
although the influence of side effects should also be taken into
consideration because it could lead to hospitalizations related to
deconditioning. However, the use of antifibrotics in patients with non-
IPF ILD is an indicator of progressive behavior andmight therefore be
associated with higher rates of hospitalization. Notably, the concept of
progressive pulmonary fibrosis has been discussed and defined during
the observation time of the study (5–7). Consequently, the authors
probably had no possibility to discriminate between patients with
non-IPF progressive and nonprogressive pulmonary fibrosis according
to the recent guidelines (7), which is crucial for the indication to start
an antifibrotic treatment in progressive pulmonary fibrosis. Thus,
even if relevant, the effect of antifibrotic treatment on hospitalizations
remains to be fully clarified andmay deserve a more accurate
definition of respiratory-related events, needing to be more focused
on acute exacerbation. The feasibility and practicality of using
hospitalizations as a primary endpoint in ILD clinical trials also
raise logistical concerns, because larger sample sizes and prolonged
study periods could be required to accumulate enough events and
provide sufficient statistical power (8). This temporal challenge
may conflict with the urgency to bring novel therapies to market,
demanding a delicate balance between scientific rigor and timely
clinical translation.

In conclusion, the study by King and colleagues significantly
expands the current knowledge on hospitalization rates and outcomes
in patients with ILD. However, the true impact of hospitalizations in
distinct ILD populations, as well as the precipitating causes of these
events, should be further clarified.�
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Unraveling the Complexities of Mesenchymal Stromal Cell-based
Therapies: One Size Doesn’t Fit All

Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is
an exciting and promising potential approach for lung diseases and
critical illnesses. The rationale is based on a robust platform in
whichMSCs isolated from bone marrow, adipose, placental, and

other tissues can, after either systemic or direct airway administration,
ameliorate inflammation and injury in a wide range of preclinical
disease models in both small and large animals (1, 2). Mechanistically,
the MSCs are believed to exert protective and reparative effects
through release of a range of paracrine mediators, including, but
not limited to, antiinflammatory cytokines, growth factors, and
extracellular vesicles (3). Other actions—for example, mitochondrial
transfer—may also play a role (4).

This platform has led to a growing number of clinical
investigations in a range of lung diseases and critical illnesses
including both non–coronavirus disease (non–COVID-19) and
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COVID-19–associated acute respiratory distress syndrome and
bronchopulmonary dysplasia (BPD) (5, 6). Although some trials have
demonstrated benefit, not all have done so, and the ongoing challenge
is to better devise optimal strategies for MSC use that incorporate a
better mechanistic understanding of MSC actions in different
diseases. Unresolved issues include source and optimal approaches
for ex vivo expansion of theMSCs, dose, and dosing regimen. Of
increasingly recognized importance, the patient inflammatory
phenotype within any given disease entity also significantly affects
MSC actions and, thus, potential therapeutic effects (7). The latter
reflects the growing appreciation that the MSCs—by virtue of
expressing cell surface damage and pathogen-associated molecular
pattern receptors, such as the Toll-like receptors—respond to
different inflammatory environments by altering their paracrine
profile (8). The inflammatory environment also influences MSC
clearance. Systemically administeredMSCs lodge in the pulmonary
capillary bed, where they are cleared over approximately 1–2days
through efferocytosis, apoptosis, and other host immunemechanisms
(8). While lodged, they do not engraft but rather respond to the local
inflammatory environment, with the resulting release of different
profiles of paracrine mediators (9, 10). Some data also suggest that it
is the host response to the MSCs that drives the observed beneficial
effects rather than direct effects of theMSCs themselves (11, 12).

Another confounding factor is that MSCs isolated from any
given tissue source themselves constitute a heterogenous population
of cells with different attributes and potential therapeutic
implications. This has confounded efforts to date to determine
benchmarks for MSC “potency” for any given application. To this
end, in this issue of the Journal, the study by Cyr-Depauw and
colleagues (pp. 814–827) conducted at the Ottawa Hospital Research
Institute provides important new information that helps to
discriminate different populations utilizing as their model MSCs
derived from umbilical cord blood samples from 5 healthy term
donors (13). This is a leading group investigating potential MSC
therapeutic approaches for BPD and other diseases. The underlying
rationale was that single-cell transcriptomic profiling would identify
different MSC populations with different protective and reparative
effects. The investigators accordingly present robust data that
discriminate the MSCs into two populations, one of which exhibited
progenitor characteristics, enriched in genes with functions related
to cell division, cell cycle, cell proliferation, DNA transcription,
and chromatin organization. The other identified population was
comprised of MSCs with fibroblast-like characteristics marked by
high expression of genes related to extracellular matrix organization
and collagen metabolism. It is interesting that four of the five donor
samples exhibited the progenitor transcriptome, whereas the fifth was
more fibroblastic. These observations correlate with some previously
published data from other groups (14); however, the important
step taken here was to then interrogate the different MSC
populations in a preclinical rat model of BPD utilizing hyperoxia
exposure. The investigators found that theMSCs with progenitor
attributes were more protective than those with fibroblastic
characteristics and further identified the differential expression of
HLA-ABC between these groups as a discriminant that affected
bothMSC retention in the lung and protective effects. Differential
expression of HLA gene expression and cell surface markers has
also been observed in other studies in which human bone marrow–
derivedMSCs were exposed to clinical BAL samples from patients

with acute respiratory distress syndrome versus lavage samples from
healthy volunteers (15).

All told, the present study by Cyr-Depauw and colleagues
provides further evidence that more mechanistic information is
required for best clinical implementation of MSC-based cell therapies.
In parallel, better understanding of cell therapy manufacturing
to regulate production of MSCs with differing abilities is an area
of active investigation. There are some limitations to the study,
including that MSCs with progenitor attributes from only one of the
four donors was assessed in the BPDmodel. These observations will
need to be expanded in more wide-ranging studies. Nonetheless, the
present data are an important advance in bringingMSC-based cell
therapies to successful clinical use.�
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