
1

Age and Ageing 2024; 53: afae201
https://doi.org/10.1093/ageing/afae201

© The Author(s) 2024. Published by Oxford University Press on behalf of the British Geriatrics Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,
and reproduction in any medium, provided the original work is properly cited.

NEW HORIZONS

New horizons in prediction modelling using
machine learning in older people’s healthcare
research
Daniel Stahl

Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London,
London, UK

Address correspondence to: Daniel Stahl, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology
& Neuroscience, King’s College London, London, UK. Email: daniel.r.stahl@kcl.ac.uk

Abstract

Machine learning (ML) and prediction modelling have become increasingly influential in healthcare, providing critical insights
and supporting clinical decisions, particularly in the age of big data. This paper serves as an introductory guide for health
researchers and readers interested in prediction modelling and explores how these technologies support clinical decisions,
particularly with big data, and covers all aspects of the development, assessment and reporting of a model using ML. The
paper starts with the importance of prediction modelling for precision medicine. It outlines different types of prediction and
machine learning approaches, including supervised, unsupervised and semi-supervised learning, and provides an overview
of popular algorithms for various outcomes and settings. It also introduces key theoretical ML concepts. The importance of
data quality, preprocessing and unbiased model performance evaluation is highlighted. Concepts of apparent, internal and
external validation will be introduced along with metrics for discrimination and calibration for different types of outcomes.
Additionally, the paper addresses model interpretation, fairness and implementation in clinical practice. Finally, the paper
provides recommendations for reporting and identifies common pitfalls in prediction modelling and machine learning. The
aim of the paper is to help readers understand and critically evaluate research papers that present ML models and to serve as
a first guide for developing, assessing and implementing their own.
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Key Points
• Precision medicine aims to improve healthcare by developing tailored prediction models using big data and machine

learning.
• Choosing between machine learning and statistical models in healthcare depends on balancing adaptability and inter-

pretability.
• Developing clinical prediction models involves a seven-step approach including development, evaluation, validation and

presentation.
• Internal validation without data leakage is crucial to ensure unbiased estimates of performance.
• Involving all stakeholders enhances predictive model utility for patient care but raises compliance, cost and security concerns.
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Introduction

Evidence-based medicine (EBM) remains the dominant
paradigm in medical practice: typically, a treatment is
validated by randomised controlled trials and then applied
across all applicable patients, even though not all may benefit
from it. This standardised approach, designed for the ‘average
person’, ensures adherence to proven methods but often
fails to accommodate individual patient variability [1]. In
recent years, a shift towards precision medicine has occurred.
Unlike EBM, precision medicine assumes that reality is
heterogeneous and that an average treatment response is
not sufficient for all individuals. Precision medicine focuses
on identifying which treatment (or other health-related
approaches, such as preventive healthcare, diet or mental
health care) will be effective for an individual based on a
patient’s genetic, environmental and lifestyle factors [2].
Precision medicine has a long history, but it became only
possible on a large scale in this century by the provision of
‘new’ data—such as high-resolution brain imaging, omics,
electronic patient health records, sensors in wearables,
smartphones and the internet—and high-performance
computing technology which effectively collects, processes,
stores and analyses the huge volume of available information
which is commonly known as ‘Big data’ [3]. Prediction
modelling and ML are essential for effectively developing
personalised treatment plans, making them fundamental to
the success of precision medicine.

Data-driven approaches, employing statistical and
machine learning methods on often high-dimensional data
(datasets with a very large number of features or variables
compared to sample size), are used to improve disease
classification, predict the risk of developing a disease,
prognosticate the likely clinical course of a condition, predict
treatment outcomes and optimise treatment selection [4, 5].
A recent study highlighted the importance of machine
learning in three key areas of the healthcare of older people:
first, in monitoring and early diagnosis through the detection
of behavioural or physiological changes using wearable
devices; second, in providing personalised care by tailored
health and lifestyle advice, such as diet plans; and third,
in improving health care coordination [6]. A review by [7]
on machine learning applications in ageing and geriatric
diseases found that the diagnosis and prediction of neurode-
generative disorders were the most researched areas. This
was followed by noncommunicable diseases such as diabetes,
hypertension, kidney and cardiovascular diseases and cancer,
as well as mental health problems, particularly depression.
They pointed out a lack in validating models across large and
diverse datasets to ensure generalisability across age groups,
genders, ethnicities and other demographics. This issue is
common in many healthcare sectors and a primary reason
why only a few models are routinely implemented in clinical
practice [8].

This article introduces core concepts of developing clin-
ical prediction using machine learning and statistical meth-
ods, essential for advancing precision medicine. It is aimed

to help readers understand and critically evaluate research
papers that use these models and to serve as a preliminary
guide to developing, assessing and implementing their own.
For an introduction to prognostic research using statistical
modelling see [9], and for an introduction to ML, refer
to [10].

Fundamentals of prediction modelling

Clinical prediction models are becoming increasingly popu-
lar in health research though often with suboptimal method-
ology [11]. To address this, [12] proposed a seven-step
approach for developing clinical prediction models, which
involves addressing the (i) research question and initial data
inspection, (ii) data preprocessing and predictor coding,
(iii) model specification, (iv) model estimation, (v) model
performance evaluation, (vi) internal (and external) valida-
tion and (vii) model presentation. Beyond Steyerberg and
Verhoeven’s framework, assessing the fairness of the model
[13], securing acceptance from clinicians, patients and other
stakeholders and implementing it into the electronic health
system for user-friendliness are additional important steps
for a successful implementation in clinical practice [14].

Defining a precise research question

Defining a precise research question in prediction modelling
is crucial yet often overlooked. Is the aim to develop a predic-
tion model that accurately predicts outcomes for new cases or
is there also an aim to understand which factors are predictive
and gain an understanding of our model? The exact aim
will define the type of model to build. Often, the focus
is on comparing numerous machine learning algorithms to
identify the optimal model for the present data set. While it is
important to demonstrate that ML models offer advantages
over traditional modelling techniques, comparing too many
models unintentionally risks overfitting, as it selects a model
that may capitalise on random patterns in the specific dataset
and may not generalise well [15]. Moreover, the quest for
the ‘best’ model may overshadow the crucial understand-
ing of predictive mechanisms and real-world applicability.
Simple model comparisons should therefore not be the
aim of a health research study. The research question will
then determine the main outcome, such as predicting the
progression from mild cognitive impairment to Alzheimer’s
disease within 3 years postoperative delirium among older
patients after major surgical procedures [16], estimating the
time until the occurrence of all-cause mortality among older
individuals [17] or identifying those at risk of frailty, as
measured by a continuous frailty index, using electronic
health records without requiring clinician oversight [18].

Identifying variables and sample size considerations

After the research question has been formulated and the
clinical outcome defined, existing knowledge on potential
predictors needs to be reviewed, which may allow subject
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matter knowledge to be included in the design and devel-
opment of the prediction model. A theory-driven variable
selection is often advantageous because it uses established
knowledge and insights from prior research or theoretical
frameworks [19]. This ensures that the selected variables
have a logical and theoretically justified relationship with
the outcome, which helps prevent overfitting, enhances gen-
eralisability and improves interpretability. This is especially
important for smaller data sets where there are limitations
on the number of variables that can be included in a model.
However, a theory-driven approach is often not feasible for
big data sets with many variables such as in genomic studies
or medical imaging.

Rules of thumb such as requiring at least 10 events (not
cases) per variable lack reliability and recently sample size
estimation for regression models have been established [20].
However, they have not yet been assessed or extended to
more complex machine learning models. Recent simulations
suggest that larger sample sizes are needed [21]. Often adap-
tive sample size determinations are used for more complex
models. These are iterative approaches where the sample size
of the dataset is dynamically adjusted based on the model’s
performance during the development of the model [22].

Data preprocessing

Data preprocessing is the first and often the most time-
consuming phase in the development of a machine learn-
ing model, converting raw data into a format needed for
modelling [23]. Data preprocessing involves several crucial
steps to ensure the integrity and usefulness of the data.
Assessing data quality is essential in data preprocessing, as the
‘garbage in, garbage out’ principle highlights that poor input
data results in unreliable outputs [24]. Data preprocessing
includes data integration, which involves merging data from
different resources, resolving conflicts from different scales
or encodings and data cleaning to correct inconsistencies
and errors. Electronic health records (EHRs) often include
unstructured clinical text, making data extraction a crucial
step in data preprocessing. A machine learning method,
Natural Language Processing, is used to extract informa-
tion like symptoms, diagnoses, comorbidities, medications
and potential side effects or treatments from unstructured
text, transforming it into structured, interpretable data for
analyses [25].

It is important to avoid basing variable selection solely on
relationships between predictors and the outcome during the
preprocessing phase, such as selecting only variables which
significantly correlate with the outcome. This approach can
lead to unstable and overfitted models [26]. Instead, variable
should be selected independently of its relationship to the
outcome or variable selection should be integrated in the
model development process [27].

Model specification

Next, a model needs to be specified to apply to the data set. If
the sample size is limited, traditional regression models like

linear, logistic or Cox regression are often appropriate. They
may even outperform machine learning methods in low-
dimensional settings where the number of features is small
relative to the sample size or when the data contains signifi-
cant noise or missing values [28]. The inclusion of fractional
polynomial terms or restricted cubic splines further enhances
the competitiveness of regressions against machine learning
methods, as they provide a flexible way to model nonlinear
relationships [26, 29].

If data sets are more complex, classical methods are often
not appropriate anymore and machine learning and arti-
ficial intelligence (AI) methods need to be used. Machine
learning (ML) methods offer advantages over traditional
statistical modelling in their ability to handle complex high-
dimensional data (such as genomics and omics, medical
imaging, text, internet and sensor data) with unknown inter-
actions and nonlinear relationships [30]. Unlike statistical
modelling, which focuses on understanding and interpreting
relationships with a predefined structure, machine learning
learns directly from the data without explicit model speci-
fications. This process involves computer-intensive optimi-
sation of hyperparameters [31]. Hyperparameters are set
manually and guide the learning process in machine learning
algorithms, unlike model parameters, such as regression
coefficients, which are estimated from data using methods
like maximum likelihood. Hyperparameters influence how
model parameters are estimated thereby impacting model
performance and selection of the optimal model. Hyperpa-
rameter tuning involves adjusting the algorithm’s hyperpa-
rameters to optimise prediction accuracy on new, unseen
data. The tuning process involves systematically searching
for the hyperparameters that balance the model’s complexity,
ensuring it is neither too complex, which could lead to over-
fitting, nor too simple, which might result in underfitting
[10]. This balance is crucial for accurate predictions of new
cases. The ideal parameters are usually determined through
a method called cross-validation, detailed further in ‘Model
Development and Assessment’.

Some ML algorithms, in particular Deep Learning, excel
in automatic feature engineering and variable selection. They
effectively capture complex patterns and relationships in
diverse and unstructured data, adapt to new or changing
data and maintain performance as data increases (scalability).
Deep learning processes large datasets using a hierarchical
architecture of algorithms known as neural networks, which
mimic the human brain’s structure to identify complex
patterns and relationships. This makes them particularly
suitable for large datasets and unstructured data types like
fMRI scans and other medical images, videos, speech, text
or wearable sensors [32, 33]. For instance, deep learning
has been used to analyse photographs of retinal images to
identify individuals who may have Alzheimer’s disease. This
technique has the potential to be implemented as a low-cost,
noninvasive screening procedure within community eye-care
infrastructures [34]. Large language models are deep learning
tools trained on text data from sources like the internet or
clinical health records. They are expected to significantly

3



D. Stahl

impact clinical care, research and medical education, but
they require careful use because they can perpetuate existing
biases and may generate false information [35].

Types of machine learning algorithms

Machine learning sometimes uses a different terminology
than statistical modelling. It is typically divided into super-
vised learning, unsupervised learning and reinforcement
learning [36]. Supervised learning the algorithm learns
from data (with labelled outcomes such as ‘healthy’ or ‘ill’)
to predict outcomes for unseen cases. It is divided into
regression (continuous outcomes, such as Hospital Anxiety
and Depression Scale (HADS) score) and classification
(categorical outcomes, such as ‘depressed’ or ‘not’) methods.
In statistical modelling, models with categorical outcomes
would also be named as regression models (i.e. logistic regres-
sion which models a continuous probability). Unsupervised
learning involves identifying structure in data without labels
(i.e. outcome), such as organising similar cases in groups
(cluster analyses) or identifying how the data is distributed
(density estimation). In prediction modelling, identified
clusters are often used to predict an outcome. For example,
[37] used hierarchical clustering on principal components
in population-based survey data to identify a cluster of cases
with a high likelihood of dementia. Reinforcement Learning
is a machine learning approach where a computer agent
(the algorithm) interacts with a dynamic environment to
optimise decision-making, guided by feedback in the form of
rewards and punishments. It is used in healthcare to optimise
dynamic treatment regimens over time when decision-
making is sequential and dynamic [38]. For instance, [39]
developed a system that employs reinforcement learning to
assist patients in following treatment plans by self-tuning to
the patient’s skills and actions.

Choice of model

The benefits of ML come with challenges such as overfitting,
lack of generalisability to new settings and reduced inter-
pretability. Overfitting occurs when a complex algorithm fits
the training data too closely, resulting in poor generalisation
to new data. Regularisation methods, which limit model
complexity, and cross-validation, which assesses models on
unseen cases, mitigate overfitting, while collecting represen-
tative data improves model performance and generalisability
[10]. The interpretability of a model refers to how easily a
human can understand the reasons behind a model’s pre-
diction. This aspect is particularly important in health care,
where understanding the decision-making process is crucial
for trust among clinicians and patients, ethical responsibil-
ity and advancement of science [40]. Interpretable models
are characterised by simple relationships between predictors
and outcomes, such as easily interpretable parameters like
regression coefficients and decision rules. Explainable AI
aims to make the outputs of machine learning models more
transparent and understandable, enhancing the ability of
users to validate and trust AI systems [41].

The choice between ML and statistical approaches should
be guided by the research question, data characteristics
and analysis goals. Widespread are the so-called regularised
regression models, such as Ridge, Lasso or Elastic Net,
that bridge the gap between traditional statistical models
and machine learning approaches [42]. They are popular
because they offer a balance between the flexibility and
adaptability of machine learning models and the robustness
and interpretability of traditional statistical models. They
are especially favoured in scenarios with high-dimensional
datasets, correlated features or when automatic feature
selection is needed. However, they may be less useful if data
are complex with unknown interactions and nonlinearities,
in which case other machine learning methods like random
forest, neural networks or deep learning are preferable.
Popular machine-learning algorithms are listed in Table 1.
For a user-friendly introduction with software examples in
R or Python, see [10, 30].

Model development and assessment

After identifying a suitable statistical or machine learning
method, one must develop a model by fitting the data to
it. If statistical modelling techniques are applied, the model
is fitted to the entire data set and parameters are estimated
using typically maximum likelihood methods as in standard
statistical modelling analysis. However, if regularised regres-
sion or machine learning methods that require hyperparam-
eter tuning are used, implementing cross-validation or boot-
strapping procedures becomes necessary. These techniques
help to identify the optimal set of hyperparameters which
are usually those that optimise and minimise prediction error
in unseen (hold-out) data (see Figure 1). The best set of
hyperparameters is then used to fit the final model to the
entire data set.

Model performance assessment

Model performance assessment is typically conducted by
evaluating three main aspects: overall model performance,
discrimination and calibration [43]. Overall model perfor-
mance quantifies how closely predictions match the actual
outcomes. This can be measured using metrics like the
explained variance R2 for continuous outcomes and the
Brier score for binary outcomes. The Brier score is the
average difference between the actual outcome and predicted
probability and ranges from 0 (perfect accuracy) and 1
(perfect inaccuracy), with the cut-off for a noninformative
model depending on the prevalence. Discrimination, the
model’s ability to effectively distinguish between outcome
levels (such as case and control), is measured by the c statis-
tic for categorical outcomes [equivalent to area under the
receiver operating characteristic curve (AUROC) for binary
outcomes], with values ranging from 0.5 (no discrimination)
to 1.0 (perfect discrimination). A value of 0.8 is often
regarded as a very good discriminative ability, but perfor-
mance should not be seen outside the context of the purpose
of the model. For instance, a screening tool for common
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Table 1. Popular machine learning algorithms: learning type algorithm and basic working principle. For details see [10, 30]

Algorithm Learning type Basic working principle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Regularised Linear Regression Supervised Extension of the linear regression by including a regularisation penalty to prevent

overfitting. Finds a linear relationship between input variables and a continuous output
variable

Regularised Logistic Regression Supervised Extension of the logistic regression by including a regularisation penalty to prevent
overfitting. Estimates probabilities using a logistic function, often used for binary
classification

Regularised Cox Proportional Hazards Model Supervised Extension of the Cox regression by including a regularisation penalty term. Used in
survival analysis to model the time until an event occurs focusing on the relationship
between survival time and one or more predictors and including censored data. Many
machine learning algorithms have a version which allows modelling time until an event
occurs

Decision Trees Supervised Splits data into branches to form a tree structure, making decisions based on features
Random Forest Supervised Ensemble of Decision Trees, used for classification and regression, improving accuracy and

reducing overfitting
XGBoost Supervised A highly optimised machine learning library known for its speed and performance. It

combines decision trees (‘weak learners’) sequentially to develop stronger learners to
improve predictions. This is done by training each weak learner on the errors of the
preceding one, targeting areas of poor model performance

Support Vector Machines Supervised An algorithm that helps to separate data points into distinct categories by finding the
best-dividing line (or plane in more complex multidimensional situations) between
different sets of data points

K-Nearest Neighbours Supervised Classifies data based on the majority vote of its ‘k’ nearest neighbours in the feature space
K-Means Clustering Unsupervised Partitions data into ‘k’ distinct clusters based on feature similarity
Hierarchical Clustering Unsupervised Creates a tree of clusters by iteratively grouping data points based on their similarity
Self-Organising Maps Unsupervised Neural network based, used for dimensionality reduction and visualisation, organising

high-dimensional data into a low-dimensional map
Principal Component Analysis Unsupervised Reduces data dimensionality by transforming to a new set of variables (principal

components)
Neural Networks Supervised/

Unsupervised
Composed of interconnected nodes or neurons, mimicking the human brain, used in
complex pattern recognition

Deep Learning Supervised/
Unsupervised/
Reinforcement

Utilises multilayered neural networks to analyse large and complex datasets, excelling in
complex tasks like image and speech recognition and natural language processing. Usually
not recommended for small data sets

Q-Learning Reinforcement A model-free reinforcement learning algorithm that seeks to learn a policy, which tells an
agent what action to take under what circumstances

diseases may still be useful with an area under the curve
(AUC) of <0.8 if the treatments are cost-effective and have
no side effects. However, a high AUROC does not necessarily
imply accurate predictions, which is where calibration comes
in. Calibration relates the agreement between observed out-
comes and predictions identifying the risk estimate ranges
where the model performs well [44]. A well-calibrated model
with binary outcomes will have predicted probabilities that
align closely with observed rates. For example, if a model
predicts a 70% chance of an event, we expect to see that
event occurring ∼70% of the time in patients with such
a predicted probability. Calibration is often quantified by
the calibration slope (ideal value of 1) and intercept (ideal
value of 0) to evaluate prediction accuracy and bias. In
addition, calibration plots are often used to visually inspect
this agreement across predicted probabilities.

If a prediction model is used to guide treatment decisions,
a cut-off to categorise patients into low-risk (i.e. no treatment
required) or high-risk (i.e. treatment needed) groups may
be needed. This cut-off should be determined by clinical
expertise and by balancing costs and benefits as performance

metrics like sensitivity, specificity, positive predictive value
and negative predictive are threshold dependent and vary
with the chosen cut-off [45]. Relying on a default 50% cut-
off is often inappropriate. Patient perspectives should also
be considered, as different individuals may accept varying
levels of risk. Table 2 provides an overview of commonly
used performance metrics for categorical outcomes.

Providing probabilities may often be more appropriate as
it provides a spectrum of risk levels instead of a binary classi-
fication allowing for providing more personalised treatment
based on the specific individual risk profile. Finally, clinical
decision analyses like net benefit analysis are recommended.
These methods assess the trade-offs between the benefits
and risks of treatments with different treatment options to
identify the treatment that provides the maximum benefit
for the least cost and risk [46].

Internal and external validation

Model performance estimates obtained using the same data
as for model development (apparent validation) tend to be
overly optimistic [47]. Such estimates are often of limited

5



D. Stahl

Table 2. Key metrics for evaluating prediction models with categorical outcomes—definitions, formulas and interpretations

Term Explanation Formula
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sensitivity (recall) The ability of a test to correctly identify those with the

condition (true positive rate)
Sensitivity = true positives/(true positives + false negatives)

Specificity The ability of a test to correctly identify those without the
condition (true negative rate)

Specificity = true negatives/(true negatives + false positives)

Negative predictive value
(NPV)

The proportion of negative test results that are true negatives NPV = true negatives/(true negatives + false negatives)

Positive predictive value
(PPV) or precision

The proportion of positive test results that are true positives PPV = true positives/(true positives + false positives)

F1 score The F1 score is the harmonic mean of precision and recall,
accounting both for false positives and false negatives

F1 score = 2 × (precision × recall)/(precision + recall)

Discrimination The model’s ability to distinguish between different levels of
outcome, often measured by metrics like the AUC for binary
outcomes

AUC (area under the curve or area under the receiver operating
characteristic curve) is not derived from a simple formula. It involves
plotting true positive rate against false positive rate at various
threshold settings and measuring the area under this curve. The AUC
can be interpreted as the probability that the model ranks a random
positive example higher than a random negative example

Calibration The agreement between observed outcomes and predictions is
assessed by calibration slope (beta) and intercept (alpha)

Calibration slope and intercept based on a logistic regression for
categorical outcomes; often visualised with calibration plots, where
the predicted probabilities are plotted on the x-axis and the observed
frequencies on the y-axis. A perfectly calibrated model would result in
a plot where the points lie on the diagonal line. In the ideal case, the
calibration slope would be 1 and the intercept 0

use, especially when the sample size is not sufficiently large.
After developing a machine learning model, performance
needs to be assessed on new data from the same underlying
population (internal validation). Internal validation is the
minimum requirement for assessing the performance of the
machine learning model. Subsequently, the model should
be evaluated on new datasets from different clinical or geo-
graphical settings, time periods or populations (external vali-
dation). For the final stage of external validation, particularly
in a healthcare context, assessing the model’s acceptance and
effectiveness through a clinical trial is typically needed before
an implementation in the clinical practice can be considered.

Additional considerations for validation

It is important to recognise that model development and
model assessment serve two distinct goals and should not
be conducted on the same data. Independent datasets are
necessary for each of the two tasks to prevent biassed or
over-optimistic assessment of the model’s performance [42,
48]. This issue, commonly referred to as ‘data leakage’,
occurs when external information is used during model
development and still persists in the machine learning
community [49]. To obtain a valid (unbiased) estimate of
internal validity when developing machine learning models
with hyperparameter selection, nested cross-validation is
commonly used. Nested cross-validation involves two layers
of cross-validation: the inner loop for hyperparameter tuning
and the outer loop for model assessment; see Figure 2 for
details. This separation of tuning and model assessment is
crucial as it prevents information leakage from the test data
into the model training process, thereby ensuring that the
evaluation of the model’s performance remains unbiased.

It is important to note that the hyperparameters selected
in the inner loop are not used for the final model estimation.
Instead, the inner loop serves to mimic the process of model
development to ensure a reliable estimate of model perfor-
mance obtained from the nested cross-validation. Valid alter-
natives to nested cross-validation include bootstrapping pro-
cedures, such as optimism correction [26]. A split sampling
approach (i.e. using 70% for model development and 30%
for assessment) is not recommended as it can be unstable
and inefficient, especially if the sample size is <20 000 [50].
An interesting approach to consider is the ‘internal-external’
validation procedure where data are not randomly split into
k folds in the outer loop but are split by study site, hospital,
catchment area or even calendar time. This approach allows
for some form of external validation of the model [47].

Missing data

Handling missing data is a common challenge in machine
learning and often poorly handled [51]. Missing values are
typically replaced with plausible values through imputation.
In statistical modelling, multiple imputation, which involves
creating multiple complete data sets with imputations based
on a distribution of plausible values to reflect uncertainty, is
the standard approach [52]. However, in machine learning,
multiple imputations may not be the best approach [53].
Instead, data are often imputed using single imputation
methods such as k-nearest neighbours, which impute values
based on the similarity of cases with non-missing data, or
by more complex methods such as random forest. Simpler
methods like mean imputation should be avoided due to
information loss and potential performance decline. It is
crucial to prevent information leakage e.g. by imputing
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Figure 1. Hyperparameter tuning is a crucial step in optimising
machine learning model performance. It involves finding the
best configuration options (hyperparameters) that minimise
prediction error. Typically, 5–10-fold cross-validation is used
for this purpose. In 5-fold cross-validation, one-fifth of the data
serves as an independent validation set, while the rest is used for
training. The model is trained using different hyperparameter
settings, and its performance is evaluated on the validation set
with unseen data. This process is repeated five times, using
each subset as the validation set once. After each iteration, the
model’s performance metrics are recorded. The hyperparame-
ters yielding the best overall performance, as determined by
the averaged results across the 5 iterations, are selected as the
optimal configuration. Finally, the model is trained using these
chosen hyperparameters on the entire dataset for improved
performance.

separately in training and test/validation sets [54] or by using
the imputation model of the training set to predict missing
data in the validation/tests sets [27]. Some algorithms such as
random forest, XGBoost or neural networks can inherently
handle missing data, eliminating the need for imputation
preprocessing steps.

Fairness and bias

Machine learning models are often used on the promise
of increased objectivity in decision-making but algorithms
are often not ‘fair’ [55] An algorithm is considered fair if
it performs equally well across different groups of people
without bias related to ethnicity, gender, sexual orientation,
disability, age or social class. However, bias identification and
mitigation attempts mainly focused on identifying gender
and racial disparities while other demographic-related biases,
such as age, have often been neglected [56]. Therefore,
assessing the performance of clinical models for different
groups is a crucial aspect of model evaluation.

Reporting and presentation of the model

It is crucial to assess a model that the study’s reporting
is open, reproducible and transparent. [57]. Adequate

Figure 2. Model selection and model assessment using nested
cross-validation. Model assessment without model selection, i.e.
without hyperparameter selection as in regression models, can
be performed using 5–10-fold cross-validation. Five-fold cross-
validation, as shown in (a), retains one-fifth of the data as an
independent test set for model assessment and the remaining
four-fifths for training. This process is repeated across five data
splits, with each case being used once as part of a validation
dataset. The results of the five test folds are averaged, and
the final model is fitted using the entire sample. If model
selection, such as hyperparameter tuning, is undertaken, nested
cross-validation (b) must be performed. Here, for each split of
the data, an additional five-fold splitting of the training data
is implemented. The inner loop is used for model selection
and the outer loop for model testing. This arrangement of an
‘inner loop’ for model selection (hyperparameter tuning) and an
‘outer loop’ for model testing effectively prevents information
leakage and ensures a more robust evaluation of the model’s
performance. Additionally, to obtain a more stable estimate
of performance, both the standard and nested cross-validation
procedures can be repeated multiple times with different parti-
tions of the data, and the results averaged across different these
repeats.

reporting allows a critical evaluation of a model. Reporting
guidelines such as the Transparent Reporting of a Multivari-
able Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) statement [58] provide guidelines and checklists
on how to effectively present the development and validation
of clinical prediction models [59] and AI models effectively
[60]. Guidelines for developing and reporting for machine
learning models provided by [61, 62] offer a guide for
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Table 3. Evaluation criteria questions for prediction modelling and machine learning research studies

Evaluation aspects Key questions for assessment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Research question Is there a clear research question or objective with an adequate definition of the outcome?
Study design and population Are study design and characteristics of the population adequately described, including the sample size and any inclusion or

exclusion criteria?
Data collection and
preprocessing

Are details about the data collection process, including the variables collected and any preprocessing steps provided? Are all
variables well defined?
Are no uni- or multivariate methods used to preselect variables based on association with the outcome?

Variable selection and model
development

Are the methods used for variable selection and model development described? Is the modelling method, including model
tuning or optimisation procedures, explained?
Which method was used for optimisation to avoid overfitting (i.e. cross-validation or bootstrapping)?
Does model development and performance estimation avoid data leakage?

Missing data Are missing data adequately reported and are cases with missing data compared on basic sociodemographic characteristics
with complete cases?
Are missing data handling procedures reported (complete case analyses, imputation methods) and justified? Is data leakage
avoided?

Model performance evaluation As a minimum, internal validation should be done for performance assessment!
Are adequate measures for discrimination and calibration reported? Are threshold cut-offs for measures such as sensitivity
and specificity provided?
Did they assess clinical usefulness?
If hyperparameter tuning was performed: Did they perform nested cross-validation or similar procedures to get an unbiased
estimate of prediction accuracy?
Did the author avoid any form of data leakage? Did the authors compare accuracy across age, gender and ethnicity groups to
ensure fairness across diverse health populations?

Model reporting Is the final model presented (i.e. regression formula) or available as a web tool?
Is the model transparent about the model’s inputs, outputs and underlying assumptions and discusses how easily
interpretable the model is for clinicians or end-users?
Did they assess potential biases by comparing prediction accuracy between different sociodemographic groups?

Discussion Does the discussion section provide a thorough interpretation of the results, including the implications and limitations of
the findings?
Is there a discussion of the generalisability of the model and its potential impact on clinical practice?
Do they discuss the next steps towards implementation?

Limitations and potential biases Are limitations of the study, including potential sources of bias or uncertainty in the data or modelling process, discussed?
Open science Are the data and code used for model development and assessment available and accessible to the scientific community?

presenting clinical prediction models in a way that facilitates
external validation and use by clinicians. The implications
of the model for clinical use of the model, limitations and
future research should be discussed [63]. Finally, making
code and, when possible, data publicly available should be
encouraged for potential analyses assessment.

Implementation

The ultimate goal of machine learning models is their imple-
mentation in clinical settings to improve patient outcomes, a
process that is challenging and time consuming [64]. Perhaps
the most effective method is to embed them as electronic
clinical decision support systems within the electronic
health record system. This integration allows the automatic
extraction of necessary clinical information and provides
real-time insights for informed clinical decision-making
[65]. Consequently, addressing the value of clinical decision
judgement and detailing the pathway towards implementa-
tion should be an integral part of the model’s design and be
discussed in any report [66].

The QRISK model illustrates the successful development
and implementation of a clinical prediction tool using elec-
tronic health records to assess the 10-year risk of developing
cardiovascular disease. The model was developed using a

Cox proportional hazards model with fractional polynomials
and achieved very good discrimination and good calibration
in internal and external validation. Introduced in 2007,
QRISK2 can be used by analysing data already available in
a person’s EHR (https://www.nice.org.uk/guidance/ng238).
The most recent version, QRISK3, performs well across
the general population, but a recent study suggests only
moderate discrimination among older individuals >65 years
[67]. It tends to overestimate their risk which may lead to
unnecessary medical treatments and stress for patients.

However, challenges such as integration with existing
systems, regulatory and compliance regulations, costs and
long-term maintenance must be considered. Additionally,
privacy and data security concerns, potential biases along
with a lack of trust from patients and healthcare providers
in the validity and effectiveness of the model’s decision-
making process present further barriers [68, 69]. Important
is the involvement of patients which is still often overlooked
or undervalued by data scientists potentially impacting the
effectiveness and acceptability of the resulting models [70].

Final words

Successfully addressing the challenges of developing and
implementing ML models in clinical practice requires a
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collaborative effort from all stakeholders and a multidis-
ciplinary approach. Involving clinicians, data scientists,
researchers, policymakers and patients in the development,
validation and implementation stages can lead to more
robust and reliable ML models. These models can then serve
as successful clinical decision tools to support evidence-based
and personalised decision-making, ultimately improving
patient care and outcomes. This paper aims to help clinicians
and healthcare researchers assess the methodological quality
and clinical potential of models, whether reviewing studies or
conducting their research. To assist readers, Table 3 provides
key questions to evaluate whether a prediction model meets
essential clinical standards.
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