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Abstract
Introduction: Mounting evidence suggests that glucagon-like-peptide-1 receptor-agonists (GLP-1 RAs) attenuate 
cardiovascular-risk in type-2 diabetes (T2DM). Tirzepatide is the first-in-class, dual glucose-dependent-insulinotropic-
polypeptide GIP/GLP-1 RA approved for T2DM.
Patients and methods: A systematic review and meta-analysis of randomized-controlled clinical trials (RCTs) was 
performed to estimate: (i) the incidence of major adverse cardiovascular events (MACE); and (ii) incidence of stroke, 
fatal, and nonfatal stroke in T2DM-patients treated with GLP-1 or GIP/GLP-1 RAs (vs placebo).
Results: Thirteen RCTs (9 and 4 on GLP-1 RAs and tirzepatide, respectively) comprising 65,878 T2DM patients were 
included. Compared to placebo, GLP-1RAs or GIP/GLP-1 RAs reduced MACE (OR: 0.87; 95% CI: 0.81–0.94; p < 0.01; 
I2 = 37%), all-cause mortality (OR: 0.88; 95% CI: 0.82–0.96; p < 0.01; I2 = 21%) and cardiovascular-mortality (OR: 0.88; 
95% CI: 0.80–0.96; p < 0.01; I2 = 14%), without differences between GLP-1 versus GIP/GLP-1 RAs. Additionally, GLP-1 
RAs reduced the odds of stroke (OR: 0.84; 95% CI: 0.76–0.93; p < 0.01; I2 = 0%) and nonfatal stroke (OR: 0.85; 95% 
CI: 0.76–0.94; p < 0.01; I2 = 0%), whereas no association between fatal stroke and GLP-1RAs was uncovered (OR: 0.80; 
95% CI: 0.61–1.05; p = 0.105; I2 = 0%). In secondary analyses, GLP-1 RAs prevented ischemic stroke (OR: 0.74; 95% CI: 
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0.61–0.91; p < 0.01; I2 = 0%) and MACE-recurrence, but not hemorrhagic stroke (OR: 0.92; 95% CI: 0.51–1.66; p = 0.792; 
I2 = 0%). There was no association between GLP-1RAs or GIP/GLP-1 RAs and fatal or nonfatal myocardial infarction.
Discussion and conclusion: GLP-1 and GIP/GLP-1 RAs reduce cardiovascular-risk and mortality in T2DM. While 
there is solid evidence that GLP-1 RAs significantly attenuate the risk of ischemic stroke in T2DM, dedicated RCTs are 
needed to evaluate the efficacy of novel GIP/GLP-1 RAs for primary and secondary stroke prevention.
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Introduction

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) 
have attracted widespread attention during the past few 
years, as a novel class of type 2 diabetes (T2DM) medica-
tions with improved efficacy on glycemic control and a 
safety profile aligned with other classes of antidiabetics.1 
GLP-1RAs exert their antihyperglycemic effects by acti-
vating the GLP-1, an endogenous incretin that regulates 
glucose-dependent insulin and glucagon secretion, delays 
gastric emptying and increases satiety postprandially.2,3 
Among the currently available, FDA-approved GLP-1RAs 
for T2DM, exenatide and lixisenatide, are based on the 
exendin-4 molecule, a naturally occurring peptide isolated 
from the venom of the Gila monster (Heloderma suspec-
tum), with a 53% homology to the human GLP-1.4 
Conversely, liraglutide, albiglutide, dulaglutide and sema-
glutide are classified as human GLP-1RA analogs, that bear 
a >90% homology to the native GLP-1 and are synthesized 
by conjugation of GLP-1 with molecules that reduce its 
renal excretion and prolong its plasma half-life.4 Besides 
glycose regulation, recent evidence suggests that GLP-
1RAs exert pleiotropic effects in the cardiovascular and 
cerebrovascular system, with evidence from cardiovascular 
outcome trials (CVOTs) linking their clinical use to signifi-
cant reduction of vascular risk and mortality in T2DM 
patients.1,5

The effective integration of GLP-1RAs into the arsenal 
of antidiabetic treatments along with their recent inclusion 
in clinical practice guidelines both for primary prevention 
of cardiovascular disease and secondary stroke preven-
tion,6,7 has accelerated the pace for the development of 
newer, enforced molecules that act as dual glucose-depend-
ent insulinotropic polypeptide (GIP) and GLP-1 receptor 
agonists. Tirzepatide comprises the first-in-class, FDA-
approved GIP/GLP-1-RA agent, with preliminary evidence 
from phase 2 and 3 randomized clinical trials (RCTs) sup-
porting its strong cardioprotective potential. Compared to 
GLP-1RAs, the so-far available evidence indicates that 
tirzepatide’s effects on glycemic control and weight loss 
supersede those of GLP-1RAs.8 Besides the shared GLP-
1R-mediated pathways, the GIP component of dual GIP/
GLP-1 receptor agonists is hypothesized to elicit additional 

anorexigenic and lipid-lowering effects: (i) by acting cen-
trally on anorexigenic neurons in the brain; and (ii) by pro-
moting lipid storage in adipose tissue in the periphery.9,10 
Moreover, tirzepatide appears to have additional cardiovas-
cular and cerebrovascular benefits, displaying antihyper-
tensive effects and attenuating endothelial dysfunction and 
circulation of inflammatory molecules in vivo.11 While the 
cardiovascular safety of tirzepatide in the T2DM popula-
tion remains under investigation in the context of the ongo-
ing SURPASS CVOT trial,12 so-far published data point 
toward a low risk of major adverse cardiovascular events 
(MACE), including stroke, in tirzepatide-treated T2DM 
patients.

The aim of the present systematic review and meta-anal-
ysis was to evaluate the risk of MACE and stroke in T2DM 
patients treated with GLP-1RAs or GIP/GLP-1 RAs. In 
particular, we sought to update the results of previous meta-
analyses by our group13 and others (summarized in 
Supplemental Table-S1),14–20 given the availability of new 
trial data from a GLP-1 RA RCT21 and GIP/GLP-1 RA 
RCTs and provide comparative estimates for cardiovascu-
lar outcomes in GLP-1 RA or GIP/GLP-1 RA-treated 
T2DM patients. Results from all so-far published placebo-
controlled RCTs with prospectively collated and centrally 
adjudicated MACE in T2DM patients under GLP-1RAs 
and GIP/GLP-1 RAs were identified and meta-analyzed.

Methods

Standard protocol approvals and registrations

The present systematic review and meta-analysis is reported 
in accordance with the Preferred Reporting Items for 
Systematic Reviews and Meta- Analyses (PRISMA) state-
ment.22 Only publicly available published studies were 
used for meta-analysis. Ethical Committee approval was 
waived due to study design (systematic review and meta-
analysis). The study protocol, comprising pre-determined 
PICOS (Population, Intervention, Comparison, Outcome 
and Study) framework, was a priori designed and registered 
at the PROSPERO database (CRD42023481699). The 
authors declare that all supporting data are available within 
the article and its Supplemental Files.
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Data sources and searches

In this systematic review and meta-analysis, two independ-
ent reviewers (MIS, AT) searched for published randomized 
placebo-controlled trials testing GLP-1RAs or GIP/GLP-1 
RA in T2DM patients. Eligible RCTs were identified by 
systematic search in MEDLINE (via PubMed) and Scopus 
databases. The combination of search strings for all data-
base queries included the following search terms: “gluca-
gon-like peptide-1 receptor agonist,” “dual GLP-1/GIP 
receptor agonists,” “exenatide,” “lixisenatide,” “liraglu-
tide,” “albiglutide,” “dulaglutide,” “semaglutide,” “tirzepa-
tide,” “randomized controlled trial,” “placebo,” “stroke,” 
“MACE,” or “major adverse cardiovascular events.” The 
full search algorithms used in MEDLINE and SCOPUS 
databases are provided in the Supplement. Our search was 
restricted to RCTs, while no language restrictions were 
applied. The search spanned from each electronic data-
base’s inception to January 17th, 2023. An additional man-
ual search of bibliographies of articles meeting study 
inclusion criteria was conducted to ensure the comprehen-
siveness of the literature.

Placebo-controlled RCTs that reported on MACE23 or 
stroke in T2DM patients treated with GLP-1RAs or GIP/
GLP-1 RAs were eligible for inclusion. Exclusion criteria 
comprised: (1) RCTs that were not placebo-controlled; (2) 
RCTs investigating compounds of GLP1-RAs combined 
with other drugs, including combined regimens of insulin 
degludec and liraglutide (IDegLira); (3) study population 
of <300 patients; (4) reported outcomes not aligned with 
our inclusion criteria; (5) observational studies, narrative 
and systematic reviews, case-series or case-reports, com-
mentaries, pre-prints or non-peer reviewed studies, and 
conference abstracts. In case that studies had overlapping 
data, we retained the study with the largest dataset. All 
retrieved studies were assessed by two reviewers (MIS, AT) 
independently and any disagreements between reviewers 
were resolved by consensus after discussion with a third 
tie-breaking evaluator (GT).

Quality control, bias assessment and data 
extraction

For relevant domains of each included study, the risk of 
bias was assessed using the Cochrane Collaboration risk of 
bias tool.24 Two independent reviewers (MIS, AT) per-
formed quality control and bias assessment, and consensus 
after discussion with the corresponding author (GT) was 
reached in case of disagreement. For further analyses, data 
including the name of the first author, year of publication, 
study design, follow-up duration, sample size, patient pop-
ulation, and event type (i.e. MACE, all-cause stroke, fatal 
stroke, nonfatal stroke, all-cause mortality, cardiovascular 
mortality, fatal myocardial infarction [MI], nonfatal MI) 
were extracted from individual studies in structured reports.

Publication bias across individual studies was evaluated 
graphically using funnel plots,25 whereas funnel plot asym-
metry was assessed using Egger et al.’s linear regression 
test,26 and the threshold of the statistical significance was 
set at p < 0.10.

Outcomes

An aggregate data meta-analysis was performed including 
all identified placebo-controlled RCTs that reported the 
incidence of MACE or stroke in T2DM patients treated 
with GLP-1RAs or GIP/GLP-1 RAs. The predefined pri-
mary outcomes of interest were twofold: (i) the incidence 
of MACE, all-cause and cardiovascular mortality; (ii) the 
incidence of all-cause stroke, fatal, and nonfatal stroke. 
Secondary outcomes included the incidence of ischemic 
and hemorrhagic stroke, fatal and nonfatal MI. In addition, 
recurrence rates of MACE were evaluated among patients 
with prior history of established cardiovascular disease, and 
history of MI or nonfatal stroke. Subgroup analysis was 
performed based on antidiabetic treatments either with 
GLP-1 RAs or GIP/GLP-1 RAs. In addition, sensitivity 
analysis was performed to evaluate potential differences in 
GLP-1 RAs effects at different time-points (i.e. at 12 and 
24 months of treatment).

Statistical analysis

Meta-analysis was performed using R–software version 
3.5.0 (packages: meta and metafor). All intended outcomes 
of interest were handled as dichotomous variables, and all 
the associations evaluating the effect of GLP-1RAs or GIP/
GLP-1 RAs with different outcomes are reported as odds 
ratios (OR) with their corresponding 95% confidence 
intervals (CI). Risk differences (RD) between GLP-1 RAs 
and placebo were calculated based on probability point 
estimates acquired from Kaplan-Meier plots using 
WebPlotDigitizer.27 The random-effects model of meta-
analysis (DerSimonian and Laird) was utilized for estima-
tion of the pooled estimates. We used the Q test to assess 
subgroup differences. The I2 and Cochran Q statistics were 
employed for heterogeneity assessment. With respect to the 
qualitative heterogeneity interpretation, I2 values>50% and 
values>75% were considered to represent either substantial 
or considerable heterogeneity, respectively. The significance 
level was set at 0.1 for the Q statistic,28 while the equivalent 
z test with a two-tailed p value < 0.05 was considered statis-
tically significant for each pooled estimate.

Results

Literature search and included studies

The systematic database search yielded 228 records from 
MEDLINE and 362 records from SCOPUS databases. 
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After exclusion of duplicates and articles that were out-of-
scope, 90 records were considered eligible for inclusion 
and were assessed in full. After reading the full-text arti-
cles, 75 more were further excluded (Supplemental 
Table-S2). Finally, we identified 15 eligible studies for 
inclusion (9 RCTs on GLP-1 RAs in T2DM,21,29–36 2 post-
hoc analyses of RCTs on GLP-1 RAs,37,38 4 RCTs on tirze-
patide in T2DM39–42), comprising a total of 65,878 T2DM 
patients. All original studies were placebo-controlled RCTs, 
and Supplemental Table-S3 summarizes their main charac-
teristics. In Figure 1, the PRISMA flowchart of the meta-
analysis is presented.

Quality control and publication bias of included 
studies

The risk of bias of studies included in the present meta-
analysis is presented in Supplemental Figure S1. The risk of 
bias was considered low in all the included RCTs.

Funnel plot symmetry inspection and Egger statistical 
testing were performed for outcomes involving ⩾10 
studies.25 Accordingly, no asymmetry was revealed for 
assessment of publication bias among trials reporting 
MACE (p = 0.3015; Figure S2), cardiovascular mortality 
(p = 0.2606; Figure S3) and all-cause mortality (p = 0.3570; 

Figure S4) between treatment with GLP-1RAs or GIP/
GLP-1 RAs and placebo.

Primary outcomes

When compared to placebo, treatment with GLP-1RAs or 
GIP/GLP-1 RAs was associated with significant reduction 
of MACE (13 RCTs; OR: 0.87; 95% CI: 0.81–0.94; p for 
Cochran Q < 0.01; I2 = 37%; Table 1, Figure 2), all-cause 
mortality (12 RCTs; OR: 0.88; 95% CI: 0.82–0.96; p for 
Cochran Q < 0.01; I2 = 21%; Figure S5) and cardiovascu-
lar mortality (10 RCTs; OR: 0.88; 95% CI: 0.80–0.96; p 
for Cochran Q < 0.01; I2 = 14%; Figure S6). Additionally, 
GLP-1RAs reduced the odds of all-cause stroke (8 RCTs; 
OR: 0.84; 95% CI: 0.76–0.93; p for Cochran Q < 0.01; 
I2 = 0%; Figure 3) and nonfatal stroke (9 RCTs; OR: 0.85; 
95% CI: 0.76–0.94; p for Cochran Q < 0.01; I2 = 0%; 
Figure 4(a)), but no significant association was uncovered 
for fatal stroke (8 RCTs; OR: 0.80; 95% CI: 0.61–1.05; p 
for Cochran Q = 0.105; I2 = 0%; Figure 4(b)). Notably, as 
the 4 included RCTs on tirzepatide in T2DM reported no 
stroke events (i.e. zero events in both treatment and pla-
cebo groups), these RCTs contributed no data to the 
respective meta-analyses of all-cause stroke, fatal and 
nonfatal stroke.

Figure 1. PRISMA flowchart diagram presenting the selection of eligible studies.
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Table 1. Overview of vascular outcomes among patients with type 2 diabetes treated with GLP-1RAs or GIP/GLP-1 RAs versus 
placebo.

Clinical Outcome Number of RCTs OR (95% CI) p-Value Heterogeneity  
(I2, p for Cochran Q)

MACE 13 0.87 (0.81–0.94) 0.0004 37%, 0.09
All-cause mortality 12 0.88 (0.82–0.96) 0.0023 14%, 0.32
Cardiovascular mortality 10 0.88 (0.80–0.96) 0.0038 14%, 0.32
All-cause stroke 8 0.84 (0.76–0.93) 0.0005 0%, 0.67
Fatal stroke 8 0.80 (0.61–1.05) 0.1052 0%, 0.82
Nonfatal stroke 9 0.85 (0.76–0.94) 0.0018 0%, 0.77
Ischemic stroke 3 0.74 (0.61–0.91) 0.0038 0%, 0.89
Hemorrhagic stroke 3 0.92 (0.51–1.66) 0.7927 0%, 0.63
Fatal MI 8 0.96 (0.60–1.54) 0.8560 46%, 0.08
Nonfatal MI 9 0.91 (0.81–1.01) 0.0837 45%, 0.07
Recurrence of MACE with prior history of established 
cardiovascular disease

5 0.85 (0.79–0.91) <0.0001 0%, 0.46

Recurrence of MACE with prior history of MI/stroke 2 0.80 (0.69–0.93) 0.0038 0%, 0.65

GLP-1RAs: Glucagon-like peptide-1 receptor agonists; GIP/GLP-1 RAs: glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 recep-
tor agonists; RCTs: randomized controlled trials; OR: odds ratio; CI: confidence interval; MACE: major adverse cardiovascular event; MI: myocardial 
infarction.

Figure 2. Forest plot comparing the risk of MACE in T2DM patients treated with GLP-1RAs or GIP/GLP-1 RAs versus placebo.

Secondary outcomes
Concerning stroke subtypes, treatment with GLP-1RAs 
was associated with significant reduction in the odds of 
ischemic stroke (3 RCTs; OR: 0.74; 95% CI: 0.61–0.91; p 
for Cochran Q < 0.01; I2 = 0%; Figure 5), but no association 
was noted for hemorrhagic stroke (3 RCTs; OR: 0.92; 95% 

CI: 0.51–1.66; p for Cochran Q = 0.792; I2 = 0%; Figure 
S7). Conversely, no clear association of GLP-1RAs or GIP/
GLP-1 RAs was disclosed for either fatal MI (8 RCTs; OR: 
0.96; 95% CI: 0.60–1.54; p for Cochran Q = 0.856; I2 = 46%; 
Figure S8) or nonfatal MI (9 RCTs; OR: 0.91; 95% CI: 
0.81–1.01; p for Cochran Q = 0.084; I2 = 45%; Figure S9).
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Figure 3. Forest plot comparing the risk of all-cause stroke in T2DM patients treated with GLP-1RAs versus placebo.

Figure 4. (a) Forest plot comparing the risk of nonfatal stroke in T2DM patients treated with GLP-1RAs versus placebo and  
(b) Forest plot comparing the risk of fatal stroke in T2DM patients treated with GLP-1RAs versus placebo.

Figure 5. Forest plot comparing the risk of ischemic stroke in treatment with GLP-1RAs versus placebo.
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Regarding secondary prevention, GLP-1RA treatment 
was associated with reduced incidence of recurrent MACE 
among patients with prior established cardiovascular dis-
ease (5 RCTs; OR: 0.85; 95% CI: 0.79–0.91; p for Cochran 
Q < 0.01; I2 = 0%; Figure S10) and among patients with 
prior history of MI or stroke (2 RCTs; OR: 0.80; 95% CI: 
0.69–0.93; p for Cochran Q < 0.01; I2 = 0%; Figure S11).

Subgroup analyses on GLP-1RA versus GIP/GLP-1 RA 
treatment, revealed no significant subgroup effects on 
MACE (p for subgroup differences = 0.51; Figure 2), all-
cause mortality (p for subgroup differences = 0.33; Figure 
S5), cardiovascular mortality (p for subgroup differ-
ences = 0.19; Figure S6), or fatal MI (p for subgroup differ-
ences = 0.17; Figure S8). Sensitivity analyses revealed a 
trend toward greater MACE reduction with increasing 
duration of GLP-1 RA treatment from 12 months (RD: 
−0.006; 95% CI: −0.024 to 0.012; p = 0.498; Figure S12) to 
24 months (RD: −0.012; 95% CI: −0.037 to 0.013; p = 0.339; 
Figure S12). The trend was similar for stroke with greater 
effects noted with longer treatment duration, as reflected by 
the statistically significant difference in stroke outcomes in 
the GLP-1 RA versus the placebo group at 24 months (RD: 
−0.007; 95% CI: −0.014 to 0; p = 0.049; Figure S13) com-
pared to 12 months (RD: −0.003; 95% CI: −0.008 to 0.001; 
p = 0.175; Figure S13).

Discussion

The findings of the present systematic review and meta-
analysis demonstrate that treatment with GLP-1RAs or 
GIP/GLP-1 RAs is associated with significant reduction of 
MACE, all-cause mortality and cardiovascular mortality in 
the T2DM patient population. In addition, treatment with 
GLP-1 RAs leads to significant attenuation of all-cause 
stroke and nonfatal stroke in patients with T2DM. Notably, 
no stroke events were reported in the 4 included RCTs on 
the GIP/GLP-1 RA tirzepatide in T2DM (i.e. zero events in 
both the treatment and placebo group in all trials). 
Consequently, no inferences can be drawn regarding poten-
tial associations between GIP/GLP-1 RAs and stroke based 
on the currently available evidence.

The present findings on GLP-1RA use in T2DM patients 
are concordant with results of prior meta-analyses from our 
group13 and others (summarized in Supplemental Table 
S1),14–20 as well as data from real-world observational and 
pharmacovigilance studies,43,44 that have established the 
robust cardiovascular and cerebrovascular benefits from 
GLP-1RAs in T2DM and laid the ground for their broader 
incorporation in clinical practice guidelines.6,7 Compared to 
previous works, the present updated meta-analysis has 
included data from the recently published placebo-con-
trolled NCT01455896, a pre-approval CVOT that investi-
gated cardiovascular outcomes in T2DM patients treated 
with the ITCA 650 device, that delivers subcutaneous infu-
sion of exenatide via an osmotic mini-pump, and showed 
significant reduction in MACE in ITCA 650-treated 

patients.21 Importantly, subgroup analyses revealed consist-
ent effects of GLP-1 RAs both in primary and secondary 
prevention (i.e. in the latter case in patients with prior his-
tory of MI or stroke, or established cardiovascular disease). 
In this context, it is worth noting that the line of evidence on 
GLP-1 RAs’ cardiovascular potency exceedingly grows, 
including the very recent publication of the SELECT trial 
in patients with pre-existing cardiovascular disease and 
overweight or obesity,45 with GLP-1 RAs steadily claiming 
their place in cardiovascular disease prevention also beyond 
T2DM.

Besides GLP-1RAs, the current meta-analysis included 
data from four placebo-controlled RCTs assessing the car-
diovascular and cerebrovascular safety of the novel GIP/
GLP-1 RA tirzepatide in T2DM patients. Data from GLP-
1RAs and GIP/GLP-1 RAs trials were pooled for the pri-
mary outcome meta-analysis; nevertheless, the pooled 
effect on MACE was clearly driven by the significant 
effects of GLP-1RAs, as no association between MACE 
and tirzepatide treatment was uncovered. Similarly, no 
associations between all-cause and cardiovascular mortal-
ity and tirzepatide treatment were disclosed. Accordingly, 
the test for subgroup differences (i.e. GLP-1 RAs vs GIP/
GLP-1 RAs) indicated no significant subgroup effect; how-
ever, the smaller number of RCTs and T2DM patients in the 
tirzepatide subgroup may have hindered detection of sub-
group differences. Some additional methodological nuances 
should be clarified. First, although all four tirzepatide RCTs 
were either phase 2 or 3 trials, they were not designed as 
CVOTs and were evidently underpowered to evaluate car-
diovascular efficacy as indicated by the small sample sizes 
and short follow-up periods. With respect to the latter, it is 
intriguing that CVOTs on GLP-1 RAs use in T2DM have 
documented divergence in cardiovascular outcomes 
between treatment and control groups after the first year of 
GLP-1 RA treatment.30,37 Notably, in the current meta-anal-
ysis, sensitivity analysis also revealed time-dependent 
effects of GLP-1 RAs in stroke prevention. Second, con-
trary to CVOTs on GLP-1 RAs that included T2DM patients 
with established cardiovascular disease or at high cardio-
vascular risk, tirzepatide trials randomized T2DM patients 
irrespective of presence of prior cardiovascular disease or 
cardiovascular risk factors, a fact that may account for the 
very low number of recorded MACE, and possibly for type 
II errors.

In accordance with our findings, a previous meta-analy-
sis that assessed tirzepatide’s cardiovascular safety in 
T2DM,46 including RCTs with at least one placebo or active 
comparator arm, found no significant differences in MACE, 
all-cause and cardiovascular mortality between tirzepatide-
treated patients and controls. Compared to the aforemen-
tioned study, we restricted our analysis to placebo-controlled 
RCTs and additionally included the recently published data 
of the SURMOUNT-2 trial.42 Still, given the methodologi-
cal limitations mentioned, the cardioprotective benefits 
from tirzepatide in T2DM likely remain underestimated. 
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Notably, the so-far available evidence on GIP/GLP-1 RAs 
efficacy in T2DM is striking, with tirzepatide (15 mg once 
weekly) appearing superior both compared to placebo and 
GLP-1RAs for glycemic control and body weight reduc-
tion, and also superior to basal insulin for glycemic control, 
without increasing the risk for hypoglycemia.47 Given the 
complementary and synergistic effects of GIP and GLP-1 
receptor agonism,48 the results of the SURPASS CVOT 
trial that will comprehensively assess tirzepatide’s cardio-
vascular safety and efficacy against the GLP-1 RA dulaglu-
tide in patients with T2DM and established cardiovascular 
disease, are eagerly awaited.12

In addition, we performed subgroup analyses, assessing 
the association between GLP-1 RA treatment and different 
stroke subtypes. Our findings demonstrate that GLP-1 RA 
use is associated with significant reduction in the risk of 
ischemic stroke, while no similar effect was detected for 
haemorrhagic stroke. In line with these findings, a post-hoc 
analysis of the SUSTAIN 6 and PIONEER 6 trials on the 
GLP-1 RA semaglutide,49 showed significant reduction in 
the incidence of all-cause stroke in treated patients versus 
controls; an effect that was mainly driven by reduction of 
the odds of ischemic stroke and in particular, small-vessel 
occlusion (i.e. lacunar stroke). Interestingly, subgroup anal-
yses also revealed that the net clinical benefit from GLP-1 
RA use on cerebrovascular outcomes (i.e. stroke) was 
greater compared to cardiovascular outcomes (i.e. with 
nonsignificant effect on fatal and nonfatal MI), a finding 
that has been replicated to date in a number of RCTs and 
meta-analyses.13,18 Moreover, it is compelling that the het-
erogeneity in reported stroke outcomes of the present meta-
analysis was exceptionally low, with a significant number 
of trials contributing data to the pooled analyses. Whether 
these findings imply a stronger neuroprotective potential of 
GLP-1 RAs as suggested in prior studies remains to be 
established.50–52

Some limitations of the present meta-analysis should be 
acknowledged. First, as this was an aggregate data meta-
analysis, potential associations between clinical parame-
ters, comprising concomitant treatments, comorbidities, 
T2DM duration, and clinical outcomes could not be evalu-
ated. Second, as MACE was the primary outcome of all 
included RCTs, stroke meta-analyses were based on sec-
ondary outcome assessment. In light of the robust evidence 
of GLP-1 RAs’ effects for stroke prevention, it should be 
emphasized that dedicated RCTs designed to evaluate 
GLP-1 RAs and GIP/GLP-1 RAs efficacy and safety spe-
cifically in stroke are direly needed. Third, the generaliza-
bility of the present findings may be limited, since RCTs on 
GLP-1 RAs or GIP/GLP-1 RAs included T2DM patients at 
high cardiovascular risk or without cardiovascular risk fac-
tors, respectively. In addition, we could not assess the 
potential role of GIP/GLP-1 RAs in stroke due to unavail-
ability of data for meta-analysis from the so-far published 
RCTs. Thus, well-designed CVOTs with adequate sample 

sizes and follow-up periods are needed to comprehensively 
evaluate the safety and efficacy of tirzepatide in stroke pre-
vention in T2DM. Fourth, despite differences in plasma 
half-life and structural homology of GLP-1 RAs to GLP-1 
receptor, no subgroup analyses were pursued, since previ-
ous meta-analyses from our group and others have already 
established that MACE and cardiovascular benefits are 
independent of the structural basis of the GLP-1 receptor 
analogs.13,18 Fifth, as no data were available for ischemic 
stroke subtypes, potential beneficial effects of GLP-1 RAs 
for prevention of ischemic stroke due to large-artery athero-
sclerosis, cardioembolism or small-vessel occlusion could 
not be evaluated and remain to be explored in future 
studies.

In conclusion, our systematic review and meta-analysis 
provides evidence of strong potential from GLP-1 RA or 
GIP/GLP-1 RA treatment in reducing MACE, all-cause and 
cardiovascular mortality in the T2DM population. Most 
importantly, GLP-1 RAs significantly attenuate the risk of 
ischemic stroke. Given the current dearth of evidence on 
tirzepatide, the jury is still out on whether this novel agent 
may parallel the effects of GLP-1 RAs in stroke prevention. 
Consequently, well-designed RCTs are needed to cast more 
light onto the potential cardiovascular and cerebrovascular 
effects of GIP/GLP-1 RAs in T2DM.
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