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The CC-chemokines RANTES, macrophage inflammatory protein 1a (MIP-1a), and MIP-1b are natural
ligands for the CC-chemokine receptor CCR5. MIP-1a, also known as LD78a, has an isoform, LD78b, which
was identified as the product of a nonallelic gene. The two isoforms differ in only 3 amino acids. LD78b was
recently reported to be a much more potent CCR5 agonist than LD78a and RANTES in inducing intracellular
Ca21 signaling and chemotaxis. CCR5 is expressed by human monocytes/macrophages (M/M) and represents
an important coreceptor for macrophage-tropic, CCR5-using (R5) human immunodeficiency virus type 1
(HIV-1) strains to infect the cells. We compared the antiviral activities of LD78b and the other CC-chemokines
in M/M. LD78b at 100 ng/ml almost completely blocked HIV-1 replication, while at the same concentration
LD78a had only weak antiviral activity. Moreover, when HIV-1 infection in M/M was monitored by a flow
cytometric analysis using p24 antigen intracellular staining, LD78b proved to be the most antivirally active of
the chemokines. RANTES, once described as the most potent chemokine in inhibiting R5 HIV-1 infection, was
found to be considerably less active than LD78b. LD78b strongly downregulated CCR5 expression in M/M,
thereby explaining its potent antiviral activity.

Macrophage inflammatory protein 1a (MIP-1a) exists in two
nonallelic isoforms, LD78a and LD78b, with high-level se-
quence homology. The secreted proteins differ in only 3 amino
acids: the penultimate NH2-terminal residue and amino acids
39 and 47 (10, 21, 23). The biological relevance, also in terms
of antiviral activity, of the NH2-terminal residues of CXC- and
CC-chemokines has been convincingly demonstrated (26, 27,
29, 31–33, 42). Besides MIP-1a, the CC-chemokines RANTES
and MIP-1b are natural ligands for the CC-chemokine recep-
tor CCR5 and are inhibitors of macrophage-tropic (M-tropic)
human immunodeficiency virus (HIV) strains (7).

LD78b was reported to be much more potent than LD78a
and RANTES in inducing intracellular Ca21 signaling and
chemotaxis preferentially through the CC-chemokine receptor
CCR5 (20, 22, 43). In these studies, the anti-HIV activity of
LD78b in peripheral blood mononuclear cells (PBMCs) was
investigated (20), however, its activity in human monocytes/
macrophages (M/M) had not been determined.

The chemokine receptor CCR5 is expressed by M/M and
represents the most important coreceptor for M-tropic R5
HIV type 1 (HIV-1) strains to enter the cells (1, 13, 14, 34, 36,
39–41). Macrophages may play an important role in all phases
of HIV infection. Infected macrophages are present in all body
tissues of HIV patients (12, 17–19) and represent the most
important cellular reservoir for the virus during antiviral ther-

apy (4, 24, 30). In fact, M/M secreting nerve growth factor
survive after HIV infection (9) and produce high and stable
levels of virus for a long period of time (S. Aquaro, T. Guenci,
P. Bagnarelli, M. Clementi, A, Modesti, R. Caliò, and C. F.
Perno, 4th Intl. Workshop HIV, Cells of Macrophages Lin-
eage, and Other Reservoirs, p. 29, 1999). In the central nervous
system, more then 90% of the HIV-1-infected cells are M/M
(8, 12, 15, 37), and CCR5 D32 heterozygosity prevents the
development of the AIDS dementia complex (38). At the same
time, the downregulation of CCR5 expression by CC-chemo-
kines in macrophages is correlated with a reduction of virus
entry and replication (11). These data demonstrate the rele-
vance of CCR5 and thus the important role of CC-chemokines
in reducing HIV entry and hence virus replication through
their interaction with CCR5. Here, we have studied the anti-
viral efficacy of LD78b, in comparison with those of LD78a
and the other CCR5-interacting CC-chemokines, RANTES
and MIP-1b, in purified macrophages. To evaluate the antivi-
ral activities of LD78a and LD78b, M/M were incubated with
the chemokines for 20 min at different concentrations and then
infected by the R5 HIV-1BaL strain. LD78b showed a potent
dose-dependent inhibition and antiviral activity against HIV-
1BaL. As shown in Fig. 1, at an LD78b concentration of 100
ng/ml, viral p24 antigen (Ag) production dropped from 40,300
pg/ml to 2,070 pg/ml (94% inhibition). In contrast, LD78a only
weakly inhibited viral replication at a concentration of 100
ng/ml (roughly 20% inhibition) (Fig. 1). Thus, the antiviral
activity of LD78b in M/M was far superior to that of LD78a.

The antiviral activities of LD78a and LD78b were also eval-
uated by intracellular p24 Ag staining to determine the per-
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centage of HIV-1-infected M/M. As can be seen in Fig. 2, 42%
of the cells from HIV-infected M/M cultures stained positive
for p24 Ag, whereas the level decreased to about 11% in the
LD78b-treated cells (at 100 ng/ml). In contrast, no difference
in numbers of p24 Ag-positive cells was observed between the
untreated HIV-infected and LD78a-treated HIV-infected cells
(Fig. 2).

To compare the anti-HIV efficacy of LD78b with those of
the other CCR5-binding chemokines, RANTES and MIP-1b,
additional experiments were performed in M/M. The MIP-1a
isoform LD78b exhibited the highest antiviral activity against
HIV-1BaL. RANTES reached 92% inhibition of HIV replica-
tion at a concentration of 500 ng/ml, while LD78b suppressed
HIV replication by 93% at 100 ng/ml (i.e., at a fivefold-lower
concentration than RANTES); moreover, MIP-1b, considered

the most specific CCR5 ligand, inhibited virus replication by
about 30% at 500 ng/ml (data not shown). Therefore, as shown
in Table 1, the 50% effective concentration (EC50) of LD78b
against HIV-1BaL in M/M was 21 ng/ml, which is 16-fold lower
than that of LD78a (EC50, 351 ng/ml). Also, a more than
10-fold difference in the EC90s of LD78a and LD78b was
observed (Table 1). RANTES, with an EC50 and an EC90 of
149 and 478 ng/ml, respectively (Table 1), was six- to sevenfold
less active than LD78b. With an EC50 of almost 1,000 ng/ml
(Table 1), MIP-1b was found to be the least potent chemokine
in inhibiting viral replication.

To confirm that LD78b has potent antiviral activity against
M-tropic HIV strains, and not only against the cell culture-
adapted virus strain HIV-1BaL, we performed additional ex-
periments with primary R5 HIV-1 clinical isolate (HIV-1 iso-
late 15). This virus isolate was obtained after only one passage
in PBMCs and replicated in U87.CD4.CCR5-transfected cells
but not in U87.CD4.CXCR4 cells, confirming its CCR5 usage
(data not shown). Here, again, the chemokine LD78b was the
most active in inhibiting viral replication, with an EC50 of 28
ng/ml (Table 1). The other chemokines were somewhat more
active against this clinical viral isolate than against HIV-1BaL

(Table 1).
We demonstrated previously that the antiviral activity of a

compound that inhibits virus entry in fresh monocytes (such as
the sulfated polysaccharide dextran sulfate or the bicyclam
AMD3100) is different from that in macrophages (3). There-
fore, we also assessed the anti-HIV efficacy of LD78b in freshly
isolated monocytes. At a concentration of 100 ng/ml, LD78b
inhibited HIV replication by 85% (EC50, 35 ng/ml). In sharp
contrast, at a concentration of 100 ng/ml, RANTES had no
antiviral activity in fresh monocytes (data not shown). It has
been previously reported that RANTES has no or only weak
activity against HIV-1 in freshly isolated monocytes (28, 31). A
likely explanation for this phenomenon is that only the NH2-
terminally truncated form of RANTES has anti-HIV activity
and that monocytes express very low, or undetectable, levels of
CD26/dipeptidyl peptidase IV, which is responsible for NH2-
terminal truncation of RANTES (29).

Because previous studies demonstrated that downregulation
of HIV coreceptors by their natural ligands contribute to the
inhibition of viral replication (2, 16), we examined the effi-
ciency of LD78b at downregulating CCR5. As shown in Fig. 3,
expression of CCR5 from the surface of monocytes is shown
for LD78b, in comparison with LD78a and MIP-1b. LD78b
was much more effective (after 1 h of incubation at 37°C) than
LD78a or MIP-1b at downregulating CCR5; it showed a
marked downregulation at 40 ng/ml, whereas for LD78a and
MIP-1b a weak effect was observed only at a concentration of
200 ng/ml. This enhanced potency of LD78b in receptor bind-
ing and downregulation may explain its potent anti-HIV activ-
ity and is probably due to its greater affinity for CCR5 (20).

This study shows that the MIP-1a isoform LD78b is the
most potent CC-chemokine described so far in terms of inhib-
iting R5 HIV-1 infection of macrophages and monocytes. The
inhibitory effect of LD78b on viral replication may be ascribed
to its high affinity for CCR5 and the subsequent downregula-
tion of this coreceptor. The potent anti-HIV-1 activity of
LD78b compared with that of LD78a is conferred by differ-

FIG. 1. Dose-dependent antiviral activity of LD78b in HIV-1-in-
fected M/M. Macrophages were obtained from the blood of healthy
HIV-seronegative donors by previously published procedures (25).
Briefly, PBMCs were separated by Ficoll-Hypaque gradient centrifu-
gation and seeded in plastic 48-well plates (Costar, Cambridge, Mass.)
at a density of 1.8 3 106 cells/ml in RPMI 1640 (Gibco, Gaithersburg,
Md.) supplemented with 50 U of penicillin/ml, 50 mg of streptomycin/
ml, 2 mM L-glutamine, and 20% heat-inactivated, mycoplasma- and
endotoxin-free fetal calf serum (HyClone, Logan, Utah) (complete
medium). On the 5th day of culture, nonadherent cells were removed
by repeated gentle washing with warm complete medium. Adherent
cells obtained with this technique consisted of .95% differentiated
M/M. After purification, M/M were cultured in a humidified chamber
with 5% CO2 at 37°C in the presence of the same medium. Further
details are described elsewhere (25). Macrophages were exposed to
various concentrations of CC-chemokine LD78b (F) or LD78a (h)
for 20 min; then they were challenged with HIV-1BaL at 300 50% cell
culture infective doses per ml. After 2 h of incubation, M/M were
extensively washed with warm complete medium to remove the excess
virus and then cultured in the presence of chemokines under the
conditions used previously. M/M were washed and fed every 5 days
with fresh medium and replenished with chemokines. Supernatants
were collected at day 12 after virus challenge, and virus production was
determined by Ag capture assay with a commercially available p24 Ag
kit (NEN Life Science Products Inc., Boston, Mass.). Human recom-
binant MIP-1a isoform LD78a was purchased from PeproTech Inc.
(Rocky Hill, N.J.). The 7.793-kDa LD78b was synthesized by 9-fluore-
nylmethoxycarbonyl (fMOC) solid-phase peptide synthesis (20). Data
represent the means of values from two independent experiments,
each run in triplicate. Error bars show the standard deviations.
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ences in only 3 amino acids (20), with the NH2-terminal dipep-
tide of LD78a seemingly important for receptor affinity (33).

Our findings that RANTES and MIP-1a/LD78a have EC50s
of about 60 and 120 ng/ml, respectively, are in agreement with
previously published data (35). The previously reported order
for the anti-HIV activities of the CC-chemokines in M/M,
RANTES . MIP-1b . MIP-1a/LD78a (5), should be changed
to the following order: MIP-1a/LD78b . RANTES . MIP-
1a/LD78a . MIP-1b. Further experiments are required to
determine if MIP-1a/LD78a is consistently more potent than

MIP-1b in inhibiting HIV-1 replication in M/M. The superior
anti-HIV-1 activity of LD78b has to be interpreted in the light
of the isolation from cultured T cells of MIP-1a, MIP-1b, and
RANTES as suppressors of HIV-1 infection (7). Increased
production of the CC-chemokines MIP-1a, MIP-1b, and
RANTES in repeatedly HIV-1-exposed subjects is correlated
with protection against HIV-1 infection; MIP-1a appears
sooner and attains higher concentrations than MIP-1b and
RANTES (6, 44). These clinical data on natural resistance to
HIV-1 infection, not linked to a deletion mutation in the

FIG. 2. Intracellular p24 Ag detection in M/M. At day 14 after infection, M/M were carefully washed with cold phosphate-buffered saline to
remove excess virus and were detached by using 1 mM EDTA for 5 min followed by gentle scraping. The percentage of HIV-infected M/M was
determined by intracellular staining for p24 Ag, using the fluorescein isothiocyanate (FITC)-conjugated anti-p24 mAb KC-57-FITC (Coulter,
Hialeah, Fla.). Cells were analyzed by using a FACScan flow cytometer (Becton Dickinson, San Jose, Calif.). At a concentration of 100 mg of
LD78b/ml, viral p24 Ag expression was strongly inhibited (D), whereas at the same concentration, LD78a showed no antiviral activity (C). (B)
HIV-1BaL-infected M/M; (A) mock-infected M/M. The results of one representative experiment of three independent experiments are shown.

TABLE 1. Antiviral activity of LD78b, LD78a, RANTES, and MIP-1b against HIV-1BaL strain and a clinical R5 HIV-1 isolate in
macrophagesa

Chemokine

Effective concn (ng/ml) against:

HIV-1BaL HIV-1#15

EC50 EC90 EC50 EC90

LD78b 21 78 28 87
LD78a 351 980 118 476
RANTES 149 478 58 406
MIP-1b 980 .1,000 480 .1,000

a Macrophages were isolated, infected, and treated with chemokines as described in the legend to Fig. 1. Briefly, M/M were exposed for 20 min to different
concentrations of LD78a, LD78b, RANTES, or MIP-1b before infection with HIV-1BaL or HIV-1 isolate 15. After 2 h of incubation, M/M were extensively washed
with warm medium to remove excess virus and then cultured in the presence of different concentrations of chemokines. Every 5 days, M/M were washed and fed with
fresh medium and replenished with chemokines. Supernatants were collected on day 14 after infection, and HIV p24 Ag production was assessed. The antiviral activity
was determined as the percentage of virus inhibition compared with that of untreated controls. LD78a, RANTES, and MIP-1b were obtained from Peprotech Inc.
LD78b was synthesized as described elsewhere (20). Data represent the means of values from two independent experiments, each run in triplicate.
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CCR5 gene, are in agreement with the higher antiviral potency
of the LD78b isoform of MIP-1a, as previously shown in PB-
MCs (20, 22) and here confirmed for M/M.
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