl Laboratories, Montgomery, Tex), anti-

PIM2 (Santa Cruz Biotechnology, Dallas, Tex), anti-FLAG (Sigma), anti-GAPDH (Cell 

Signaling Technology, Danvers, Mass), anti-phospho-CHK2 (Cell Signaling), and anti-EBF1 

(Santa Cruz) antibodies.51 Secondary horseradish peroxidase–conjugated anti-mouse IgG 

or anti-rabbit IgG were from Cell Signaling. Western blots were developed with Pierce 

ECL (Thermo Fisher Scientific) or ECL Prime (Cytiva, Marlborough, Mass) and quantitated 

using ImageJ (National Institutes of Health, Bethesda, Md).

RT-PCR.—PCR over the break assay was performed as previously described.48,49 Briefly, 

genomic DNA was isolated then digested with NEBNext dsDNA Fragmentase (New 

England Biolabs, Ipswich, Mass) for 10 minutes followed by PCR Cleanup (QIAGEN, 

Venlo, The Netherlands) as per manufacturer’s instructions. mRNA was isolated using 

RNeasy (QIAGEN) and reverse transcribed using SuperScriptII (Life Technologies) 

according to manufacturers’ protocol. RT-PCR was performed using Brilliant II SYBR 

Green (Agilent Technologies, Sigma-Aldrich) and acquired on QuantStudio 3 (Thermo 

Fisher Scientific). For PCR over the break analysis, values were normalized to PCR 

product spanning CD19, a control region of uncut genomic DNA. For mRNA, values were 

normalized to β-actin. Primer sequences are in Table E1 in this article’s Online Repository 

(available at www.jacionline.org).

Immunofluorescence.—Immunofluorescence was done as previously described.49,53 

U2OS cells were grown directly on coverslips. Abl pre–B cells were applied to coverslips 

at indicated times using Cell Tak (Corning, Corning, NY) at 37°C for 20 minutes. Abl 

pre–B cells were then extracted with 0.2% Triton in PBS for 10 minutes on ice. Both cell 

types were fixed with 3.2% paraformaldehyde. Cells were washed with IF Wash Buffer 

(PBS, 0.5% IGEPAL [Sigma], and 0.02% NaN3), then incubated in IF Blocking Buffer 

(10% FBS in IF Wash Buffer) for 30 minutes at room temperature. Slides were stained 

with rabbit anti-53BP1 (1:500; Novus International, St Louis, Mo) in IF Blocking Buffer 

for 1 hour at room temperature. Slides were washed then stained with goat anti-rabbit 

IgG conjugated with Alexa Fluor 594 (1:1000; Invitrogen, Thermo Fisher Scientific) and 

Hoechst 33342 (Sigma-Aldrich) for 30 minutes at room temperature followed by mounting 

with Prolong Gold (Invitrogen). Microscopy was performed on an Olympus fluorescence 

microscope (BX-53; Olympus Corporation of the Americas, Center Valley, Pa) using an 

ApoN 60X/1.49 NA oil immersion lens or an UPlanS-Apo 100X/1.4 oil immersion lens and 

cellSens Dimension software (Olympus). Raw images were exported into Adobe Photoshop 

(Adobe, San Jose, Calif), and for any adjustment in image contrast or brightness, the levels 

function was applied. Foci were quantitated using ImageJ.

V(D)J reporter assay.—Green fluorescent protein (GFP) was measured by flow 

cytometry prior to imatinib (0 hours, baseline) and at indicated times after imatinib 

treatment. Results were normalized to 0 hours.

Comet assay.—Neutral comet assays were performed using CometAssay (Trevigen, 

Thermo Fisher Scientific) according to manufacturer’s instructions. Cells were collected at 
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indicated times and resuspended in PBS with LMAgarose (ratio of 1:10) at 3 × 105 cells/mL 

and then plated onto a comet slide and dried at 4°C in the dark. While light-protected, slides 

were immersed in cold lysis buffer solution for 1 hour then in cold Tris/Borate/EDTA for 

30 minutes. Slides were electrophoresed at 25 V in cold Tris/Borate/EDTA for 30 minutes 

then washed with room temperature DNA precipitation solution (1 mol/L ammonium acetate 

in 95% ethanol) and fixed in 70% ethanol for 30 minutes. After fixation, slides were 

dried overnight and stained with SYBR gold (Invitrogen) for 30 minutes. Images were 

acquired by fluorescence microscope (DFC3000G; Leica, Wetzlar, Germany) and analyzed 

by OpenComet in ImageJ.

Statistical analysis

Statistical analyses were done by Student t-test using Prism (GraphPad Software, San Diego, 

Calif).

RESULTS

Novel MYSM1 variant in patient with B-cell aplasia

A 1-week-old healthy, Black male presented with abnormal newborn screen for severe 

combined immune deficiency. Detailed clinical history and evaluation are included in this 

article’s Online Repository (available at www.jacionline.org). On physical exam, patient 

was small for gestational age, but no craniofacial or skeletal deformities were present. 

Laboratory evaluation identified nearly absent B cells, low T cells, and normal natural killer 

(NK) cells (Fig 1, A). Of total CD4+ T cells, 60% expressed naïve marker CD45RA. T-cell 

receptor excision circle testing was low at 1010 copies per 106 CD3+ cells (normal >6794). 

T-cell proliferation to phytohemagglutinin was normal. No maternal T-cell engraftment 

was present. IgM was very low, and IgG was normal (Fig 1, A). Low B and T cells 

persisted through 2 months of age (Fig 1, A). He developed progressive normocytic anemia 

(hemoglobin 6.4 g/dL) with inappropriately low reticulocytosis (3%), resulting in red blood 

cell transfusion dependency. Bone marrow biopsy revealed multilineage hematopoiesis. 

Genetic testing by clinical whole exome sequencing identified a homozygous splice variant 

in MYSM1 (c.1843–1G>A, IVS15–1 G>A variant) due to paternal uniparental disomy of 

chromosome 1. This variant is not observed in a general population.54

MYSM1 variant (c.1843–1G>A) results in aberrant mRNA splicing and absent protein

MYSM1 (c.1843–1G>A) variant alters the slice acceptor site prior to exon 16. 

Computational analysis predicted aberrant slicing that skips exon 16, which encodes the 

DUB domain of MYSM1 (Fig 1, B). To determine functional consequences of this novel 

variant, we assessed MYSM1 mRNA in patient PBMCs. RT-PCR analysis demonstrated an 

abnormal MYSM1 mRNA transcript missing exon 16 (Fig 1, B). Sequencing confirmed 

patient expressed aberrant MYSM1ΔE16 mRNA (see Fig E1 in this article’s Online 

Repository at www.jacionline.org).

The alternatively spliced transcript generated by the patient’s MYSM1ΔE16 variant is 

in-frame with potential to encode for protein with a 63 amino acid deletion. Western 

blot analysis of patient PBMCs demonstrated loss of high molecular weight MYSM1 
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protein compared to healthy control PMBCs (Fig 1, C). Both control and patient PBMCs 

exhibited a lower molecular weight protein, which may represent a nonspecific band or 

a MYSM1 variant that overlaps with MYSM1ΔE16 expected size. To distinguish between 

these possibilities, we retrovirally expressed FLAG-tagged MYSM1 and MYSM1ΔE16 in 

293T cells. MYSM1 and MYSM1ΔE16 mRNA are equivalently expressed (Fig 1, D). 

In contrast, MYSM1ΔE16 protein was very low compared to wild-type MYSM1 (Fig 1, 

E). Collectively, these results demonstrate that MYSM1 (c.1843–1G>A) variant results in 

abnormally spliced mRNA that encodes an unstable protein. Thus, clinically, our patient is 

effectively deficient in MYSM1 similar to reported patients with other MYSM1 mutations.1–

5 Considering patient’s phenotype, absence from large databases, and these functional 

studies, this MYSM1 variant can be classified as pathogenic (PVS1, PS3, PM2, PP4) based 

on American College of Medical Genetics criteria.55

Increased DNA damage signaling in MYSM1-deficient B and T cells

Deficiency of MYSM1 in humans and mouse models has been shown to increase sensitivity 

to genotoxic stress.2,3,21 To evaluate functional consequences of the novel MYSM1 variant 

identified in our patient, we assessed DDR in peripheral blood lymphocytes using an 

established clinical flow cytometry assay.44 Phosphorylation of ATM (p-ATM) and H2AX 

(γH2AX) were measured in B, T, and NK cells (gating shown in Fig E2 in this article’s 

Online Repository at www.jacionline.org) before and after exposure to 2 Gy ionizing 

radiation (IR). At baseline (unirradiated), 2 populations of patient B cells were present: 

a larger population with high constitutive levels of γH2AX, equivalent to post-IR levels, and 

a smaller subset with absent γH2AX similar to unirradiated healthy control B cells (Fig 1, 

F, black line). Notably, patient B cells did not have constitutive p-ATM in the absence of 

IR (see Fig E3, A, black line, in this article’s Online Repository at www.jacionline.org). 

After IR, all healthy control B cells accumulated γH2AX and p-ATM at 1 hour, which 

resolved at 24 hours (Fig 1, F and Fig E3, A, blue lines). In contrast, all patient B cells 

expressed γH2AX at 1 hour after IR, but only a subset demonstrated p-ATM (Fig 1, F 

and Fig E3, A, blue lines). At 24 hours after IR, both γH2AX and p-ATM resolved to 

baseline with persistence of the γH2AX-high B-cell subset. Testing to further characterize 

the developmental stage of the patient’s B cells was not feasible as additional blood or bone 

marrow samples were not available.

Unlike B cells, patient T and NK cells had no evidence of constitutive γH2AX and had 

normal induction and resolution of γH2AX and p-ATM after IR, which is identical to 

healthy controls (see Fig E3, B–E). Cumulatively, these findings suggest that B cells are 

particularly sensitive to MYSM1 loss, including increased DNA damage signaling even 

in the absence of exogenous DNA damaging agents. These results may reflect aberrant 

responses to DSBs generated during Ig assembly in MYSM1-deficient B cells.

Loss of MYSM1 results in persistence of 53BP1 foci in response to DNA damage

Loss of MYSM1 results in increased DNA damage signaling in lymphocytes and 

nonlymphoid cells, but its function in cellular responses to DNA injury has not been 

characterized.2,3,21 We investigated the role of MYSM1 in DDR to both programmed DSBs 

generated during Ig recombination and to genotoxic DSBs. To assess programmed DSBs, 
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we used abl pre–B cells.45–49 A human B-cell line for investigating Ig recombination is 

not available. Murine abl pre–B cells are a well-established system for studying molecular 

and biochemical characteristics of genetic defects in Ig recombination and DDRs identified 

in patients.45–49,56,57 The Abl kinase promotes pre–B cell proliferation and suppresses 

Ig recombination. Inhibition of Abl kinase with imatinib induces G1 cell cycle arrest, 

expression of the RAG endonuclease, and recombination of the immunoglobulin light 

chain gene (Igl) allele. Igl recombination proceeds through DSBs, which activate DDR 

signaling. Abl pre–B cells also expressed a Bcl2 transgene to support survival after imatinib 

treatment, permitting quantitative evaluation of DDR.45–49 We transduced wild-type abl 

pre–B cells with retrovirus expressing nontargeting shRNA (shNT) or shRNA targeting 

Mysm1 (shMysm1) (Fig 2, A). Cells were subsequently treated with imatinib to induce Igl 
recombination and associated DDR signaling. At 48 hours after imatinib, ~40% of abl pre–B 

cells accumulated 1 to 2 53BP1 foci per cell (Fig 2, B and C). As expected, the percentage 

of cells with 53BP1 foci decreased by 72 hours after imatinib, which is consistent with DSB 

repair and resolution of DDR signaling. Suppression of MYSM1 did not affect generation 

of 53BP1 foci because abl pre–B cells expressing shMysm1 had equivalent 53BP1 foci 

compared to control cells expressing shNT at 48 hours after imatinib (Fig 2, B and C). In 

contrast, suppression of MYSM1 resulted in sustained increase in 53BP1 foci at 72 hours, 

indicative of delayed resolution of DNA damage signals (Fig 2, B and C). Notably, the 

persistence of 53BP1 foci with loss of MYSM1 is not due to alterations in EBF1 because 

abl pre–B cells expressing shMysm1 have no changes in EBF1 mRNA or protein levels 

compared with control abl pre–B cells (see Fig E4 in this article’s Online Repository at 

www.jacionline.org).

To determine whether MYSM1 also functions in DDR to genotoxic DSBs, U2OS cells were 

transduced with lentiviral vector expressing shNT or shMysm1 then exposed to IR (Fig 2, 

D). Both control cells (expressing shNT) and cells with loss of MYSM1 accumulated 53BP1 

foci 2 hours after IR, which decreased by 48 hours. Compared with control cells, U2OS cells 

with MYSM1 depletion demonstrated significantly higher numbers of 53BP1 foci per cell 

at both 2 hours and 48 hours after IR (Fig 2, E and F). Thus, similar to findings in pre–B 

cells with RAG DSBs, loss of MYSM1 resulted in delayed resolution of 53BP1 foci after 

IR-induced DSBs. These results demonstrate that MYSM1 functions in responses to both 

physiologic and genotoxic DSBs across different cell types.

MYSM1 does not function in generation or repair of DSBs

Aberrant γH2AX and 53BP1 foci are typically interpreted as representing persist DSBs, but 

these signals can be indicative of abnormal DDR despite normal DSB resolution. To resolve 

whether MYSM1 functions in DSB generation/repair or DDR signaling, we measured DSBs 

during Igl recombination in abl pre–B cells and following IR in U2OS cells. We used 

Artemis-deficient (Art−/−:Bcl2) abl pre–B cells, which generate persistent RAG DSBs at Igl 
because Artemis is required for DSB repair.45,46,48 RAG-deficient (Rag1−/−:Bcl2) abl pre--B 

cells, which do not generate DSBs, were included as a control.45,46,48 Following imatinib 

treatment, Art−/−:Bcl2 abl pre–B cells generated RAG DSBs in ~50% of Igl loci (Fig 3, 

A). Art−/−:Bcl2 abl pre–B cells with suppression of MYSM1 (expressing shMysm1) had 

equivalent DSB generation as control cells (expressing shNT; Fig 3, A).
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To further investigate MYSM1 function in DSB generation and repair, we transduced a 

repair-sufficient wild-type abl pre–B cell line with a recombination reporter containing an 

inverted GFP cDNA flanked by RAG target sequences (Fig 3, B). Expression of GFP 

requires both generation and repair of RAG DSBs.47,57 Pre–B cells expressing shMysm1 

had similar GFP expression as control cells (Fig 3, B). Together with the above results, these 

findings demonstrate that loss of MYSM1 in pre–B cells does not affect generation or repair 

of RAG-mediated DSBs.

We also investigated MYSM1 function in repair of IR-induced DSBs. U2OS cells were 

exposed to 10 Gy IR and DSBs were quantitated by comet assay. At 30 minutes after IR, 

U2OS cells had longer Olive moment, indicative of DSBs, that decreased by 48 hours, 

which is consistent with the expected kinetics of generation and repair of IR-induced DSBs 

(Fig 3, C). Suppression of MYSM1 did not alter Olive moment at any time, demonstrating 

that loss of MYSM1 does not affect generation or repair of genotoxic DSBs (Fig 3, C). In 

combination, the results in pre–B and U2OS cells indicate that MYSM1 regulates 53BP1 

accumulation at DDR foci but does not function in DSB generation or repair.

Loss of MYSM1 results in persistent downstream DDR signaling

53BP1 coordinates signaling cascades downstream of DSBs and DDR activation.34,36,37 

MYSM1 deficiency results in persistent 53BP1 foci, which may stimulate sustained 

downstream DDR signals that, in turn, could impact cell fate. To determine whether DDR 

signaling persists with loss of MYSM1, we assessed DSB-regulated cellular programs in 

pre–B cells and U2OS cells.

In pre–B cells, RAG DSBs trigger canonical and noncanonical (developmental) 

DDR programs.22,49 Canonical DDR includes p-KAP1, whereas noncanonical DDR 

includes upregulation of PIM2, a prosurvival factor that promotes continued B-cell 

maturation.22,49,50,58 Suppression of MYSM1 in wild-type pre–B cells resulted in increased 

p-KAP1 and PIM2 compared to control pre–B cells (expressing shNT) at both 48 and 72 

hours after RAG DSB generation (Fig 4, A and B). In control cells, PIM2 and p-KAP1 

decrease at 72 hours compared to 48 hours, similar to the reduction in 53BP1 foci at this 

time, as expected with DSB repair and termination of DDR signaling (Figs 2, B and C and 

4, A). Pre–B cells with MYSM1 depletion also had reduction in p-KAP1, PIM2, and 53BP1 

foci from 48 to 72 hours, but the magnitude of decline is less than in control cells, which is 

consistent with persistence of DNA damage signaling (Figs 2, B and C and 4, A). Thus, in 

the absence of MYSM1, both downstream canonical and noncanonical DDRs are increased 

in magnitude and length of time in pre–B cells undergoing Igl recombination.

Similar to pre–B cells, knockdown of MYSM1 in U2OS cells resulted in increased p-KAP1 

and p-CHK2, two key DDR signaling factors, after IR (Fig 4, C and D). Phosphorylation 

of both proteins was evident at 30 minutes after IR and then gradually declined. U2OS 

cells with loss of MYSM1 had higher p-KAP1 and p-CHK2 than control cells at each time. 

As DSBs are repaired, DDR signaling is normally attenuated as evidenced by decrease in p-

KAP1 and p-CHK2 by 24 hours after IR (Fig 4, C). Notably, p-KAP1 and p-CHK2 declined 

in MYSM1-sufficient and -deficient cells, indicating that factors in addition to MYSM1 

contribute to resolution of DDR signaling. Despite this redundancy, loss of MYSM1 resulted 
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in higher magnitude of DDR signaling at later times after RAG- and IR-induced DSBs (Fig 

4).

Increased MYSM1 accelerates DDR resolution

Persistence of DDR signals with reduction in MYSM1 suggests that cellular quantity of 

MYSM1 regulates kinetics of DDR resolution. To further investigate this, we transduced 

U2OS cells with a vector expressing GFP-tagged MYSM1, which substantially increased 

MYSM1 protein compared to endogenous levels in control cells transduced with empty 

vector (Fig 5, A). Compared with controls, cells with high MYSM1 had marked reduction 

in 53BP1 foci, p-KAP1, and p-CHK2 at 2 hours after IR (Fig 5, A–D). Indeed, many 

of the cells with high MYSM1 had almost no 53BP1 foci (Fig 5, C and D). Cells with 

high MYMS1 had significantly decreased p-KAP1 (Fig 5, A and B). Higher expression of 

MYSM1 also consistently reduced p-CHK2 (Fig 5, A and B); although, this did not reach 

statistical significance because the magnitude of reduction was more variable (Fig 5, B). 

Importantly, increased expression of MYSM1 did not alter DSB generation (Fig 5, E). In 

combination with the MYSM1 depletion studies, these findings show that MYSM1 levels 

inversely correlate with DDR resolution.

DISCUSSION

Patients with MYSM1 deficiency have lymphopenia with disproportionate reduction in B 

cells and increased radiosensitivity.1–5 Here we show that MYSM1 functions in termination 

of DDRs to resolve DDR foci and extinguish DDR signals. MYSM1 activity in DDR is 

conserved across both programmed and genotoxic DSBs generated at Igs during normal B-

cell development and by exogenous DNA damaging agents, respectively. MYSM1 regulates 

resolution of 53BP1 retention at DSBs and downstream cellular responses but does not 

affect DSB generation or repair. Consequently, loss of MYSM1 results in continued DDR 

signaling without altering DSB number or persistence. MYSM1 activity in DDR may 

contribute to the immunophenotype and clinical manifestations of patients with deleterious 

MYSM1 variants.

Mice with germline deletion of MYSM1 develop bone marrow failure and B-cell 

lymphopenia similar to MYSM1-deficiency in patients.6–11 Cell type–specific deletion of 

MYSM1 in early B cells (at pre-pro–B-cell stage) results in a marked reduction of pro–

B and pre–B cells, the stages where Ig recombination occurs.7,9 MYSM1 was shown 

to promote expression of Ebf1, Pax5, and Id2, key transcriptional regulators of B-cell 

commitment and differentiation.7,9,18 Expression of EBF1 rescued some abnormalities in 

MYSM1-deficient B cells ex vivo.9 However, Ebf1-deficient mice have a more severe 

depletion of early B cells at more primitive developmental stages than observed in Mysm1-

deficient mice.15–17 Additionally, deletion of p53 rescued B-cell development in MYSM1-

deficient mice but did not restore the reduced EBF1 expression.19,59 Thus, while MYSM1-

dependent regulation of Ebf1 may affect B-cell commitment, MYSM1 has additional 

functions in regulation of B-cell lymphopoiesis.

In addition to altered gene expression, MYSM1-deficient B cells have aberrant DNA 

damage signals. MYSM1 loss in non–B cells increases sensitivity to DNA damaging agents 
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with increased cell death after ultraviolet or gamma irradiation (our data and others).2,20 In 

a multidimensional screen of DUBs, MYSM1 was found to localize to DSBs and to regulate 

DNA repair and G2/M checkpoint.21 We also find that MYSM1 regulates DDR signaling, 

including phosphorylation of CHK2, a controller of cell cycle checkpoint. In contrast, 

our studies demonstrate that MYSM1 does not regulate DSB generation or repair. This 

difference may be secondary to varying degrees of MYSM1 suppression or distinct MYSM1 

activities in different cell types or modes of DNA injury (ie, irradiation vs physiologic 

DSBs). We find that MYSM1 acts similarly in responses to physiologic RAG-mediated and 

genotoxic IR-induced DSBs in both B and non–B cells, respectively. However, IR dose, 

timing of DNA injury relative to cell cycle state, and cell type can all impact DDR. Further 

investigations are needed to characterize factors that modulate MYSM1 activity in DNA 

damage.

Loss of MYSM1 results in persistent 53BP1 foci and prolonged DDR signaling in pre–B 

cells undergoing Igl recombination. It is conceivable that, in the absence of MYMS1, RAG 

DSBs may be repaired by alternative end joining mechanisms, which could trigger distinct 

DDR kinetics. Using a RAG recombination reporter assay, we find that loss of MYSM1 

does not impair GFP expression. In contrast, alternative DSB joining employs end resection, 

which causes frameshifts or deletions that corrupt the GFP codon. Defects in DNA repair 

factors (ie, loss of ATM or altered activity of DNA-dependent protein kinase) that disrupt 

joining or activate alternative end joining invariably result in lower GFP expression.47,60–62 

Thus, our findings support that the changes in DDR signaling with loss of MYSM1 are 

not a consequence of defects or alterations in RAG DSB repair. Furthermore, while minor 

variations in sequences of DSB joins may exist, these changes would not be sufficient to 

trigger the persistent DDR signaling observed in MYSM1 deficiency. Future studies will 

investigate MYSM1 function in DSB repair pathway selection.

MYSM1 regulates gene expression through deubiquitination of H2AK119Ub.9,12–14,18 Mice 

and humans with mutations in MYSM1 that render it catalytically inactive have a similar 

phenotype as MYSM1 deficiency, highlighting that MYSM1 affects hematopoiesis and 

lymphopoiesis through its DUB activity.3,11 Histone H2A is alternatively ubiquitinated on 

lysines 13 and 15 (H2AK15Ub) at DSBs by the ubiquitin ligases RNF8 and RNF168.29–32 

53BP1 binds H2AK15Ub through its ubiquitin-dependent reader motif and subsequently 

functions as a transducer to coordinate downstream DDR signaling.33,35 In pre–B cells, 

53BP1 prevents DNA end resection to promote joining of RAG DSBs and contributes to 

transcriptional programming induced by RAG DSBs.63,64 Following DSB repair, 53BP1 is 

released from chromatin by DUBs, particularly USP51, which remove K13/15 ubiquitin 

from H2A.21,29,30,38,39 We find that loss of MYSM1 leads to prolonged retention of 53BP1 

at DSBs and continued DDR signaling, supporting that MYSM1 functions in termination 

of DDR signaling. Interestingly, while 53BP1 foci and DDR signals are prolonged in 

the absence of MYSM1, both continue to decline, suggesting that other DUBs may 

cooperate with or compensate for MYSM1 to extinguish DDR. The activity of MYSM1 on 

H2AK15Ub, the role of its DUB activity, and the function of other DUBs in DDR in early B 

cells are not known. Additionally, it is not evident whether MYSM1 differentiates between 

H2AK119Ub and H2AK15Ub or acts equally on both sites. MYSM1 is phosphorylated by 

ATM in response to DNA injury.26 It is conceivable that this modification alters MYSM1 
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activity or recruitment to chromatin at DNA damage. These mechanisms of MYSM1 and 

DDR resolution are currently under investigation.

Patients with MYSM1 deficiency have profound B-cell deficiency that is disproportionate 

to the reduction in T cells. Testing of patient peripheral blood lymphocytes identified 

DNA damaging signaling in B cells even in the absence of DNA damaging agents. This 

result is consistent with our finding that MYSM1 regulates DDR to RAG DSBs in B 

cells undergoing Ig recombination. Our findings also provide mechanistic context for 

the reduction in pro– and pre–B cells in MYSM1-deficient mice.7,9 Heavy chain and 

light chain Igs are rearranged at these developmental stages and, thus, these stages may 

be more impacted by DDR dysregulation with MYSM1 loss. T cells also undergo Ig 
recombination (of T-cell receptor loci) and are reduced in MYSM1 deficiency but not to 

the same magnitude as B cells. Additionally, unlike B cells, T cells do not have evidence 

of constitutive DDR activation. These differences suggest that MYSM1 may have unique 

functions in DDR in B cells or, alternatively, that B and T cells have different compensatory 

mechanisms for managing DDR signaling. It is also conceivable that the profound B-cell 

lymphopenia in patients with MYSM1 deficiency may result from combined deleterious 

effects of altered EBF1 expression and abnormal DDRs on developing B cells.

We and others find that MYSM1-deficient B cells have persistence of 53BP1 and γH2AX 

foci after DNA damage.2,10,21,59 MYSM1-deficent hematopoietic progenitor cells also have 

increased γH2AX, which is corrected by deletion of p53 or its downstream effector PUMA 

(protein product of BBC3).59 Interestingly, the B-cell lymphopenia in Mysm1-deficient mice 

is p53-dependent but PUMA-independent, suggesting that MYSM1 and p53 have unique 

functions in hematopoietic progenitor cells and B cells. Whether p53 functions in resolution 

of γH2AX foci in B cells is not known. Our data demonstrate that the persistent γH2AX 

and 53BP1 foci in Mysm1-deficient B cells is secondary to abnormal DDR signaling. 

Further studies will delineate the contribution of p53 and other DDR pathways to the 

radiosensitivity and B-cell depletion in patients with MYSM1 variants.

Cumulatively, our findings establish that MYSM1 functions in termination of DDRs to both 

physiologic and genotoxic DSBs. These studies provide new insights into mechanisms of 

MYSM1-deficient primary immune deficiency and highlight need for caution in treatment 

approaches, because patients will be more sensitive to the chemotherapies used for stem cell 

transplant.
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Abbreviations used

abl pre–B cells Abelson-kinase transformed murine pre–B cells

53BP1 Protein product of TP53BP1

CHK2 Protein product of CHEK2

DDR DNA damage response

DSB DNA double-stranded break

DUB Deubiquitinase

GFP Green fluorescent protein

H2AK119Ub Histone H2A ubiquitinated on lysine 119

H2AK15Ub Histone H2A ubiquitinated on lysines 13 and 15

γH2AX Phosphorylated histone H2AX

Ig Immunoglobulin receptor gene

Igl Immunoglobulin light chain gene

IR Ionizing radiation

KAP1 Protein product of TRIM28

NK Natural killer [cells]

p- Phosphorylated

shMysm1 shRNA targeting Mysm1

shNT Nontargeting shRNA

shRNA Short hairpin RNA
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Key messages

• A novel splice variant in MYSM1 results in B-cell lymphopenia, 

hypogammaglobulinemia, and aberrant responses to DNA damage.

• MYSM1 terminates DDR but does not function in generation or repair of 

DNA breaks.

• Loss of MYSM1 results in prolonged DNA damage signaling despite normal 

DNA break repair.
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FIG 1. 
Novel MYSM1 splice variant in patient with B-cell lymphopenia, hypogammaglobulinemia, 

and increased DNA damage. A, Patient’s lymphocyte numbers and immunoglobulin values. 

B, RT-PCR of mRNA isolated from PMBCs of patient (PT) and health control (HC). 

Schematic shows genomic MYSM1 DNA with location of PT’s c.1843–1G>A variant (*), 

mRNA for HC, and predicted mRNA for PT. Locations of PCR products for exons 1–6 

(blue), exons 12–16 (red), and exon 15–18 (green) are indicated. Actin-B (ACTB) included 

as control. The 2 PCR products in exons 15–18 for HC are splice variants (see Fig E1). 

C, Western blot of MYSM1 in PBMCs. GAPDH is loading control. Asterisk (*) indicates 

lower molecular weight protein that could represent splice variant or nonspecific band. 

D and E, 293T cells were transfected with vector expressing FLAG-tagged MYSM1 or 

MYSM1ΔE16. D, MYSM1 mRNA. Parent is untransfected control. E, Western blot of FLAG 

and MYSM1. Blot is overexposed to visualize MYSM1ΔE16. GAPDH is loading control. 

F, Flow cytometry of γH2AX in B cells from HC and PT at indicated times after 2 Gy 

IR (blue lines). Unirradiated cells (black lines) included at each time as control. Data are 

mean ± SEM from 3 independent experiments (D) or are representative of 3 independent 

experiments (E). *P < .05, ****P < .0001.
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FIG 2. 
Loss of MYSM1 results in persistent 53BP1 foci. A-C, Wild-type abl pre–B cells were 

transduced with retrovirus expressing shNT or shMysm1. A, Western blot of MYSM1. 

GAPDH is loading control. B, Representative images of 53BP1 foci at 48 or 72 hours after 

treatment with imatinib to induce RAG DSBs. Bar = 10 μm. C, Quantitation of percentage 

of cells with 1–2 foci per cell in B. Data are mean ± SEM of 3 technical replicates and 

are representative of 3 independent experiments. D-F, U2OS cells were transduced with 

lentivirus expressing shNT or shMysm1. D, Western blot of MYSM1. GAPDH is loading 

control. E, Representative images of 53BP1 foci at 2 or 48 hours after exposure to 5 Gy 

IR. Bar = 10 μm. F, Quantitation of number of foci per cell in E. Data are mean ± SEM of 

100 cells per condition and time. Results are representative of 3 independent experiments. 

**P < .01; ****P < .0001. DAPI, 4′-6-diamidino-2-phenylindole, dihydrochloride; ns, not 

significant.
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FIG 3. 
MYSM1 does not regulate DSB generation or repair. A, Art−/−:Bcl2 abl pre–B cells 

expressing shNT or shMysm1 were treated with imatinib for 48 hours to induce RAG DSBs. 

DSBs were quantitated by quantitative PCR analysis of Igl (Jk1) genomic DNA. Schematic 

shows germline locus (GL), unrepaired DSB (post-cut), and primer location. Results are 

normalized to Rag1−/−:Bcl2 abl pre–B cells, which do not generate DSBs and have only 

germline Igl. Loss of germline product is representative of DSB generation. B, Wild-type 

abl pre–B cells expressing shNT or shMysm1 (as in Fig 2, A) were transduced with a 

vector encoding a V(D)J reporter (schematic) then treated with imatinib to induce reporter 

recombination. GFP was measured by flow cytometry at indicated times and normalized 

to 0 hours. Data in A and B are mean ± SEM for 3 independent experiments. C, U2OS 

cells expressing shNT or shMysm1 (as in Fig 2, D) were exposed to 10 Gy IR. DSBs were 

quantitated by neutral comet assay at indicated times. Data are mean ± SEM for Olive 

moment of ≥45 cells per condition and time. Inset shows representative images of comet. 

Data are representative of 3 independent experiments. **P < .01.
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FIG 4. 
Loss of MYSM1 results in prolonged DDR signaling. A, Wild-type abl pre–B cells 

expressing shNT or shMysm1 (as in Fig 2, A) were treated with imatinib to induce RAG 

DSBs. Western blot of MYSM1, p-KAP1, and PIM2 at indicated times. GAPDH is loading 

control. B, Quantitation of p-KAP1 and PIM2 at 72 hours in A. C, U2OS cells expressing 

shNT or shMysm1 (as in Fig 2, D) were exposed to 10 Gy IR. Western blot analysis 

of MYSM1, p-KAP1, and p-CHK2 at indicated times. GAPDH is loading control. D, 
Quantitation of p-KAP1 and p-CHK2 at 24 hours in C. Data in A and C are representative 

of 3 independent experiments. Data in B and D are mean ± SE from 3 independent 

experiments. **P < .01; ***P < .001.

Mathias et al. Page 22

J Allergy Clin Immunol. Author manuscript; available in PMC 2024 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG 5. 
Increased expression of MYSM1 suppresses DDR without altering DSB repair. U2OS cells 

were transfected with empty vector or vector expressing FLAG-MYSM1 then exposed 

to 5 Gy IR. Data are at 2 hours after IR. A, Western blot of MYSM1, p-KAP1, and 

p-CHK2. GAPDH is loading control. Arrow indicates FLAG-MYSM1. Arrowhead indicates 

endogenous MYSM1. B, Quantitation of p-KAP1 and p-CHK2 in A. Data are mean ± SE 

from 3 independent experiments. C, Representative images of 53BP1 foci. Bar = 10 μm. 

D, Quantitation of number of foci per cell in B. Data are mean ± SEM of 100 cells per 

condition. E, DSBs quantitated by comet assay. Data are mean ± SEM for Olive moment 

of ≥45 cells per condition. Data in A, C, D, and E are representative of 3 independent 

experiments. ***P < .001; ****P < .0001.
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