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SUMMARY 
 

Genetic and epigenetic variations in regulatory enhancer elements increase susceptibility to a 

range of pathologies. Despite recent advances, linking enhancer elements to target genes and 

predicting transcriptional outcomes of enhancer dysfunction remain significant challenges. 

Using 3D chromatin conformation assays, we generated an extensive enhancer interaction 

dataset for the human pancreas, encompassing more than 20 donors and five major cell types, 

including both exocrine and endocrine compartments. We employed a network approach to 

parse chromatin interactions into enhancer-promoter tree models, facilitating a quantitative, 

genome-wide analysis of enhancer connectivity. With these tree models, we developed a 

machine learning algorithm to estimate the impact of enhancer perturbations on cell type-

specific gene expression in the human pancreas. Orthogonal to our computational approach, we 

perturbed enhancer function in primary human pancreas cells using CRISPR interference and 

quantified the effects at the single-cell level through RNA FISH coupled with high-throughput 

imaging. Our enhancer tree models enabled the annotation of common germline risk variants 

associated with pancreas diseases, linking them to putative target genes in specific cell types. 

For pancreatic ductal adenocarcinoma, we found a stronger enrichment of disease susceptibility 

variants within acinar cell regulatory elements, despite ductal cells historically being assumed as 

the primary cell-of-origin. Our integrative approach—combining cell type-specific enhancer-

promoter interaction mapping, computational models, and single-cell enhancer perturbation 

assays—produced a robust resource for studying the genetic basis of pancreas disorders. 
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INTRODUCTION 
 

Pancreatic disorders, including diabetes mellitus, pancreatitis, and pancreas cancer, impact 

over 10% of the global population, placing significant burden on health and economic systems 1–

3. The pancreas, with its exocrine and endocrine compartments, plays vital roles in both 

digestion and glucose metabolism. These compartments arise from a common multipotent 

progenitor during embryonic development and are comprised of distinct cell types, like a-, b-, d-, 

duct, and acinar cells 4,5. Despite their specialized roles, pancreas cells exhibit remarkable 

plasticity, with the potential for transdifferentiation and dedifferentiation 6–8. While this phenotypic 

plasticity offers a regenerative potential for replacing lost or injured tissue, it also presents a 

vulnerability for developing malignancies 9,10. For instance, in the case of pancreatic ductal 

adenocarcinoma (PDAC), growing evidence suggests that acinar cells also contribute to 

premalignant lesions by transdifferentiating into duct-like states through acinar-to-ductal 

metaplasia 11–14, challenging the long-standing assumption that PDAC originates solely from 

ductal cells. Therefore, it is crucial to understand the underlying mechanisms that establish and 

maintain pancreas cell identities 15–18, as these mechanisms are likely relevant for regenerative 

and oncogenic processes.  

 

Enhancers are noncoding DNA elements that regulate gene expression through chromatin 

interactions and are key regulators in the establishment and maintenance of cell identities. 

Together with transcription factors, enhancers have an indispensable role in orchestrating 

tissue-specific gene expression patterns during development, homeostasis, and disease states 

19–21. Importantly, over 90% of SNPs at disease associated risk loci identified through genome 

wide association studies (GWAS) are noncoding, with more than 80% of these found in 

enhancer regions 22. However, identifying enhancers, assigning them to their target genes, and 
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determining the specific conditions or cell types in which genetic variants impact enhancer 

function all remain significant challenges 23. This is further complicated by the fact that many 

enhancers do not activate the closest promoters, and some are located at large distances from 

their targets 24. In the human pancreas, several studies cataloged candidate enhancer regions 

through open chromatin analysis and epigenetic marks 25–33. A few recent studies have initiated 

efforts to link enhancers to target genes by profiling 3D chromatin interactions in human 

pancreas cells, however, either their scope was limited to analyzing whole islets without cell-

type resolution 34–36, or they were constrained by their small sample size 37,38.  

 

To address these gaps, we generated cell-type specific, enhancer-promoter interaction datasets 

using donor pancreas from a comprehensive cohort, spanning 27 donors and five cell types. 

Overcoming the limitations of the standard pairwise loop analysis, we employed a network 

approach to parse complex chromatin interactions into tree models, revealing connectivity 

patterns between enhancers and promoters critical for gene expression. The tree models 

enabled the development of a machine learning algorithm designed to predict the impact of 

enhancer perturbations on cell type-specific gene expression, assigning an ‘effect size’ to each 

enhancer. To validate our predictions and tackle the challenge of measuring cell type-specific 

enhancer perturbation effects in solid organs like the pancreas, we adapted a high-throughput 

imaging-based approach to quantify the outcome of enhancer perturbations in single cells from 

donor tissue. Thus, our study presents a resource for identifying and validating critical 

enhancers involved in cell type-specific gene expression, while offering a framework for 

interpreting the genetic basis of complex diseases.  
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RESULTS 
 

Mapping cell type-specific enhancer-promoter interactions using donor pancreas tissue 

Enhancer activity is highly cell-type specific. To obtain pure a-, b-, d-, acinar and duct cell 

populations from donor pancreas, we refined previously published cell sorting methods, 

achieving over 95% cell purity in all populations 29,39,40 (see Methods, Figure 1A, Supplementary 

Figure 1A-B). Our protocol was tailored to be compatible with both ATAC-seq and HiChIP 

assays, facilitating simultaneous chromatin accessibility and 3D chromatin interaction profiling 

from the same batch of purified cells. Comparing the abundance of key marker gene transcripts 

in sorted cell populations demonstrated the effectiveness of our cell isolation strategy 

(Supplementary Figure 1A-B). On these purified cell types, we performed ATAC-seq, and 

HiChIP using an H3K27ac antibody— a histone modification that marks putative enhancer and 

promoter elements 41–45. These experiments yielded an extensive dataset of 37 ATAC-seq and 

29 HiChIP libraries, with each cell type and assay having at least four biological replicates. 

HiChIP experiments generated more than 5.5 billion reads to allow profiling chromatin 

interactions at high resolution. Across cell types, we obtained on average, 116,935 accessible 

regions and 80,947 loops per donor. 

 

Principal component analysis showed consistent clustering of cell types in our chromatin 

datasets (Figures 1B-C, Supplementary Figure1C). Looking closely at genomic loci near 

hallmark genes specific to each lineage revealed loops exclusively associated with the relevant 

cell types— glucagon (GCG) in a-cells, insulin (INS) in b-cells, somatostatin (SST) in d-cells, 

trypsinogen (PRSS1) in acinar cells, and carbonic anhydrase (CA2) in duct cells (Figure 1D-H). 

Taken together, our refined cell purification coupled to HiChIP assays captured cell type-specific 

3D chromatin interactions in human pancreas cells.  
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Parsing enhancer-promoter interactions using graph-based tree models 

To gain insight into the 3D chromatin organization in distinct pancreas cell types, we employed 

a graph-based approach to visualize and analyze HiChIP interactions. In contrast to commonly 

used visualization methods like chromatin contact matrices or loop arc plots, ‘tree’ graph models 

facilitate the discovery of hierarchical structures, and the incorporation of other epigenomic data 

types 46.  

 

To build the enhancer-promoter tree models, we first generated a list of consensus loops, 

representing all loops detected in our combined cell type-specific data (see Methods, 

Supplementary Figure 2A). We then transformed these chromatin interactions into tree models, 

where the nodes represent either the enhancer or promoter anchors, and the edges represent 

chromatin loops detected in our HiChIP experiments. Each tree is defined by its root promoter, 

therefore can only contain one promoter node (Figure 2A, Supplementary Figure 2B). We began 

assessing the connectivity with promoters, designating them as the base level— zero (P0). Any 

enhancer directly connected to a promoter was assigned the next tier— level 1 (E1). Enhancers 

that link to E1 enhancers, but not directly to the promoters, were then categorized as level 2 (E2). 

Similarly, we designated the loops based on their connectivity (L1, L2, L3, and so forth). This 

step-by-step assignment continued until all enhancers looping to the promoter were complete 

ensuring that each enhancer's level represents its connectivity to the promoter (Supplementary 

Figure 2B, see Methods for details).  

 

Parsing the chromatin data into enhancer trees revealed that our HiChIP experiments 

overwhelmingly captured enhancer-promoter interactions (78%); enhancer interactions that 

didn’t involve a promoter (orphan enhancers) constituted less than 1% of the data 
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(Supplemental Figure 2B-D). Among the enhancer-promoter interactions, E1 enhancers (73%) 

and L1 connections (80%) were the most abundant, suggesting that most enhancers loop to 

their targets directly (Figure 2B). While categorizing the connections, we also noticed frequent 

interactions between enhancers (i.e. L2, L4, ~ 22% of total edges, Supplementary Figure 2D). 

However, most of these enhancers had a shorter connecting path to a promoter, therefore we 

further simplified the enhancer trees by pruning these connections (Supplementary Figure 2B). 

At the end, the indirect loops only constituted ~11% of all enhancer-promoter interactions.  

 

Since HiChIP assays are based on proximity ligation, we wondered if there is a distance bias for 

capturing more E1 (direct) versus E2 (indirect) enhancers. However, when we analyzed the 

linear distance between these enhancers and their promoters, we found that the E1 enhancers 

were typically located at a greater genomic distance (median 275,552 bp) than E2 enhancers 

(median 149,825 bp, Figure 2C). Further, we assessed the paired-end tag (PET) counts of L1 

(connecting to E1) or L3 loops (connecting to E2) as a measure for chromatin interaction 

frequency, and found that L1 loops overall exhibited higher PET counts in every cell type, 

suggesting that E1 enhancers likely form more stable loops with their target promoters than 

other enhancers in the tree, regardless of the distance (Supplementary Figure 2E). 

 

The abundance of E1 enhancers prompted us to investigate the functional impact of these direct 

interactions on target gene expression. We integrated our enhancer trees with gene expression 

data, compiled from publicly available pancreas single-cell RNA-Seq experiments 47. In all five 

pancreatic cell types, more than 80% of E1 enhancers looped to a distal target promoter, 

bypassing genes closer in linear distance (Figure 2D). We found that the distally looped genes 

have higher expression specificity and transcript abundance compared to skipped genes (Figure 

2E, Supplementary Figure 2F). In addition, more than 68% of skipped genes were annotated as 
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noncoding (Supplementary Figure 2G). This trend persisted even when we limited our analysis 

to coding genes, with over 60% of E1 enhancers still skipping the nearest gene (Supplementary 

Figure 2H).  

 

We also examined the relationship between enhancer connectivity (tree size) and gene 

expression. Dividing the expression data into quantiles revealed that genes connected to 

multiple E1 enhancers exhibited higher expression specificity and higher transcript abundance in 

each cell type (Figure 2F, Supplemental Figure 2I). We speculate that the E1 enhancers may 

collectively promote transcription by increasing the local concentration of lineage-specific 

transcription factors, leading to robust expression of genes critical for cell identity in each cell 

type. 

 

Dissecting enhancer interconnectivity using tree models 

In the previous section, we considered the connectivity of individual enhancer-promoter 

interactions. Enhancers, however, can regulate more than one gene and interact with multiple 

distinct loci. Standard pairwise loop analysis can underrepresent higher order chromatin 

contacts or multiway interactions that may exist between multiple enhancer clusters 48. Tree 

models address this by preserving connectivity and dependency between nodes, permitting the 

discovery of interactions involving more than two regions. Thus, we extended our analysis to 

include genome-wide enhancer tree interconnectivity in different pancreas cell types.  

 

First, we assessed the extent of enhancers engaged with one or more promoters in our data. 

Across all cell types analyzed, we observed that on average 60% of enhancers only interacted 

with a single promoter, 21% interacted with two, and 19% interacted with three or more 

promoters (Supplementary Figure 3A). Notably, we found that even when an enhancer loops to 
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multiple promoters, its connectivity level rarely changed (Supplementary Figure 3B), suggesting 

a simpler architecture rather than complex, multi-level enhancer networks. To further explore 

the enhancer interconnectivity, we focused on enhancer trees that are connected to each other 

through a shared enhancer or a promoter node. We termed these larger structures ‘enhancer 

forests’. For this in-depth analysis, we proceeded with a-, b-, acinar and duct cell data, 

excluding d-cell data due to the substantially lower number of enhancer trees detected (see 

Methods).  

 

We found that nearly all enhancer trees belong to a forest— in each cell-type, 92-97% trees are 

in forests (Supplemental Fig 3C). The median size of a forest includes seven enhancer trees, 

with a median of 22 nodes, averaged across cell types (Figure 3A). The median genomic span 

of the enhancer forests is 732kb (Figure 3A), which is similar to the average size of a 

topologically associated domain (TAD) in the human genome 49. 

 

Enhancer trees can form a forest through connections between promoter or enhancer nodes. 

Analyzing these shared nodes revealed a striking pattern: across all cell types, approximately 

90% of promoters connect to another promoter within their forest, whereas only 34%-52% 

enhancers link distinct enhancer trees (Figure 3B-C). Furthermore, enhancer forests containing 

cell type-specific genes showed a substantial increase in promoter-promoter interactions with a 

median of 50 compared to 10 in forests without cell-type specific gene promoters (Figure 3D). 

The increased connectivity between promoters may facilitate co-regulation of cell type-specific 

genes to fulfill specialized functions in each cell type. Taken together, these results imply a 

more central role for promoters in forming the enhancer forests and suggests a modular 
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topology of enhancers where each enhancer cluster typically regulates a specific set of 

connected genes (Figure 3E). 

 

Predictive prioritization of cell type-specific enhancers using machine learning  

In our investigation of the enhancer-promoter interactions within human pancreas cells, we 

identified a multitude of enhancers potentially contributing to gene regulation. However, it is 

unclear if all enhancers contribute equally to gene transcription, or some are more critical than 

others. We reasoned that our enhancer-promoter trees could facilitate functional prioritization of 

enhancers, and, importantly, pinpoint those that may underlie disease risk. We developed a 

machine learning algorithm, named EPIC for Enhancer Prioritizer using Integrated Chromatin 

data, capable of predicting the functional impact of enhancers on cell type-specific gene 

expression. EPIC uses the k-nearest neighbor algorithm and our enhancer trees to classify the 

cell type-specificity of these trees based on chromatin-derived features (Figure 4A). Specifically, 

we generated a list of 24 predictor variables (six variables per cell type) that include cell type-

specific chromatin accessibility (ATAC-seq tags), 3D chromatin interaction frequency (HiChIP 

PET counts), their interaction terms (ATAC x PET) and the enhancer tree structure (direct vs 

indirect). EPIC uses these features to learn and make predictions about cell type-specificity of 

the tree promoters (see Methods for details, Figure 4A). The ground truth class labels for cell 

type-specificity of these tree promoters were derived from gene expression data obtained 

through single-cell RNA-Seq studies in the human pancreas 47. To assess the performance of 

EPIC, we evaluated additional models that included 1) only promoter accessibility, 2) enhancer 

association by linear genomic distance to transcriptional start site and 3) tree model with or 

without indirect features (Figure 4B, graphic illustration). In all cell types examined, the tree 

models, which include the direct and indirect interactions, outperformed distance associated or 

promoter-only models with the highest predictive accuracy (Figure 4C, ROC plots). There were 
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only minor differences between the partial and full tree models, which is expected considering 

that indirect connections constitute only ~11% of the data (Figure 2B, Supplementary Figure 

2C-D). Notably, we observed that the linear model in a-cells (AUC=0.82) performed nearly as 

well as the full tree model (AUC=0.84), suggesting a distinct organization of a-cell specific 

genes in the genome (Figure 4C). 

 

Having verified EPIC’s performance, we asked if EPIC could predict the ‘effect size’ of enhancer 

perturbations for a given target gene. Due to the inherent scalability of graph models, the 

enhancer trees can flexibly accommodate the addition or removal of nodes (enhancers), and 

edges (loops). Taking advantage of this feature, we systematically removed each enhancer 

node and compared accuracy of the enhancer deletion models to the original model in 

predicting the correct class value— cell type (Figure 4D). Specifically, if an enhancer node was 

important for cell type-specific expression, its removal would be expected to alter the probability 

score for that cell type, indicating a reduced confidence in the correct classification and 

potentially lowering the model’s overall accuracy. Enhancers causing the most significant 

change in predicted probability were considered to have the highest effect size. This approach 

allowed us to evaluate, in silico, the effect size of perturbations for every enhancer in our 

enhancer trees.  

 

Experimentally testing EPIC’s predictions in single cells using donor pancreas 

A significant challenge in enhancer perturbation studies using primary human tissue is 

measuring perturbation effects in a cell type-specific manner, especially in solid organs like the 

pancreas. To address this, we coupled RNA-FISH with high-throughput imaging 50,51 to dCas9-

mediated gene activation (CRISPRa) or repression (CRISPRi) 52,53 and optimized the assays for 
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donor pancreas cells (Figure 5A, also see Methods). This approach ensured quantitative 

measurements of mRNAs at the single cell level, in specific cell types, after each enhancer 

perturbation. Building on our prior success in delivering expression constructs to human 

pancreas cells 29, we introduced adenoviral vectors carrying CRISPRa/i components and guide 

RNAs (gRNAs) targeting enhancers (see Methods). We typically achieved over 60% 

transduction efficiency (Figure 5B). After a 5-day recovery period in culture, we performed 

multiplexed RNA-FISH to quantify the mRNAs of target genes and cell markers (Figure 5A, also 

see below). 

 

To test EPIC’s predictions, we focused on two loci— PCSK1 and PCSK2, due to their hallmark 

cell type-specific expression (Figure 5C) and their critical roles in hormone processing 54–58. 

Consistent with its role in converting proinsulin to its biologically active form, PCSK1 expression 

is most abundant in islet b-cells (Figure 5C). In our HiChIP data, we detected over 30 enhancers 

forming loops to the PCSK1 promoter specifically in b-cells, only seven in a-cells, and none in 

exocrine cells (Supplementary Figure 4A). Because there is no PCSK1 expression in a- or 

exocrine cells, we opted to use the CRISPRa system (dCas9-VP64) to examine cell type-

specific effects of PCSK1 enhancer perturbations 53. EPIC predicted 5.3108E and 5.3120E as 

top-ranking prioritized enhancers in b-cells, with 5.3108E having a larger effect size (0.1) than 

5.3120E (0.04) (Figure 5D, Supplementary Figure 4B). We designed gRNAs targeting these two 

enhancer nodes (5.3108E located 32kb, and 5.3120E located 172kb upstream of the 

transcriptional start site, or TSS). We also designed additional gRNAs targeting the promoter as 

a positive control and a region 7.6kb upstream of the TSS without any loops as a negative 

control (Supplementary Figure 4A). After CRISPR targeting, we performed RNA FISH to 

quantify PCSK1 transcripts in specific pancreas cells (Figure 5E, INS probe marks b-cells, GCG 
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probe marks a-cells). As expected, promoter-targeted dCas9-VP64 increased PCSK1 

transcriptional output in b-cells, while the negative control did not significantly alter PCSK1 

levels (Figure 5F). Furthermore, we found that modulating the enhancer regions with CRISPR 

activation resulted in increased PCSK1 transcription in the order that EPIC predicted for the 

effect sizes in b-cells (Figure 5F). Notably, we also observed upregulation of PCSK1 in a-cells 

when the top-ranking enhancer, 5.3108E, was targeted (Figure 5F). In contrast, none of the 

targeted regions activated PCSK1 in exocrine cells (Supplementary Figure 4C).  

 

PCSK2 is predominantly expressed in islet a-cells, although single-cell RNA-Seq studies 

demonstrated PCSK2 transcript in b-cells 47 (Figure 5C), and it has been implicated in the 

processing of proinsulin to insulin 59–61. In line with this evidence, we observed 59 nodes in the 

PCSK2 enhancer tree in a-cells, 24 in b-cells, and zero in exocrine cells (Figure 5G, 

Supplementary Figure 4D). We designed gRNAs targeting three enhancers with effect sizes 0.1 

(20.973E), 0.07 (20.1000E), 0.03 (20.995E), and the promoter as a positive control 

(Supplementary Figure 4B, D). Perturbing these three enhancers with CRISPRa resulted in 

increased PCSK2 transcription in a-cells along with the promoter (Figure 5H-I). However, 

20.1000E targeting caused the greatest increase even though 20.973E had a slightly higher 

predicted effect size (Supplementary Figure 4B). Looking into EPIC’s effect size predictions for 

PCSK2 enhancers, we noticed that they had a narrow range (0.1 for the highest versus 0.03 for 

the lowest), potentially revealing regulatory redundancies and consequently the need to perturb 

more than one element at a time to observe significant alterations to transcription. Indeed, when 

we targeted all three enhancers simultaneously using CRISPRa, we observed a near-additive 

effect on PCSK2 transcript levels (Figure 5I). Perturbing these a-cell specific enhancer tree 

nodes in b-cells also resulted in upregulation of PCSK2 transcript, similar to the PCSK1 findings 
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in a-cells (Figure 5F). These results suggest that the chromatin environment in a- and b-cells, 

but not in exocrine cells, is permissive to activation at these enhancers. This finding aligns with 

the fact that both a- and b-cells differentiate from the endocrine lineage during embryonic 

development. 

 

Taken together, our results demonstrate the potential of our machine learning algorithm, derived 

from our enhancer tree data, to identify enhancers with a significant impact on target gene 

transcription. 

 

Enhancer trees and EPIC facilitate functional annotation of genetic variants associated 

with pancreas diseases 

Hundreds of genetic variants, including single nucleotide polymorphisms (SNPs), have been 

linked to pancreas diseases by genome-wide association studies (GWAS) 32,62–64. However, how 

these variants impact the disease susceptibility remains largely unclear. Due to linkage 

disequilibrium (LD), disease-associated loci often contain multiple highly correlated SNPs, 

making it difficult to identify the causal mechanisms between variants and genes. In addition, 

determining which cell types are relevant to the disease is challenging since complex diseases, 

like diabetes or cancer, often involve interactions between multiple cell types. We reasoned that 

our cell type-specific enhancer-promoter trees in the pancreas, combined with EPIC’s ability to 

prioritize enhancers, to comprehensively address these challenges and facilitate the functional 

annotation of genetic variants associated with pancreas disorders.  

 

First, we analyzed the enrichment of GWAS variants related to pancreas disorders within 

enhancer or promoter nodes across different pancreas cell types using the GARFIELD 

algorithm 65 (See Methods). We found that type 2 diabetes (T2D), and glycemic trait variants 
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were significantly overrepresented in islet cell enhancer trees (T2D in b-cell: P=1.52x10-23, 

GWAS threshold 1x10-07; fasting glucose in b-cell: P=6.99x10-23, GWAS threshold 1x10-05; 

HbA1C in b-cell: P=1.16x10-10, GWAS threshold 1x10-05). In contrast, pancreas cancer risk 

variants were significantly enriched within exocrine cell enhancer trees, with a more significant 

association observed in acinar cells (P=1.47x10-05) compared to duct cells (P=3.65x10-03, 

GWAS threshold 1x10-05) (Figure 6A). As a control, we tested non-pancreas disease related 

SNPs, like those linked to Alzheimer’s disease or lung cancer. None of these traits showed 

significant enrichment in the enhancer or promoter nodes in any pancreas cell type (Figure 6A).  

 

While the enrichment of T2D risk variants in islet cells is expected considering their critical role 

in glucose metabolism, notably we also observed significant enrichment of T2D risk variants in 

exocrine cell-specific trees (141 total SNPs, 44 SNPs with GWAS P-value < 1x10-08, and 68 

SNPs with 1x10-08 < P-value < 1x10-04). Closer examination of the tree promoters revealed 

genes with important functions in acinar cells. For example, germline mutations in the 

transcription factor GATA4 have been implicated in childhood onset diabetes and exocrine 

deficiencies 66. Our data placed five T2D risk SNPs in a GATA4 enhancer at chr8p23.1 

(Supplementary Figure 5A-C), linking these variants to a putative gene target in acinar cells.  

 

The enrichment analysis revealed hundreds of SNPs associated with pancreas disorders that 

overlap with our cell type-specific enhancer or promoter nodes, and our tree models allowed us 

to link these variants to putative target genes. To test EPIC’s utility in prioritizing enhancers, we 

compared the effect sizes of enhancers overlapping disease-associated SNPs to those without 

SNP overlap (T2D and PDAC data in acinar cells shown in Figure 6B). Specifically, for a given 

cell type and trait association, we identified the SNP-enriched enhancer nodes, retrieved the 
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enhancer trees including those nodes and ranked all the enhancers in the tree based on EPIC’s 

effect size predictions. We used cumulative density function to determine whether SNP-

overlapping enhancers have higher or lower effect sizes compared to enhancers with no SNPs. 

In the trait-cell type associations we examined, we found that SNP-overlapping enhancers had 

higher effect sizes than those without SNP overlap (Supplementary Figure 5D-G). This finding 

suggests that the enhancers prioritized by EPIC may be significant for disease risk. 

 

For pancreatic ductal adenocarcinoma (PDAC), our analysis indicated a stronger enrichment of 

disease associated variants in acinar cells, even though ductal cells historically have been the 

focus of PDAC research. We identified three PDAC risk SNPs enriched in two enhancers of 

XBP1 at chr22q12.1 in acinar cells (Figure 6C-E). Of these two enhancers, one (22.1008E) 

overlaps with variant rs2267131 and has the highest EPIC effect size (0.43) for XBP1 in acinar 

cells, while the other (22.1015E) has a lower effect size (0.05) and overlaps variants rs5752810 

and rs5752811 (Figure 6D, F). We targeted these enhancers using CRISPRi in acinar cells 

(Figure 6G), including an additional enhancer (22.1040E) that ranked among the lowest as 

negative control (Figure 6F). We observed a significant reduction in XBP1 transcripts in acinar 

cells targeting 22.1008E and 22.1015E, but not in cells targeting the 22.1040E enhancer, 

demonstrating that the SNP-enriched 22.1008E and 22.1015E enhancers regulate XBP1 

transcription in acinar cells (Figure G-H). Importantly, the degree of reduction was consistent 

with their EPIC-predicted effect sizes (Figure 6F, H). 

 

Taken together, our chromatin derived enhancer trees help annotate pancreas disease risk 

SNPs as candidate functional variants influencing high impact enhancers and link them to 

putative target genes in a cell type-specific manner.    
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DISCUSSION 
 

We presented a detailed map and analysis of enhancer-promoter interactions in primary human 

pancreas cells. By refining cell purification methods and coupling them to ATAC-seq and HiChIP 

assays, we have generated a high-resolution dataset that captures the enhancer chromatin 

interactions, surpassing previous work in specificity, sample size and depth. 

 

Our analytical approach is based on versatile, graph-based tree models that simplify the 

representation and interpretation of chromatin interaction data, permitting systematic 

quantification of enhancer connectivity. As a result, our analysis demonstrated that direct 

enhancer (E1) interactions are a predominant feature of gene regulation, with multiple 

enhancers collectively acting on individual promoters to increase transcript output and 

spatiotemporal specificity. This finding is consistent with previous studies in the developing 

human cortex 67 and mouse embryonic stem cell lineages 68, where promoters with significantly 

high levels of chromatin interactions correlated with lineage specific genes and higher 

transcriptional levels. However, these prior studies primarily focused on the overall level of 

chromatin interactions without distinguishing the type of enhancer-promoter connectivity. Our 

tree models transformed these findings and found that most enhancers that most enhancers 

form direct loops to their target genes, supporting a simpler, potentially an additive model for 

enhancing transcription output and specificity 69,70. In addition, our forest analysis showed that 

extensive enhancer sharing between trees is uncommon, with most interconnectivity among 

trees occurring through promoter-promoter interactions. This suggests that enhancers might be 

forming distinct modules 71 with their respective promoters within the nucleus (Figure 3E), 

potentially, already positioned for transcription activation when transcription factors reach 

sufficient local concentrations 72.  
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One caveat of Hi-C assay derivatives like HiChIP is, they capture chromatin interactions as an 

average across potentially diverse chromatin conformations from millions of cells at a single 

point in time. This means that the interactions detected may reflect a composite view of different 

interaction subsets rather than uniform patterns across all cells. Therefore, it remains unclear 

whether the observed interactions represent persistent enhancer-promoter interactions in every 

cell, or a sum of varying subsets present in different cells. Emerging single-cell technologies, 

73,74, may help clarify these distinctions and reveal dynamic enhancer usage based on 

transcriptional states within the same cell type. 

 

Modifying or perturbing enhancer function is key to understanding enhancer dysregulation in 

disease 23. Prior work on enhancer perturbation primarily used homogeneous cell lines, stem 

cell-derived cells that have the advantage of unlimited expansion, or whole tissues without cell 

type resolution 33,36,75,76. Here, we used a high-throughput, single cell imaging-based approach 

to measure the effects of enhancer perturbations in a structurally complex, solid organ like the 

pancreas.  

 

Our chromatin data combined with tree models form the basis of EPIC, an algorithm designed to 

prioritize enhancers based on their predicted impact on cell type-specific gene expression. We 

validated EPIC’s predictions on a select number of enhancer trees and found that our 

orthogonal imaging-based enhancer perturbation results correspond well with the predicted 

importance. When analyzing the effect size distributions however, we observed that the 

differences in EPIC-predicted effect sizes among enhancers within a given tree are relatively 

small. Furthermore, most enhancer trees contain only a few outlier enhancers whose deletion 

causes significant deviation of EPIC prediction accuracy, indicating that such critical enhancers 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 19 

are rare. This scarcity of critical enhancers might reflect an evolutionary selection for robust 

lineage-specific gene expression, where multiple enhancers contribute additively or redundantly 

to ensure stable regulation. Consistently, our CRISPR-RNA FISH experiments demonstrated 

this additive effect on PCSK2 enhancers in a-cells. Further work involving systematic 

perturbation of combination of elements might help clarify the function of enhancers with smaller 

effect sizes.  

 

Determining the cell type(s) affected by germline risk variants identified through GWAS, and 

understanding their specific impact on gene regulation at scale, remain ongoing challenges. Our 

cell type-specific enhancer trees enabled us to nominate candidate functional variants and 

target genes at GWAS risk loci across several pancreas diseases. While we confirmed 

previously known associations, we also identified novel links between risk SNPs and their 

putative transcriptional targets in understudied cell types 77,78. Specifically, we link acinar cells 

with the overall inherited risk of PDAC. We also observed substantial crosstalk between the 

exocrine and endocrine compartments of the pancreas in the context of enhancers and risk 

SNP associations, for instance, the enrichment of type 1 and type 2 diabetes SNPs within 

exocrine enhancers 29,79 This crosstalk suggests a complex interplay between different cell 

types in disease susceptibility. Future research delineating the contributions of various cell types 

to these disease etiologies will be crucial for understanding the genetic risk of diseases. 

 

Additionally, our analysis revealed that enhancers overlapping with risk SNPs are more likely to 

be top-ranking enhancers. Notably, in the trait-cell type associations we analyzed, we observed 

that some genes have top-ranking enhancers without SNP overlap. We speculate that these 

enhancers might harbor disease risk variants that are yet to be discovered. In a prior study, 

HiChIP assays facilitated the identification of promoter-interacting expression quantitative trait 
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loci (pieQTLs) in immune cell types, supporting the view that chromatin features can reveal 

genetic variants impacting gene expression and disease susceptibility 80. 

 

Our study provides new tools and resources for prioritizing enhancers central to cell type-

specific gene expression. Exploring the associations we have discovered between genetic 

variants and their putative gene targets should advance our understanding of how enhancer 

dysfunction contributes to diseases, and potentially accelerating the development of novel 

therapeutic strategies. 
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METHODS 
 

Human pancreas tissue procurement 

Pancreas tissues were procured through the Integrated Islet Distribution Network (IIDP, USA) 

and the University of Alberta Islet Core (Canada) from non-diabetic adult organ donors who 

were deceased due to acute trauma or anoxia. All studies involving human pancreas tissue 

were conducted in accordance with National Institutes of Health, Institutional Review Board 

guidelines, and by the Human Research Ethics Board at the University of Alberta 

(Pro00013094). All donor families provided informed consent for the use of pancreas tissue in 

research. 

 

Flow cytometry 

Preparing human pancreas cells for flow cytometry 

Pancreas tissue was shipped to the laboratory by overnight delivery and processed immediately 

upon receipt without additional culturing time. The tissue was dissociated into single cells 

following the protocol described in Arda et al 2018 29, with modifications. The tissue samples 

were pelleted at 200 RCF for 5 minutes and washed once with cold PBS buffer (Thermo Fisher 

Scientific 10010023) containing 0.1% Pluronic-68 (Gibco 24040-032, PBS-Plu Buffer). The 

washed tissue pellet was gently resuspended in PBS-Plu Buffer containing 50 µg/mL DNase-I 

(Sigma-Aldrich DN25-1G) and incubated in a 37°C water bath with gentle agitation for 7-10 

minutes. After pelleting, the supernatant was discarded, and the tissue pellet was washed once 

with cold PBS-Plu Buffer. Next, accutase treatment (Sigma-Aldrich A6964-100ML) was 

performed to further dissociate the bulk tissue. Islets were resuspended in prewarmed accutase 

solution at 1000 IEQ/mL concentration, and exocrine tissues at 100 µL (packed pellet)/mL, then 

incubated in a 37°C water bath for 6-8 minutes with gentle agitation. The accutase was 
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neutralized by adding an equal volume of cold PBS-Plu Buffer. The digested tissues were 

pelleted and washed once with cold PBS-Plu Buffer. A second round of digestion was 

performed to achieve single-cell dissociation. The pellets were resuspended in prewarmed PBS-

Plu Buffer containing 50 µg/mL DNase I and Dispase (Sigma-Alrich 04942086001) (0.1 U/1000 

IEQ for islets, or 1 U/mL for exocrine tissue), and incubated in a 37°C water bath for 6-8 minutes 

with gentle agitation. The enzymes were neutralized by adding an equal volume of cold FACS 

Buffer (PBS containing 2% FBS [HyClone, Cytiva], 50 mM EGTA pH 8.0), followed by an 

additional wash with cold FACS Buffer. Finally, the dissociated cells were passed through a 70 

µm mesh (Fisher Scientific 08-771-2) to remove cell debris. 

 

Flow assisted cell sorting (FACS) 

Dissociated single pancreas cells were resuspended in FACS buffer. Prior to staining with 

specific antibodies, the cells were incubated on ice for 20 minutes with rat IgG (Thomas 

Scientific C840F01) (1µL per million cells) to block non-specific binding, and eFluor450 fixable 

viability dye (Thermo Fisher Scientific 65-0863-18) to label dead cells. Cells were then washed 

once with FACS buffer and twice with PBS-Plu buffer. Specific antibody staining procedures for 

exocrine cells and islet cells are as follows: 

Exocrine cells: We used HPi2-Dylight 650 (Novus, NBP1-18946C) to label and exclude islet 

cells, HPx1-Dylight 488 (Novus, NBP1-18951G) to label acinar cells and CD133/1(AC141)-PE 

(Miltenyi Biotec 130-080-801), CD133/2(293C3)-PE (Miltenyi Biotec 130-090-853) to label the 

duct cells. See Supplementary Figure 1A for the gating strategy. 

Islet cells: We modified published intracellular staining protocols to make the fixation conditions 

compatible with downstream ATAC-seq and HiChIP experiments 40. Prior to staining with 

specific antibodies, the cells were fixed in 1% formaldehyde-PBS/Plu buffer (Thermo Fisher 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 23 

Scientific 28906) at 1million cell/mL for 10 minutes at room temperature with rotation. Fixation 

was stopped by adding glycine solution (125 mM final concentration) for 5 minutes at room 

temperature. Fixed cells were permeabilized with 1x Permeabilization Buffer diluted in PBS 

(Thermo Fisher Scientific, 08-8333-56). After permeabilization, cells were stained with INS 

(D3E7)-biotin (Abcam ab20756) and Streptavidin-APC (Thermo Fisher Scientific 17-4317-82) to 

label b-cells, GCG(U16-850)-PE(BD565860) to label a-cells, SST-Alexa Fluor 488 (BD566032) 

to label d-cells.  

All antibodies were used at 1:100 (v/v) concentration, except for HPx1 (2 µL per million cell), 

INS (1:50) and GCG (1:50) in FACS buffer. All antibody incubation steps were performed on ice 

for 30 minutes. Labeled cells were sorted on an BD FACS Aria III (BD Biosciences) using a 100 

µm nozzle and FACS Diva 8 software, with appropriate area scaling and doublet removal. Gates 

were determined using fluorescence-minus one (FMO) controls. Sorted populations were 

collected into low retention tubes containing 100-300 µL cold sort buffer containing 5% BSA 

(Sigma-Aldrich 126609) in PBS. Cytometry data were analyzed and plotted using FlowJo v.10 

(BD Life Sciences). 

 

Cell purity verification by quantitative RT-PCR (qPCR) 

Total RNA was extracted from approximately 5,000 FACS purified cells using the Zymo Direct-

zol RNA MiniPrep Kit (R2051) following manufacturer’s instructions. Entire total RNA was used 

to synthesize the cDNA using the Invitrogen SuperScript III Reverse Transcriptase kit (Thermo 

Fisher Scientific 18080-044). qPCR reactions were set up using TaqMan gene expression 

assays and SYBR Green PCR Master Mix (Thermo Fisher Scientific 4368708). The following 

TaqMan probes were used: INS (Hs00355773_m1), GCG (Hs00174967_m1), SST 

(Hs00356144_m1), CPA1 (Hs00156992_m1), ACTB (Hs01060665_g1), CHGA 
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(Hs00154441_m1), KRT19 (Hs00761767_s1). Each sample was run in triplicate on a 

QuantStudio 5 Real-Time PCR machine (Thermo Fisher Scientific). Enrichment of cell marker 

mRNAs was calculated using the delta(deltaCt) method relative to the mRNA levels in presort 

cells using the QuantStudio Design and Analysis Software (v1.5.2, Applied Biosystems). To 

estimate the purity of sorted populations, we used the method described in 27.  

 

ATAC-seq assays 

We followed the Omni-ATAC-seq protocol described in 81. 5,000-20,000 sorted cells were used 

for each assay. To isolate the nuclei, cells were resuspended in cold ATAC-Resuspension 

Buffer (RSB) containing 0.1% NP40 (Sigma-Aldrich I8896), 0.1% Tween-20 (Sigma-Aldrich 

P1379), and 0.01% Digitonin (Sigma-Aldrich 300410), and incubated on ice for 3 minutes. The 

lysis was washed out by addition of 1mL of RSB containing 0.1% Tween-20 and mixed by 

inverting tubes. The nuclei are then pelleted at 500RCF for 10 minutes at 4°C. For transposition, 

each nuclei pellet was resuspended in 50 µL of transposition mix (25 µL 2x TD buffer, 2.5 µL 

transposase (100 nM final), 16.5 µL PBS, 0.5 µL 1% digitonin, 0.5 µL 10% Tween-20, 5 µL 

H2O) and incubated at 37°C for 30 minutes in a thermomixer with 1000 rpm shaking. After 

transposition, reactions were stopped by adding EDTA (Thermo Fisher Scientific 15575020) to a 

final concentration of 40 mM. For endocrine samples, reverse crosslink buffer (50 mM Tris, 1 

mM EDTA, 1% SDS, 0.2 M NaCl) containing 0.2 mg/mL Proteinase K (Thermo Fisher Scientific 

25530049) (add fresh) was added in 5x volume to each reaction and incubated at 65C 

overnight. Transposed DNA fragments were purified using Zymo DNA Clean and Concentrator-

5 Kit (Zymo D4014) and pre-amplified for 5 cycles, for which each reaction contained 2.5 µL of 

25 µM i5 primer, 2.5 µL of 25 µM i7 primer, 25 µL 2x NEBNext master mix (NEB M0541), and 

20 µL transposed/cleaned-up DNA. PCR conditions (72ºC for 5 min, 98ºC for 30 sec, followed 
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by 5 cycles of [ 98ºC for 10 sec, 63ºC for 30 sec, 72ºC for 1 min] then hold at 4ºC. To determine 

additional cycles for each sample, 5 µL of the pre-amplified mixture was used to run qPCR in 

15 µL reaction containing 3.76 µL sterile water, 0.5 µL 25 µM i5 primer, 0.5 µL 25 µM i7 primer, 

0.24 µL 25x SYBR Gold (Thermo Fisher Scientific S11494 in DMSO), 5 µL 2x NEBNext master 

mix, with the following cycling conditions, 98ºC for 30 sec, followed by 20 cycles of [98ºC for 10 

sec, 63ºC for 30 sec, 72ºC for 1 min]. Additional cycles were calculated following method by 

Buenrostro et al 2015 82. The remaining 45 µL of pre-amplified samples were then further 

amplified accordingly. The PCR condition was 98ºC for 30 sec, followed by n cycles of [98ºC for 

10 sec, 63ºC for 30 sec, 72ºC for 1 min] then hold at 4ºC. Final PCR reactions were purified 

using the Zymo kit. Libraries were quantified on Aligent TapeStation 4000 and mixed in 1:1 

molar ratio, then sequenced on Illumina NextSeq550 to obtain 75bp pair-ended reads. 

 

ATAC-seq data analysis 

We used PEPATAC version 0.8.3 83 with default parameters to process the ATAC-seq FASTQ 

files. Specifically, reads were aligned to hg38 using Bowtie with the ‘-X 2000’, mitochondrial and 

blacklisted regions were removed, peaks were called using MACS2 with '-f BED -q 0.01 --shift 0 

--nomodel'. All samples included in this study surpassed the current ENCODE quality standards 

for ATACseq data, with TSS enrichment scores of 15-26, and deduplicated aligned reads 

greater than 14 million per sample. The PEPATAC output bigwig files were used to visualize 

peaks in the UCSC genome browser. 

To generate a consensus peak file, the peak coordinates from the narrowPeaks output files 

were merged using BEDtools 84 with a merge gap of 0 bp. We used the annotatePeaks.pl tool in 

the HOMER suite 85 to generate a count matrix corresponding the peak regions. The peaks 

were then filtered by excluding those with less than the median ATAC-seq signal for each 
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sample. The final matrix contained a total of 371,234 peaks from 37 ATAC-seq samples. To 

identify cell type-specific accessible chromatin regions, we used DESeq package 86 and 

performed different cell type or group comparisons: compare between acinar and duct; compare 

between alpha, beta, and delta; compare endocrine cells (alpha, beta, delta) and exocrine cells 

(acinar, duct). Peaks that passed the significance threshold of FDR ≤ 1E-06 were selected, 

resulting in a total of 108,042 differentially accessible peaks. We assigned the cell type-specific 

clusters to these peaks using k-means clustering with correlation as the similarity metric. 

 

H3K27ac HiChIP assays 

To perform the HiChIP assays, we obtained on average 600,000 purified acinar, duct, b- or a-

cells, and 80,000 d-cells and due to their low abundance. HiChIP libraries were prepared 

following procedures described in 87 with modifications applicable for low cell input material. 

Briefly, if the cells were not already fixed prior to sorting, they were fixed in 1% formaldehyde at 

1x106 cell/mL concentration for 10 minutes at room temperature with rotation, quenched with 

glycine at final concentration of 125 mM for 5 minutes, then pelleted at 500RCF for 5 minutes 

and washed once with PBS/Plu buffer.  

in situ contact generation: Fixed cells were resuspended in 250 µL of ice-cold Hi-C Lysis Buffer 

and rotate at 4°C for 30 minutes. The nuclei were pelleted at 2500RCF for 5 minutes and 

washed with 250 µL of ice-cold Hi-C Lysis Buffer. The washed nuclei pellet was resuspended in 

50 µL of 0.5% SDS (Thermo Fisher Scientific 15553027) and incubated at 62°C for 10 minutes, 

then quenched by adding 146 µL of H2O and 25 µL of 10% TritonX-100 (Sigma-Aldrich T8787) 

with incubation at 37°C for 15 minutes, rotating end-to-end. To digest the chromatin in situ, 

100U MboI (Sigma-Aldrich R0147) and 25 µL 10xNEB buffer 2 (NEB B7002 RT) were added to 

the reaction and incubated at 37°C for 2 hours with rotation. Enzymes were heat-inactivated at 
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62°C for 20 minutes. To label ends of the digested chromatin fragments, 14 µL of dNTP (NEB 

N0446S) (dATP-14-biotin and dTTP, dCTP, dGTP at a final concentration of 40 µM each) and 

15U of DNA Polymerase I, Large (Klenow) Fragment (NEB, M0210) were added and incubated 

at 37°C for 45 minutes. Ends were ligated by adding 484 µL of ligation mixture containing 75 µL 

10x T4 ligase buffer, 62.5 µL 10% TritonX-100, 3.75 µL 20 mg/mL BSA, 2000U of T4 ligase 

(NEB, M0202S) and 337.75 µL H2O and incubated at RT for 2 hours with rotation. The ligation 

mix was pelleted at 2500RCF for 5 minutes at 4°C. 

H3K27ac-ChIP: The in situ Hi-C pellet was lysed in 130 µL of Nuclei Lysis Buffer then 

transferred to an AFA microtube (Covaris 520045) and sonicated on a Covaris E220 under the 

following setting: PIP 105W, duty factor 2%, CPB 200, time 4 minutes, temperature 6°C. The 

sheared lysate was cleared by centrifugation at 16100RCF, 4°C for 15 minutes. Cleared lysate 

was diluted 2x in ChIP Dilution Buffer and precleared with 15 µL Dynabeads Protein A (Thermo 

Fisher Scientific 10001D) at 4°C for 1 hour with rotation. 1 µL of anti-H3K27ac (Abcam ab4729 

Lot# GR3211959-1) was added to the precleared lysate to immuno-precipitate (IP) H3K27ac 

associated, proximity ligated chromatin fragments overnight at 4°C with rotation. 15 µL 

Dynabeads Protein A were added and incubated at 4°C for 2 hours to pull down the IP-ed 

complex. Beads were washed in order of the following: Low Salt, High Salt and LiCl (Sigma-

Aldrich L7026) buffers. Washing was performed at room temperature on a magnet stand by 

adding to a sample tube 300 µL of a wash buffer, turning the tube 180 degree relative to the 

magnet for few times, allowing the beads to set for 2 minutes then removing the supernatant. 

ChIP DNA was eluted by incubation in 50 µL ChIP Elution Buffer on a thermomixer (Eppendorf) 

at 37°C with 300 rpm mixing. Two elution cycles were performed per sample and the eluates 

were pooled. To reverse crosslinks, 5 µL Proteinase K (Thermo Fisher Scientific 25530049) was 

added and the mixture was incubated at 55°C for 45 minutes followed by 67°C for 2.5 hours. 
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The DNA was purified by the Zymo kit (Zymo D4014) following the manufacturer's instructions, 

and eluted with 12 µL water, of which 2 µL was used for quantitation on Aligent TapeStation 

4000.  

Biotin pull-down and sequencing library preparation: 5 µL Streptavidin C-1 beads (Thermo 

Fisher Scientific 65001) were washed with 300 µL Tween Wash Buffer, resuspended in 10 µL 

2xBinding Buffer and mixed with each sample. The mixtures were incubated at RT for 15 

minutes with rotation. Beads were washed in 300 µL Tween Wash Buffer twice at 55°C with 

shaking (400 rpm), followed by one wash in 100 µL 2x TD Buffer. For on bead tagmentation, 

beads were resuspended in 50 µL mixture containing 25 µL 2xTD buffer, 0.05 µL Tn5 (IIlumina 

20034198) per 1ng post-ChIP DNA and H2O and incubated at 55°C with interval shaking for 10 

minutes. The tagmented beads were incubated in 300 µL 50 mM EDTA at 50°C for 30 minutes, 

followed by washes in 2x 50 mM EDTA (300 µL) at 50°C for 3 minutes, 3x Tween Wash Buffer 

(300 µL) at 55°C for 2 minutes then once in 200 µL 10 mM Tris. To prepare sequencing library, 

beads were resuspended in 50 µL PCR mix (25 µL 2xNEB HF master mix (NEB M054), 1 µL 

12.5 µM Nextera ad-noMx, 1 µL barcoded 12.5 µM Nextera ad2.x and 23 µL H2O) and 

amplified by PCR program: 72°C for 5 min, 98°C for 1min, followed by n cycles of [98ºC for 15 

sec, 63ºC for 30 sec, 72ºC for 1 min] then hold at 4ºC. N was determined by the amount of post-

ChIP DNA as described in Mumbach protocol 87. The libraries were cleaned up using the Zymo 

kit and eluted in 15 -18 µL H2O, 2 µL of which was used to determine the quantity and size 

distribution on an Agilent TapeStation 4000. High quality libraries were sequenced with 2x75bp 

runs on an Illumina NextSeq instrument. 

 

HiChIP data analysis 

Paired-end reads from 29 HiChIP samples were aligned to hg38 using the Hi-C Pro pipeline 88  
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with default settings. Hi-C Pro trims, aligns, assigns reads to MboI restriction fragments, filters 

for valid interactions and generates binned interaction matrices. 

Calling loops 

We used hichipper 89 and FitHiChIP 90 to call loops on the Hi-C Pro processed samples. For 

hichipper, we used the peak calling options EACH, SELF which include each sample 

individually and only self-ligation reads. hichipper interactions were filtered based on a PET 

count ≥ 2 and a Mango FDR ≤ 0.01, which are classified as “significant loops”. For FitHiChIP, 

we used the “loose” parameter and a bin size of 5000 kb to call loops at FDR ≤ 0.05. Loops 

were converted to bigBed format then uploaded to UCSC browser for visualization. To evaluate 

variability across donor samples, PET counts from individual donor loop sets were used as input 

for the principal component analysis (PCA). To calculate and visualize the PCA of donor 

samples, the R prcomp() function and the ggplot2 package were used. 

Generating consensus loops  

To construct this loop set, we merged the FASTQ reads of the 29 HiChIP samples based on cell 

type (a-cell, b-cell, d-cell, acinar, and duct). We processed the merged reads using the Hi-C pro 

pipeline, and performed loop calling using hichipper and FitHiChIP as described above. We then 

intersected the hichipper and FitHiChIP loops for each cell type, using the BEDTools pairtoPair 

function, which reports the overlaps if two loops have the same anchors. We considered these 

common loops ‘high confidence loops’ as they were identified by two independent loop callers. 

To obtain a final list of non-overlapping anchors, we merged 1,144,820 anchors from high-

confidence loops across five cell types using BEDTools with the default 'any overlap' option, 

resulting in 127,487 consensus anchors. For each consensus anchor, the midpoint was 

determined by calculating the average of the start and end positions of the merged anchors, 

rounded down to the nearest integer. A consensus loop set was also created, in which each 

unique consensus loop was logged, along with corresponding PETs in every cell type. The 
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length of consensus loop was defined as genomic distance between anchor midpoints. After 

removing loops with length less than 5 kb (artifact of anchor merging process), we obtained a 

total of 349,749 consensus loops from all five cell types.  

The AnnotatePeaks.pl function of Homer suite (version 4.11.1) 85 was used with hg38 build 

(gencodev42 (GRCh38.p13)) to annotate anchors. We defined the promoter regions as 2 kb 

upstream and 3 kb downstream of the transcription start site (TSS). If the midpoint of an anchor 

falls into a promoter region, that anchor became a promoter anchor (P), otherwise, an enhancer 

anchor (E). Enhancer anchors were named using chromosome location, a numerical identifier, 

and the letter "E" (e.g., 22.1008E). Promoters followed a similar notation, with the letter "P" used 

instead. 

 

Constructing the enhancer tree models 

Principal network elements were defined using consensus loops. Anchors were represented as 

nodes and the loops connecting the anchors were represented as network edges.  

Notations: 

𝑁 represents the set of all nodes. 

𝐸 represents the set of all edges (loops). 

𝐿!(𝑛) represents the level of node 𝑛. 

𝐿"(𝑒) represents the level of edge 𝑒, where 𝑒 connects nodes 𝑛# and 𝑛$. 

For an edge 𝑒 connecting nodes 𝑛# and 𝑛$, let 𝑒 = (𝑛#, 𝑛$). 

 

Assigning levels to nodes: 

For each iteration until no new nodes are assigned: 

For each edge 𝑒 = (𝑛#, 𝑛$) with either 𝐿!  (𝑛#)  ≠   − ∞  or 𝐿!(𝑛#)  ≠ −∞    
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.
𝐿!(𝑛#) = 	𝐿!(&!) + 	1, if 𝐿!(𝑛$) ≠ −1 and 𝐿!(𝑛#) = −∞	

𝐿((n$) = 𝐿!(𝑛#) + 1 if 𝐿!(𝑛#) ≠ −1 and 𝐿!(𝑛$) = −∞	
 

 

Assigning levels to edges: 

For each edge 𝑒 = (𝑛#, 𝑛$), 

𝐿"(𝑒) = .
𝐿!(𝑛#) + 𝐿!(𝑛$), if 𝐿!(𝑛#) ≠ −∞	 and 𝐿!(𝑛$) ≠ −∞	

		−1, otherwise
 

 

Nodes are assigned levels based on their proximity to a starting node (nodeid). The starting 

node is assigned a level of 0. In each subsequent iteration, adjacent nodes are assigned a level 

that's one greater than the current node. The level of an edge (or loop) is determined by the 

sum of the levels of the nodes it connects.  If either of the nodes has not been assigned a level, 

the edge remains unassigned (level = -∞). 

 

Redundancy Removal: 

Delete edges 𝑒 = (𝑛#, 𝑛$) with 𝐿!(𝑛#) = 𝐿!(𝑛$). 

 

Consensus enhancer trees were built following these steps described above. Cell type-specific 

trees were derived by removing the nodes and edges absent from a given cell type. We have 

obtained 15557 non-trivial enhancer trees for a-cells, 14276 for b-cells, 10949 for acinar cells, 

and 12483 for duct cells. Forests were identified as two or more enhancer trees connected via 

shared nodes. To annotate these trees, we integrated the ATAC tag density to the nodes, and 

the HiChIP PETs to the edges of the cell type-specific enhancer trees.  
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Evaluation of enhancer importance by in silico perturbation (EPIC) 

To estimate the effect size of individual enhancers in an enhancer-promoter tree, we developed 

a machine learning method to score enhancers by iteratively removing one enhancer at a time 

and tracking the change in the accuracy of the trained model.  

 

Preparing the input data 

We selected four sets of enhancer-promoter trees corresponding to four cell types— a-cell, b-

cell, acinar, and duct). Data for d-cell was excluded due to substantially fewer number of 

enhancer trees detected (Supplemental Figure 2A). d-cells are among the least abundant cell 

types within islets (less than 100,000 cells per donor). While we were able to detect frequently 

occurring loops, like the SST locus, the low cell number precludes constructing HiChIP libraries 

with complexity comparable to the other cell types. We used the expression specificity scores 

(ESS) 47 to subset enhancer-promoter trees that represent both cell type-specific and not cell 

type-specific genes. Based on our prior work, ESS greater than 0.7 indicates high cell type-

specificity, whereas ESS less than 0.3 indicates low specificity 47. In the a-cell dataset, there 

were 354 trees whose associated genes had an ESS greater than 0.7, therefore these trees 

were assigned the class value “alpha”. To ensure a balanced representation of the non-specific 

class, we randomly selected a similar number of genes whose ESS is less than 0.3 in all four 

cell types and assigned them as "non-alpha". We applied a similar approach for the other cell 

types. For b-cell versus non-b-cell, we used 340 trees for "beta" and 365 for "non-beta". The 

acinar versus non-acinar comparison included 641 trees for "acinar" and 652 for "non-acinar". 

Finally, for duct versus non-duct, we used 476 trees for "duct" and 447 for "non-duct". We 

named these sets as Salpha, Sbeta,	Sacinar,	and Sduct. We then built a matrix containing predictor 

variables based on our chromatin interaction and accessibility data corresponding to these 
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selected enhancer trees. Specifically, for a given tree that belongs to the cell-type A, the sum of 

ATAC-seq tag densities of direct enhancer nodes (ATAC-d-A), the sum of HiChIP PET counts of 

direct edges (PET-d-A), the sum of their products (ATACxPET-d-A), and similar 3 variables for 

indirect nodes  (ATAC-i-A, PET-i-A, and ATACxPET-i-A). In total, 24 variables of chromatin 

derived data were included in the matrix. 

 

Initial modeling and performance evaluation 

We employed the k-Nearest Neighbor (kNN) algorithm to classify the cell types that the 

enhancer tree promoters belong based on the predictor variables detailed above. The data was 

centered and scaled to normalize, and Euclidean distance was used to measure the distance 

between data points. 10-fold cross-validation was employed to identify the optimal number of 

neighbors (k). We built the original models Malpha,	Mbeta,	Macinar, and Mduct	on the Salpha, Sbeta,	

Sacinar,	and Sduct	sets. To evaluate the model performance, we used the accuracy metric, which 

is the ratio of correct observations (true positives) to the number of total observations.  

 

Comparison of the original tree model performances to alternative genomic models 

We compared the performance of tree models against two other models: Promoter accessibility 

model and the linear model. Promoter accessibility model was built by taking only ATAC-seq tag 

counts at the promoters and no further chromatin information such as PET counts or interacting 

enhancers was considered. We defined the promoter regions as 2 kb upstream and 3 kb 

downstream of the transcription start site (TSS). In the linear model, we assigned a ‘gene 

regulatory domain’ that extends 1 Mb both upstream and downstream of the TSS. For this 

model, only the ATAC-seq tag counts of enhancers within this domain were considered, and the 
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ATAC-seq density of each neighboring enhancer within such window was scaled to be inversely 

proportional to its genomic distance to the promoter.   

 

Enhancer removal and evaluating the perturbed model performances 

For each enhancer node ‘e’ of the tree ‘T’, we created perturbed models Malpha\{e},	Mbeta\{e},	

Macinar\{e},	and	Mduct\{e} by removing the enhancer node ‘e’	and its child nodes.  All 24 predictor 

variables (ATAC-seq tags, HiChIP PET counts, their products [ATACxPET] for four cell types, 

direct/indirect node) were recalculated after each enhancer removal. Similar to the original 

models, we used the kNN algorithm with 10-fold cross-validation splits. By comparing the 

accuracy difference between the original model and the perturbed one, we calculated the 

deviation of prediction accuracies between e-deleted tree and the original prediction for each 

enhancer tree set. By summing up the absolute values of these accuracy deviations across cell 

types, the total deviation of the enhancer e is given as  

𝐷(𝑒) = E |𝑎𝑐𝑐(𝑀) − 𝑎𝑐𝑐(𝑀\{𝑒})|
)∈{)"#$%",)&'(",)")*+",,)-.)(}

 

 

where acc stands for the accuracy of the learning model. We repeated these procedures 100 

times for each enhancer to obtain a robust estimate of the average total deviation. This average 

was defined as the ‘effect size’ for tree T. Enhancers with larger total deviations were considered 

to have a greater impact on their associated promoter activity. We implemented EPIC algorithm 

in R, using the caret library for model performance evaluation.  
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Perturbing enhancers using CRISPR interference in human pancreas cells 

CRISPR guide RNA design 

CRISPR guides were designed using the software Geneious Prime 

2023.0.1(https://www.geneious.com) and were selected based on activity 91,92 and specificity 

scores that exceeded 94% 93. We targeted each anchor region (enhancer node) with minimum 

three gRNAs. 

 

Production of adenoviral vectors and viral stocks  

Adenoviruses carrying the CRISPR constructs were provided by Vector Biolabs using their 

custom adenovirus construction service (https://www.vectorbiolabs.com/). Ad-CMV-NLS-dCas9-

VP64-mCherry (CRISPRa) was purchased from Vector Biolabs. For CRISPRi, Ad-CMV-NLS-

dCas9-KRAB-mCherry were cloned by modifying the SFFV-dCas9-KRAB-BFP (addgene46911) 

at Vector Biolabs then packaged into adenoviruses. For gRNA viruses, gRNA arrays for each 

target region were assembled into CARGO constructs following the previously described 

protocol 94, these constructs then were sent to Vector Biolabs to produce adenoviruses. All virus 

particles were produced at a minimum titer of 1 x 1010PFU/ml (PFU, plaque forming unit). 

 

Adenoviral transduction of primary human pancreas cells 

Human islets or exocrine tissues were partially dissociated using enzymatic digestion as 

described previously (Accutase, Thermo Fisher Scientific) 39. Dispersed cells were seeded on 

AggreWell400 wells (STEMCELL 34415) at an estimated 300,000-500,000 cells per microwell 

containing the appropriate culture media. The islet culture media consisted of RPMI 1640 with 

Glutamine, supplemented with 10% fetal bovine serum (FBS) (HyClone) and 1% 

penicillin/streptomycin (P/S) (Thermo Fisher Scientific 15140122). The exocrine culture media 

was composed of CMRL 1066 supplemented with 10% heat-inactivated FBS, 1% GlutaMAX 
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(Thermo Fisher Scientific 35050061), 1% P/S, and 0.1% nicotinamide (Sigma-Aldrich 72340). 

Cells were transduced with adenovirus at an MOI of 100 and cultured at 37°C for 2 hours. After 

the incubation, viral media were removed, cells were washed with PBS twice and returned to 

the incubator with fresh media to allow aggregation. Post-transduction, the cell clusters were 

transferred to a 24-well ultra-low attachment plate (Corning 3473) on day 3. The media was 

refreshed as needed, and the cells were harvested for hybridization chain reaction (HCR) 

preprocessing on day 5. 

 

RNA-FISH using hybridization chain reaction (HCR) in primary human pancreas cells 

CRISPR treated and control cell clusters were collected and dissociated into monolayer using 

enzymatic dispersion (Accutase, Sigma-Aldrich A6964). After fixation with 4% 

paraformaldehyde at room temperature for 1 hour, the cells were washed and stored in 1% BSA 

in PBS with Riboblock (Thermo Fisher Scientific EO0384) at 4°C until further processing. For 

permeabilization, cells were treated with PBS-Tween20 (PBS-T) containing Riboblock, followed 

by storage in 70% ethanol at -20°C. The hybridization was performed with probes specific to the 

targeted genes, followed by a series of washes to remove unbound probes. Amplification of the 

hybridized probes was carried out using hairpin oligonucleotides, and the samples were stained 

with DAPI for nuclear visualization. Hybridization experiments were performed using HCR RNA-

FISH bundles from Molecular Instruments, including customized probe sets, amplifiers, and 

buffers specific for single cell suspension and staining. For each sample, multiplexed staining 

was performed using combinations of target gene probes and marker gene probes. Matched 

fluorescently labeled amplifier hairpins enabled specific quantification of gene transcripts within 

the appropriate cell types. The cells were counterstained with DAPI (4′,6-diamidino-2-

phenylindole) and seeded at 70–90% density (50,000–75,000 cells per well) on collagen-
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coated, optically clear 96-well imaging plates (Revvity Health Sciences, D6055700) immediately 

prior to imaging. 

 

High-throughput imaging and quantitative analysis 

HCR samples were imaged in four channels (405, 488, 561, and 640 nm) using a dual spinning 

disk high-throughput confocal microscope (Yokogawa CV7000 or CV8000). A 60x water 

immersion objective (NA = 1.2) was used for imaging monolayer samples. Two 16-bit sCMOS 

cameras were employed with binning set to 1, yielding a pixel size of 108 nm. Image Z-stacks 

were acquired at 0.5-micron intervals across a total depth of 8 microns. For each well, 20–48 

randomly selected fields (containing approximately 10–100 cells per field) were imaged. Images 

were automatically corrected in real-time using Yokogawa’s proprietary software to address 

camera alignment, optical aberrations, vignetting, and camera background issues. The 

maximally projected and corrected images were saved as 16-bit TIFF files. Quantitative analysis 

of the HCR results was done using Columbus 2.9.1 (PerkinElmer/Revvity) or Signal Imaging 

Artist (SiMA, PerkinElmer/Revvity) 1.2 software. The mean fluorescence intensity in the far-red 

channel was measured over the cell body region for each cell, and this value was used as the 

primary output measurement. Single-cell results were exported from Columbus or SiMA as 

tabular text files. Statistical analysis and data plotting was done in GraphPad Prism version 

10.2.3 (GraphPad Software, USA, www.graphpad.com).  

 

Enrichment analysis of GWAS SNPs risk for pancreas diseases in cell specific EP trees  

GWAS data selection  

GWAS summary statistics for traits associated with pancreas disorders and control traits were 

obtained from various key studies: Type 2 diabetes 64, fasting glucose, fasting insulin, Glycated 

Hemoglobin and two-hour glucose 63 Type 1 diabetes 32, and Pancreatic ductal-adenocarcinoma 
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(PDAC) 62, control traits 95,96. GWAS summary statistics were downloaded from Type 2 diabetes 

Knowledge portal (https://t2d.hugeamp.org/), MAGIC consortium 

(http://magicinvestigators.org/downloads/), GWAS-EBI catalog (https://www.ebi.ac.uk/gwas/). 

GWAS summary statistics for PDAC were provided by the Pancreatic Cancer Cohort 

Consortium and the Pancreatic Cancer Case-Control Consortium.  

 

GARFIELD analysis 

We used GARFIELD algorithm 65 to calculate the enrichment of GWAS variants that overlapped 

with our cell type specific enhancer trees. Specifically, we used cell type-specific ATAC-seq 

peak coordinates that overlap with enhancer tree nodes (enhancers and promoters), and 

prepared annotation overlap files as required by the algorithm at different GWAS thresholds. 

 

We used the data on LD tags, distance to TSS, and minor allele frequency provided by 

GARFIELD, which implements LD scores based on the UK10K project as the reference set for 

European population. GARFIELD enrichment tests were run individually using summary 

statistics from each of the GWAS studies listed above, and the coordinates for all four cell types 

(a, b, acinar, and duct) defined above were used as input annotations. The estimated odds 

ratios (ORs) and enrichment p values were computed at various GWAS p value thresholds (1 x 

10-05,1 x 10-06,1 x 10-07, 5 x 10-08, and 1 x 10-08). The R code ‘Garfield-Meff-Padj.R’ from 

GARFIELD was used to calculate an enrichment p value threshold. This threshold was adjusted 

using Bonferroni correction (P < 0.01) to account for multiple testing, based on the effective 

number of annotations (Meff = 4.45). The negative log2 of enrichment p-values for the tested 

GWAS summary statistics were plotted using ggplot package in R. 

SNP-to-target identification and evaluating EPIC effect sizes 
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We used significantly enriched SNPs from the p < 1 x 10-05 GWAS threshold which was the 

largest bin containing the highest number of enriched SNPs from all four GWAS p-value 

thresholds. While this is a relatively lenient GWAS p-value threshold, we wanted to include the 

maximum number of enriched SNPs in the beginning for our gene mapping analysis. We then 

identified the overlapping SNPs by intersecting the SNP coordinates with enhancer tree node 

coordinates using BEDtools. Each overlap was represented with a unique identifier for each 

SNP-enhancer node-promoter link. The list was further filtered to include enhancer trees 

containing at least one enriched SNP node and has cell type-specific promoters that has an 

ESS > 0.7 47. We focused on four trait-cell type pairings:  

T2D-b: T2D SNP enriched b-cell trees  

PDAC-duct: PDAC SNP enriched duct cell trees  

T2D-acinar: T2D SNP enriched acinar cell trees  

PDAC-acinar: PDAC SNP enriched acinar cell trees   

 

We used EPIC to determine the effect size of all enhancer nodes that were included in these 

lists. Next, the EPIC evaluated nodes were stratified into two groups: SNP-overlapping or not-

overlapping, and the effect sizes of these nodes were represented by group using CDF() 

function in R.  

 

Visualization of select SNP-target gene regions 

Examples of SNP-target gene networks for T2D and PDAC in acinar cells were visualized using 

locuszoom (https://my.locuszoom.org/) and the UCSC genome browser 

(https://genome.ucsc.edu/) on hg38 genome build.    
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Loic LeMarchand31, Núria Malats32,33, Satu Männistö34, Marjorie L McCullough35, Roger 
Milne18,19,20, Stephen C Moore2, Lorelei Mucci36, Salvatore Panico37, Alpa V Patel35, Ulrike 
Peters38, Miquel Porta29, Francisco X Real39,33,30, Howard D Sesso15,6, Xiao-Ou Shu40, Meir J 
Stampfer14,41, Geoffrey S Tobias9, Kala Visvanathan42,43, Elisabete Weiderpass44, Nicolas 
Wentzensen9, Emily White45,46, Chen Yuan47, Wei Zheng40, Jean Wactawski-Wende48, Rachael 
Z Stolzenberg-Solomon2, Brian M Wolpin49, Laufey T Amundadottir1 
 
1Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National 
Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 2Metabolic Epidemiology 
Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National 
Institutes of Health, Bethesda, MD, USA, 3Occupational and Environmental Epidemiology 
Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National 
Institutes of Health, Bethesda, MD, USA, 4Departments of Obstetrics and Gynecology and 
Population Health, NYU Grossman School of Medicine, NYU Perlmutter Comprehensive Cancer 
Center, New York, NY, USA, 5Division of Preventive Medicine, Department of Medicine, 
Brigham and Women’s Hospital, Boston, MA, USA, 6Department of Epidemiology, Harvard T.H. 
Chan School of Public Health, Boston, MA, USA, 7Unit of Genetics., Department of Biology, 
University of Pisa, Pisa, Italy, 8Genomic Epidemiology Group, German Cancer Research Center 
(DKFZ), Heidelberg, Germany, 9Division of Cancer Epidemiology and Genetics, National Cancer 
Institute, National Institutes of Health, Bethesda, MD, USA, 10Department of Population Health, 
NYU Grossman School of Medicine, NYU Perlmutter Comprehensive Cancer Center, New York, 
NY, USA, 11Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 
Murcia, Spain, 12CIBER Epidemiología y Salud Pública (CIBERESP), Spain, 13Research Group 
on Demography and Health, National Faculty of Public Health,, University of Antioquia, 
Medellín, Colombia, 14Department of Epidemiology, Harvard T. H. Chan School of Public 
Health, Boston, MA, USA, 15Division of Preventive Medicine, Brigham and Women’s Hospital, 
Boston, MA, USA, 16Division of Aging, Brigham and Women’s Hospital, Boston, MA, USA, 
17Boston VA Healthcare System, Boston, MA, USA, 18Cancer Epidemiology Division, Cancer 
Council Victoria, Melbourne, VIC, Australia, 19Centre for Epidemiology and Biostatistics, 
Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 
Australia, 20Precision Medicine, School of Clinical Sciences at Monash Health, Monash 
University, Melbourne, VIC, Australia, 21SWOG Statistical Center, Fred Hutchinson Cancer 
Research Center, Seattle, WA, USA, 22Department of Preventive Medicine, Keck School of 
Medicine, University of Southern California, Los Angeles, CA, 23Genomic Epidemiology Branch, 
International Agency for Research on Cancer (IARC/WHO), Lyon, France, 24Division of Cancer 
Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, 25Division of 
Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 26Trans-
Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics, National 
Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 27ISGlobal, Centre for 
Research in Environmental Epidemiology (CREAL), Barcelona, Spain, 28CIBER Epidemiología y 
Salud Pública (CIBERESP), Barcelona, Spain, 29Hospital del Mar Institute of Medical Research 
(IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain, 30Universitat Pompeu Fabra 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 43 

(UPF), Barcelona, Spain, 31Cancer Epidemiology Program, University of Hawaii Cancer Center, 
Honolulu, HI, USA, 32Genetic and Molecular Epidemiology Group, Spanish National Cancer 
Research Center (CNIO), Madrid, Spain, 33CIBERONC, Madrid, Spain, 34Department of Public 
Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland, 
35Department of Population Science, American Cancer Society, Atlanta, GA, USA, 36Department 
of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 37Dipartimento Di 
Medicina Clinica E Chirurgia, Federico II University, Naples, Italy, 38Division of Public Health 
Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA, 39Epithelial Carcinogenesis 
Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 
Madrid, Spain, 40Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology 
Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, 
TN, USA, 41Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, 
USA, 42Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, 
43Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins 
School of Medicine, Baltimore, MD, 44International Agency for Research on Cancer 
(IARC/WHO), Lyon, France, 45Division of Public Health Sciences, Fred Hutchinson Cancer 
Research Center, Seattle, WA, USA, 46Department of Epidemiology, University of Washington, 
Seattle, WA, USA, 47Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard 
Medical School, Harvard University, Boston, MA, 48Department of Epidemiology and 
Environmental Health, University of Buffalo, Buffalo, NY, USA, 49Department of Medical 
Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, 
MA, USA 
 
 
Pancreatic Cancer Case-Control Consortium: 
 
Samuel O Antwi1, Paige M Bracci2, Steven Gallinger3, Michael Goggins4, Manal Hassan5, 
Elizabeth A Holly2, Rayjean J Hung3, Donghui Li5, Núria Malats6,7, Rachel E Neale8, Kari G 
Rabe9, Harvey A Risch10, Herbert Yu11, Alison P Klein12,13,4 
 
1Department of Quantitative Health Sciences, Mayo Clinic College of Medicine, Jacksonville, FL, 
USA, 2Department of Epidemiology and Biostatistics, University of California, San Francisco, 
San Francisco, CA, USA, 3Lunenfeld-Tanenbaum Research Institute, Sinai Health System and 
University of Toronto, Toronto, Canada, 4Department of Pathology, Sol Goldman Pancreatic 
Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA, 5Department 
of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 
Houston, TX, USA, 6Genetic and Molecular Epidemiology Group, Spanish National Cancer 
Research Center (CNIO), Madrid, Spain, 7CIBERONC, Madrid, Spain, 8Population Health 
Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia, 9Department of 
Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, MN, USA, 
10Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 
USA, 11Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA, 
12Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, USA, 
13Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins 
School of Medicine, Baltimore, MD, USA 
  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 44 

REFERENCES 
 

1. Xiao, A.Y., Tan, M.L.Y., Wu, L.M., Asrani, V.M., Windsor, J.A., Yadav, D., and Petrov, M.S. 
(2016). Global incidence and mortality of pancreatic diseases: a systematic review, meta-
analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol. 
Hepatol. 1, 45–55. https://doi.org/10.1016/S2468-1253(16)30004-8. 

2. Khalaf, N., El-Serag, H.B., Abrams, H.R., and Thrift, A.P. (2021). Burden of Pancreatic 
Cancer: From Epidemiology to Practice. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. 
Gastroenterol. Assoc. 19, 876–884. https://doi.org/10.1016/j.cgh.2020.02.054. 

3. GBD 2021 Diabetes Collaborators (2023). Global, regional, and national burden of diabetes 
from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the 
Global Burden of Disease Study 2021. Lancet Lond. Engl. 402, 203–234. 
https://doi.org/10.1016/S0140-6736(23)01301-6. 

4. Jennings, R.E., Berry, A.A., Strutt, J.P., Gerrard, D.T., and Hanley, N.A. (2015). Human 
pancreas development. Dev. Camb. Engl. 142, 3126–3137. 
https://doi.org/10.1242/dev.120063. 

5. Ma, Z., Zhang, X., Zhong, W., Yi, H., Chen, X., Zhao, Y., Ma, Y., Song, E., and Xu, T. 
(2023). Deciphering early human pancreas development at the single-cell level. Nat. 
Commun. 14, 5354. https://doi.org/10.1038/s41467-023-40893-8. 

6. Habener, J.F., and Stanojevic, V. (2012). α-cell role in β-cell generation and regeneration. 
Islets 4, 188–198. https://doi.org/10.4161/isl.20500. 

7. Puri, S., Folias, A.E., and Hebrok, M. (2015). Plasticity and dedifferentiation within the 
pancreas: development, homeostasis, and disease. Cell Stem Cell 16, 18–31. 
https://doi.org/10.1016/j.stem.2014.11.001. 

8. Yu, X.-X., and Xu, C.-R. (2020). Understanding generation and regeneration of pancreatic β 
cells from a single-cell perspective. Dev. Camb. Engl. 147, dev179051. 
https://doi.org/10.1242/dev.179051. 

9. Yuan, S., Norgard, R.J., and Stanger, B.Z. (2019). Cellular Plasticity in Cancer. Cancer 
Discov. 9, 837–851. https://doi.org/10.1158/2159-8290.CD-19-0015. 

10. Marstrand-Daucé, L., Lorenzo, D., Chassac, A., Nicole, P., Couvelard, A., and Haumaitre, 
C. (2023). Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial 
Neoplasia (PanIN) and Pancreatic Cancer. Int. J. Mol. Sci. 24, 9946. 
https://doi.org/10.3390/ijms24129946. 

11. Crawford, H.C., Scoggins, C.R., Washington, M.K., Matrisian, L.M., and Leach, S.D. (2002). 
Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates 
acinar-to-ductal metaplasia in exocrine pancreas. J. Clin. Invest. 109, 1437–1444. 
https://doi.org/10.1172/JCI15051. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 45 

12. Wang, L., Xie, D., and Wei, D. (2019). Pancreatic Acinar-to-Ductal Metaplasia and 
Pancreatic Cancer. Methods Mol. Biol. Clifton NJ 1882, 299–308. 
https://doi.org/10.1007/978-1-4939-8879-2_26. 

13. Espinet, E., Gu, Z., Imbusch, C.D., Giese, N.A., Büscher, M., Safavi, M., Weisenburger, S., 
Klein, C., Vogel, V., Falcone, M., et al. (2021). Aggressive PDACs Show Hypomethylation of 
Repetitive Elements and the Execution of an Intrinsic IFN Program Linked to a Ductal Cell of 
Origin. Cancer Discov. 11, 638–659. https://doi.org/10.1158/2159-8290.CD-20-1202. 

14. Gopalan, V., Singh, A., Rashidi Mehrabadi, F., Wang, L., Ruppin, E., Arda, H.E., and 
Hannenhalli, S. (2021). A Transcriptionally Distinct Subpopulation of Healthy Acinar Cells 
Exhibit Features of Pancreatic Progenitors and PDAC. Cancer Res. 81, 3958–3970. 
https://doi.org/10.1158/0008-5472.CAN-21-0427. 

15. Stanger, B.Z., and Hebrok, M. (2013). Control of cell identity in pancreas development and 
regeneration. Gastroenterology 144, 1170–1179. 
https://doi.org/10.1053/j.gastro.2013.01.074. 

16. Arda, H.E., Benitez, C.M., and Kim, S.K. (2013). Gene regulatory networks governing 
pancreas development. Dev. Cell 25, 5–13. https://doi.org/10.1016/j.devcel.2013.03.016. 

17. Bastidas-Ponce, A., Scheibner, K., Lickert, H., and Bakhti, M. (2017). Cellular and molecular 
mechanisms coordinating pancreas development. Dev. Camb. Engl. 144, 2873–2888. 
https://doi.org/10.1242/dev.140756. 

18. Haigis, K.M., Cichowski, K., and Elledge, S.J. (2019). Tissue-specificity in cancer: The rule, 
not the exception. Science 363, 1150–1151. https://doi.org/10.1126/science.aaw3472. 

19. Smith, E., and Shilatifard, A. (2014). Enhancer biology and enhanceropathies. Nat. Struct. 
Mol. Biol. 21, 210–219. https://doi.org/10.1038/nsmb.2784. 

20. Cebola, I. (2019). Pancreatic Islet Transcriptional Enhancers and Diabetes. Curr. Diab. Rep. 
19, 145. https://doi.org/10.1007/s11892-019-1230-6. 

21. Pachano, T., Haro, E., and Rada-Iglesias, A. (2022). Enhancer-gene specificity in 
development and disease. Dev. Camb. Engl. 149, dev186536. 
https://doi.org/10.1242/dev.186536. 

22. Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C., Polderman, T.J.C., 
van der Sluis, S., Andreassen, O.A., Neale, B.M., and Posthuma, D. (2019). A global 
overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–
1348. https://doi.org/10.1038/s41588-019-0481-0. 

23. Zaugg, J.B., Sahlén, P., Andersson, R., Alberich-Jorda, M., de Laat, W., Deplancke, B., 
Ferrer, J., Mandrup, S., Natoli, G., Plewczynski, D., et al. (2022). Current challenges in 
understanding the role of enhancers in disease. Nat. Struct. Mol. Biol. 29, 1148–1158. 
https://doi.org/10.1038/s41594-022-00896-3. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 46 

24. Schoenfelder, S., and Fraser, P. (2019). Long-range enhancer-promoter contacts in gene 
expression control. Nat. Rev. Genet. 20, 437–455. https://doi.org/10.1038/s41576-019-
0128-0. 

25. Stitzel, M.L., Sethupathy, P., Pearson, D.S., Chines, P.S., Song, L., Erdos, M.R., Welch, R., 
Parker, S.C.J., Boyle, A.P., Scott, L.J., et al. (2010). Global epigenomic analysis of primary 
human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab. 
12, 443–455. https://doi.org/10.1016/j.cmet.2010.09.012. 

26. Parker, S.C.J., Stitzel, M.L., Taylor, D.L., Orozco, J.M., Erdos, M.R., Akiyama, J.A., van 
Bueren, K.L., Chines, P.S., Narisu, N., NISC Comparative Sequencing Program, et al. 
(2013). Chromatin stretch enhancer states drive cell-specific gene regulation and harbor 
human disease risk variants. Proc. Natl. Acad. Sci. U. S. A. 110, 17921–17926. 
https://doi.org/10.1073/pnas.1317023110. 

27. Bramswig, N.C., Everett, L.J., Schug, J., Dorrell, C., Liu, C., Luo, Y., Streeter, P.R., Naji, A., 
Grompe, M., and Kaestner, K.H. (2013). Epigenomic plasticity enables human pancreatic α 
to β cell reprogramming. J. Clin. Invest. 123, 1275–1284. https://doi.org/10.1172/JCI66514. 

28. Pasquali, L., Gaulton, K.J., Rodríguez-Seguí, S.A., Mularoni, L., Miguel-Escalada, I., 
Akerman, İ., Tena, J.J., Morán, I., Gómez-Marín, C., van de Bunt, M., et al. (2014). 
Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. 
Genet. 46, 136–143. https://doi.org/10.1038/ng.2870. 

29. Arda, H.E., Tsai, J., Rosli, Y.R., Giresi, P., Bottino, R., Greenleaf, W.J., Chang, H.Y., and 
Kim, S.K. (2018). A Chromatin Basis for Cell Lineage and Disease Risk in the Human 
Pancreas. Cell Syst. 7, 310-322.e4. https://doi.org/10.1016/j.cels.2018.07.007. 

30. Varshney, A., Scott, L.J., Welch, R.P., Erdos, M.R., Chines, P.S., Narisu, N., Albanus, R.D., 
Orchard, P., Wolford, B.N., Kursawe, R., et al. (2017). Genetic regulatory signatures 
underlying islet gene expression and type 2 diabetes. Proc. Natl. Acad. Sci. U. S. A. 114, 
2301–2306. https://doi.org/10.1073/pnas.1621192114. 

31. Rai, V., Quang, D.X., Erdos, M.R., Cusanovich, D.A., Daza, R.M., Narisu, N., Zou, L.S., 
Didion, J.P., Guan, Y., Shendure, J., et al. (2020). Single-cell ATAC-Seq in human 
pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 
diabetes regulatory signatures. Mol. Metab. 32, 109–121. 
https://doi.org/10.1016/j.molmet.2019.12.006. 

32. Chiou, J., Geusz, R.J., Okino, M.-L., Han, J.Y., Miller, M., Melton, R., Beebe, E., Benaglio, 
P., Huang, S., Korgaonkar, K., et al. (2021). Interpreting type 1 diabetes risk with genetics 
and single-cell epigenomics. Nature 594, 398–402. https://doi.org/10.1038/s41586-021-
03552-w. 

33. Chiou, J., Zeng, C., Cheng, Z., Han, J.Y., Schlichting, M., Miller, M., Mendez, R., Huang, S., 
Wang, J., Sui, Y., et al. (2021). Single-cell chromatin accessibility identifies pancreatic islet 
cell type- and state-specific regulatory programs of diabetes risk. Nat. Genet. 53, 455–466. 
https://doi.org/10.1038/s41588-021-00823-0. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 47 

34. Schmitt, A.D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C.L., Li, Y., Lin, S., Lin, Y., Barr, C.L., et 
al. (2016). A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in 
the Human Genome. Cell Rep. 17, 2042–2059. https://doi.org/10.1016/j.celrep.2016.10.061. 

35. Greenwald, W.W., Chiou, J., Yan, J., Qiu, Y., Dai, N., Wang, A., Nariai, N., Aylward, A., 
Han, J.Y., Kadakia, N., et al. (2019). Pancreatic islet chromatin accessibility and 
conformation reveals distal enhancer networks of type 2 diabetes risk. Nat. Commun. 10, 
2078. https://doi.org/10.1038/s41467-019-09975-4. 

36. Miguel-Escalada, I., Bonàs-Guarch, S., Cebola, I., Ponsa-Cobas, J., Mendieta-Esteban, J., 
Atla, G., Javierre, B.M., Rolando, D.M.Y., Farabella, I., Morgan, C.C., et al. (2019). Human 
pancreatic islet three-dimensional chromatin architecture provides insights into the genetics 
of type 2 diabetes. Nat. Genet. 51, 1137–1148. https://doi.org/10.1038/s41588-019-0457-0. 

37. Su, C., Gao, L., May, C.L., Pippin, J.A., Boehm, K., Lee, M., Liu, C., Pahl, M.C., Golson, 
M.L., Naji, A., et al. (2022). 3D chromatin maps of the human pancreas reveal lineage-
specific regulatory architecture of T2D risk. Cell Metab. 34, 1394-1409.e4. 
https://doi.org/10.1016/j.cmet.2022.08.014. 

38. Weng, C., Gu, A., Zhang, S., Lu, L., Ke, L., Gao, P., Liu, X., Wang, Y., Hu, P., Plummer, D., 
et al. (2023). Single cell multiomic analysis reveals diabetes-associated β-cell heterogeneity 
driven by HNF1A. Nat. Commun. 14, 5400. https://doi.org/10.1038/s41467-023-41228-3. 

39. Arda, H.E., Li, L., Tsai, J., Torre, E.A., Rosli, Y., Peiris, H., Spitale, R.C., Dai, C., Gu, X., Qu, 
K., et al. (2016). Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms 
Governing Human β Cell Function. Cell Metab. 23, 909–920. 
https://doi.org/10.1016/j.cmet.2016.04.002. 

40. Blodgett, D.M., Nowosielska, A., Afik, S., Pechhold, S., Cura, A.J., Kennedy, N.J., Kim, S., 
Kucukural, A., Davis, R.J., Kent, S.C., et al. (2015). Novel Observations From Next-
Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets. 
Diabetes 64, 3172–3181. https://doi.org/10.2337/db15-0039. 

41. Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., 
Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al. (2010). Histone H3K27ac 
separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. 
Sci. U. S. A. 107, 21931–21936. https://doi.org/10.1073/pnas.1016071107. 

42. Andersson, R., and Sandelin, A. (2020). Determinants of enhancer and promoter activities 
of regulatory elements. Nat. Rev. Genet. 21, 71–87. https://doi.org/10.1038/s41576-019-
0173-8. 

43. Field, A., and Adelman, K. (2020). Evaluating Enhancer Function and Transcription. Annu. 
Rev. Biochem. 89, 213–234. https://doi.org/10.1146/annurev-biochem-011420-095916. 

44. Ray-Jones, H., and Spivakov, M. (2021). Transcriptional enhancers and their 
communication with gene promoters. Cell. Mol. Life Sci. CMLS 78, 6453–6485. 
https://doi.org/10.1007/s00018-021-03903-w. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 48 

45. Preissl, S., Gaulton, K.J., and Ren, B. (2023). Characterizing cis-regulatory elements using 
single-cell epigenomics. Nat. Rev. Genet. 24, 21–43. https://doi.org/10.1038/s41576-022-
00509-1. 

46. Pancaldi, V. (2023). Network models of chromatin structure. Curr. Opin. Genet. Dev. 80, 
102051. https://doi.org/10.1016/j.gde.2023.102051. 

47. Sturgill, D., Wang, L., and Arda, H.E. (2024). PancrESS - a meta-analysis resource for 
understanding cell-type specific expression in the human pancreas. BMC Genomics 25, 76. 
https://doi.org/10.1186/s12864-024-09964-y. 

48. Kempfer, R., and Pombo, A. (2020). Methods for mapping 3D chromosome architecture. 
Nat. Rev. Genet. 21, 207–226. https://doi.org/10.1038/s41576-019-0195-2. 

49. McArthur, E., and Capra, J.A. (2021). Topologically associating domain boundaries that are 
stable across diverse cell types are evolutionarily constrained and enriched for heritability. 
Am. J. Hum. Genet. 108, 269–283. https://doi.org/10.1016/j.ajhg.2021.01.001. 

50. Choi, H.M.T., Beck, V.A., and Pierce, N.A. (2014). Next-generation in situ hybridization 
chain reaction: higher gain, lower cost, greater durability. ACS Nano 8, 4284–4294. 
https://doi.org/10.1021/nn405717p. 

51. Choi, H.M.T., Schwarzkopf, M., Fornace, M.E., Acharya, A., Artavanis, G., Stegmaier, J., 
Cunha, A., and Pierce, N.A. (2018). Third-generation in situ hybridization chain reaction: 
multiplexed, quantitative, sensitive, versatile, robust. Dev. Camb. Engl. 145, dev165753. 
https://doi.org/10.1242/dev.165753. 

52. Larson, M.H., Gilbert, L.A., Wang, X., Lim, W.A., Weissman, J.S., and Qi, L.S. (2013). 
CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. 
Protoc. 8, 2180–2196. https://doi.org/10.1038/nprot.2013.132. 

53. Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y., Whitehead, E.H., 
Guimaraes, C., Panning, B., Ploegh, H.L., Bassik, M.C., et al. (2014). Genome-Scale 
CRISPR-Mediated Control of Gene Repression and Activation. Cell 159, 647–661. 
https://doi.org/10.1016/j.cell.2014.09.029. 

54. Goodge, K.A., and Hutton, J.C. (2000). Translational regulation of proinsulin biosynthesis 
and proinsulin conversion in the pancreatic beta-cell. Semin. Cell Dev. Biol. 11, 235–242. 
https://doi.org/10.1006/scdb.2000.0172. 

55. Orskov, C., Holst, J.J., Poulsen, S.S., and Kirkegaard, P. (1987). Pancreatic and intestinal 
processing of proglucagon in man. Diabetologia 30, 874–881. 
https://doi.org/10.1007/BF00274797. 

56. Friis-Hansen, L., Lacourse, K.A., Samuelson, L.C., and Holst, J.J. (2001). Attenuated 
processing of proglucagon and glucagon-like peptide-1 in carboxypeptidase E-deficient 
mice. J. Endocrinol. 169, 595–602. https://doi.org/10.1677/joe.0.1690595. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 49 

57. Turpeinen, H., Ortutay, Z., and Pesu, M. (2013). Genetics of the first seven proprotein 
convertase enzymes in health and disease. Curr. Genomics 14, 453–467. 
https://doi.org/10.2174/1389202911314050010. 

58. Stijnen, P., Ramos-Molina, B., O’Rahilly, S., and Creemers, J.W.M. (2016). PCSK1 
Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. 
Endocr. Rev. 37, 347–371. https://doi.org/10.1210/er.2015-1117. 

59. Smeekens, S.P., Montag, A.G., Thomas, G., Albiges-Rizo, C., Carroll, R., Benig, M., 
Phillips, L.A., Martin, S., Ohagi, S., and Gardner, P. (1992). Proinsulin processing by the 
subtilisin-related proprotein convertases furin, PC2, and PC3. Proc. Natl. Acad. Sci. U. S. A. 
89, 8822–8826. https://doi.org/10.1073/pnas.89.18.8822. 

60. Furuta, M., Carroll, R., Martin, S., Swift, H.H., Ravazzola, M., Orci, L., and Steiner, D.F. 
(1998). Incomplete processing of proinsulin to insulin accompanied by elevation of Des-
31,32 proinsulin intermediates in islets of mice lacking active PC2. J. Biol. Chem. 273, 
3431–3437. https://doi.org/10.1074/jbc.273.6.3431. 

61. Yang, Y., Hua, Q.-X., Liu, J., Shimizu, E.H., Choquette, M.H., Mackin, R.B., and Weiss, 
M.A. (2010). Solution structure of proinsulin: connecting domain flexibility and prohormone 
processing. J. Biol. Chem. 285, 7847–7851. https://doi.org/10.1074/jbc.C109.084921. 

62. Klein, A.P., Wolpin, B.M., Risch, H.A., Stolzenberg-Solomon, R.Z., Mocci, E., Zhang, M., 
Canzian, F., Childs, E.J., Hoskins, J.W., Jermusyk, A., et al. (2018). Genome-wide meta-
analysis identifies five new susceptibility loci for pancreatic cancer. Nat. Commun. 9, 556. 
https://doi.org/10.1038/s41467-018-02942-5. 

63. Chen, J., Spracklen, C.N., Marenne, G., Varshney, A., Corbin, L.J., Luan, J., Willems, S.M., 
Wu, Y., Zhang, X., Horikoshi, M., et al. (2021). The trans-ancestral genomic architecture of 
glycemic traits. Nat. Genet. 53, 840–860. https://doi.org/10.1038/s41588-021-00852-9. 

64. Mahajan, A., Spracklen, C.N., Zhang, W., Ng, M.C.Y., Petty, L.E., Kitajima, H., Yu, G.Z., 
Rüeger, S., Speidel, L., Kim, Y.J., et al. (2022). Multi-ancestry genetic study of type 2 
diabetes highlights the power of diverse populations for discovery and translation. Nat. 
Genet. 54, 560–572. https://doi.org/10.1038/s41588-022-01058-3. 

65. Iotchkova, V., Ritchie, G.R.S., Geihs, M., Morganella, S., Min, J.L., Walter, K., Timpson, 
N.J., UK10K Consortium, Dunham, I., Birney, E., et al. (2019). GARFIELD classifies 
disease-relevant genomic features through integration of functional annotations with 
association signals. Nat. Genet. 51, 343–353. https://doi.org/10.1038/s41588-018-0322-6. 

66. Shaw-Smith, C., De Franco, E., Lango Allen, H., Batlle, M., Flanagan, S.E., Borowiec, M., 
Taplin, C.E., van Alfen-van der Velden, J., Cruz-Rojo, J., Perez de Nanclares, G., et al. 
(2014). GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes 
63, 2888–2894. https://doi.org/10.2337/db14-0061. 

67. Song, M., Pebworth, M.-P., Yang, X., Abnousi, A., Fan, C., Wen, J., Rosen, J.D., 
Choudhary, M.N.K., Cui, X., Jones, I.R., et al. (2020). Cell-type-specific 3D epigenomes in 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 50 

the developing human cortex. Nature 587, 644–649. https://doi.org/10.1038/s41586-020-
2825-4. 

68. Murphy, D., Salataj, E., Di Giammartino, D.C., Rodriguez-Hernaez, J., Kloetgen, A., Garg, 
V., Char, E., Uyehara, C.M., Ee, L.-S., Lee, U., et al. (2024). 3D Enhancer-promoter 
networks provide predictive features for gene expression and coregulation in early 
embryonic lineages. Nat. Struct. Mol. Biol. 31, 125–140. https://doi.org/10.1038/s41594-
023-01130-4. 

69. Bergman, D.T., Jones, T.R., Liu, V., Ray, J., Jagoda, E., Siraj, L., Kang, H.Y., Nasser, J., 
Kane, M., Rios, A., et al. (2022). Compatibility rules of human enhancer and promoter 
sequences. Nature 607, 176–184. https://doi.org/10.1038/s41586-022-04877-w. 

70. Martinez-Ara, M., Comoglio, F., and van Steensel, B. (2023). Large-scale analysis of the 
integration of enhancer-enhancer signals by promoters. 
https://doi.org/10.7554/elife.91994.1. 

71. van Mierlo, G., Pushkarev, O., Kribelbauer, J.F., and Deplancke, B. (2023). Chromatin 
modules and their implication in genomic organization and gene regulation. Trends Genet. 
TIG 39, 140–153. https://doi.org/10.1016/j.tig.2022.11.003. 

72. Mian, Y., Wang, L., Keikhosravi, A., Guo, K., Misteli, T., Arda, H.E., and Finn, E.H. (2024). 
Cell type- and transcription-independent spatial proximity between enhancers and 
promoters. Mol. Biol. Cell 35, ar96. https://doi.org/10.1091/mbc.E24-02-0082. 

73. Luppino, J.M., and Joyce, E.F. (2020). Single cell analysis pushes the boundaries of TAD 
formation and function. Curr. Opin. Genet. Dev. 61, 25–31. 
https://doi.org/10.1016/j.gde.2020.03.005. 

74. Dekker, J., Alber, F., Aufmkolk, S., Beliveau, B.J., Bruneau, B.G., Belmont, A.S., Bintu, L., 
Boettiger, A., Calandrelli, R., Disteche, C.M., et al. (2023). Spatial and temporal organization 
of the genome: Current state and future aims of the 4D nucleome project. Mol. Cell 83, 
2624–2640. https://doi.org/10.1016/j.molcel.2023.06.018. 

75. Antal, C.E., Oh, T.G., Aigner, S., Luo, E.-C., Yee, B.A., Campos, T., Tiriac, H., Rothamel, 
K.L., Cheng, Z., Jiao, H., et al. (2023). A super-enhancer-regulated RNA-binding protein 
cascade drives pancreatic cancer. Nat. Commun. 14, 5195. https://doi.org/10.1038/s41467-
023-40798-6. 

76. Bevacqua, R.J., Zhao, W., Merheb, E., Kim, S.H., Marson, A., Gloyn, A.L., and Kim, S.K. 
(2024). Multiplexed CRISPR gene editing in primary human islet cells with Cas9 
ribonucleoprotein. iScience 27, 108693. https://doi.org/10.1016/j.isci.2023.108693. 

77. Wolpin, B.M., Rizzato, C., Kraft, P., Kooperberg, C., Petersen, G.M., Wang, Z., Arslan, A.A., 
Beane-Freeman, L., Bracci, P.M., Buring, J., et al. (2014). Genome-wide association study 
identifies multiple susceptibility loci for pancreatic cancer. Nat. Genet. 46, 994–1000. 
https://doi.org/10.1038/ng.3052. 

78. López de Maturana, E., Rodríguez, J.A., Alonso, L., Lao, O., Molina-Montes, E., Martín-
Antoniano, I.A., Gómez-Rubio, P., Lawlor, R., Carrato, A., Hidalgo, M., et al. (2021). A 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 51 

multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. 
Genome Med. 13, 15. https://doi.org/10.1186/s13073-020-00816-4. 

79. Chiou, J., Geusz, R.J., Okino, M.-L., Han, J.Y., Miller, M., Melton, R., Beebe, E., Benaglio, 
P., Huang, S., Korgaonkar, K., et al. (2021). Interpreting type 1 diabetes risk with genetics 
and single-cell epigenomics. Nature 594, 398–402. https://doi.org/10.1038/s41586-021-
03552-w. 

80. Chandra, V., Bhattacharyya, S., Schmiedel, B.J., Madrigal, A., Gonzalez-Colin, C., Fotsing, 
S., Crinklaw, A., Seumois, G., Mohammadi, P., Kronenberg, M., et al. (2021). Promoter-
interacting expression quantitative trait loci are enriched for functional genetic variants. Nat. 
Genet. 53, 110–119. https://doi.org/10.1038/s41588-020-00745-3. 

81. Corces, M.R., Trevino, A.E., Hamilton, E.G., Greenside, P.G., Sinnott-Armstrong, N.A., 
Vesuna, S., Satpathy, A.T., Rubin, A.J., Montine, K.S., Wu, B., et al. (2017). An improved 
ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. 
Methods 14, 959–962. https://doi.org/10.1038/nmeth.4396. 

82. Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: A Method 
for Assaying Chromatin Accessibility Genome-Wide. Curr. Protoc. Mol. Biol. 109, 21.29.1-
21.29.9. https://doi.org/10.1002/0471142727.mb2129s109. 

83. Smith, J.P., Corces, M.R., Xu, J., Reuter, V.P., Chang, H.Y., and Sheffield, N.C. (2021). 
PEPATAC: an optimized pipeline for ATAC-seq data analysis with serial alignments. NAR 
Genomics Bioinforma. 3, lqab101. https://doi.org/10.1093/nargab/lqab101. 

84. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinforma. Oxf. Engl. 26, 841–842. 
https://doi.org/10.1093/bioinformatics/btq033. 

85. Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., 
Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription 
factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. 
Cell 38, 576–589. https://doi.org/10.1016/j.molcel.2010.05.004. 

86. Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. 
Genome Biol. 11, R106. https://doi.org/10.1186/gb-2010-11-10-r106. 

87. Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari, P.A., Greenleaf, W.J., and 
Chang, H.Y. (2016). HiChIP: efficient and sensitive analysis of protein-directed genome 
architecture. Nat. Methods 13, 919–922. https://doi.org/10.1038/nmeth.3999. 

88. Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.-J., Vert, J.-P., Heard, E., 
Dekker, J., and Barillot, E. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data 
processing. Genome Biol. 16, 259. https://doi.org/10.1186/s13059-015-0831-x. 

89. Lareau, C.A., and Aryee, M.J. (2018). hichipper: a preprocessing pipeline for calling DNA 
loops from HiChIP data. Nat. Methods 15, 155–156. https://doi.org/10.1038/nmeth.4583. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


 52 

90. Bhattacharyya, S., Chandra, V., Vijayanand, P., and Ay, F. (2019). Identification of 
significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun. 10, 4221. 
https://doi.org/10.1038/s41467-019-11950-y. 

91. Doench, J.G., Hartenian, E., Graham, D.B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., 
Ebert, B.L., Xavier, R.J., and Root, D.E. (2014). Rational design of highly active sgRNAs for 
CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267. 
https://doi.org/10.1038/nbt.3026. 

92. Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., 
Tothova, Z., Wilen, C., Orchard, R., et al. (2016). Optimized sgRNA design to maximize 
activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191. 
https://doi.org/10.1038/nbt.3437. 

93. Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, 
E.J., Wu, X., Shalem, O., et al. (2013). DNA targeting specificity of RNA-guided Cas9 
nucleases. Nat. Biotechnol. 31, 827–832. https://doi.org/10.1038/nbt.2647. 

94. Gu, B., Swigut, T., Spencley, A., Bauer, M.R., Chung, M., Meyer, T., and Wysocka, J. 
(2018). Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory 
elements. Science 359, 1050–1055. https://doi.org/10.1126/science.aao3136. 

95. Jiang, L., Zheng, Z., Fang, H., and Yang, J. (2021). A generalized linear mixed model 
association tool for biobank-scale data. Nat. Genet. 53, 1616–1621. 
https://doi.org/10.1038/s41588-021-00954-4. 

96. Schwartzentruber, J., Cooper, S., Liu, J.Z., Barrio-Hernandez, I., Bello, E., Kumasaka, N., 
Young, A.M.H., Franklin, R.J.M., Johnson, T., Estrada, K., et al. (2021). Genome-wide 
meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease 
risk genes. Nat. Genet. 53, 392–402. https://doi.org/10.1038/s41588-020-00776-w. 

 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


Wang et al, Figure 1
A

ATAC-seq

• n = 5-8 per cell type
• total libraries = 37

• n = 4-7 per cell type
• total libraries = 29

H3K27ac HiChIP

Assays for enhancer genome

donor
pancreas

FACS
α-cell
β-cell
δ-cell
acinar cell
duct cell

curated
scRNAseq
datasets 

Gene expression analysis
• total datasets = 6
• total number of cells = 4000

D

α
-c

el
l

AT
AC

-s
eq 50 kb

GCG
FAPDPP4

α-cell

β-cell

δ-cell

acinar cell

duct cell

H
iC

hI
P 

lo
op

s

(0-2000)B

C

−0.4

−0.2

0.0

0.2

−0.4 −0.2 0.0 0.2 0.4
PC2 (6.6%)

PC
3 

(4
.9

%
)

α-cell
β-cell
δ-cell

acinar cell
duct cell

−0.50

−0.25

0.00

0.25

0.3 0.35

PC
2 

(1
2.

2%
)

PC1 (41.5%)

E 20 kb

IGF2
ENSG00000
284779

INS-IGF2

INS
TH

α-cell

β-cell

δ-cell

acinar cell

duct cell

(0-2000)

β-
ce

ll
AT

AC
-s

eq
H

iC
hI

P 
lo

op
s

F

α-cell

β-cell

δ-cell

acinar cell

duct cell

(0-6000)

δ-
ce

ll
AT

AC
-s

eq
H

iC
hI

P 
lo

op
s

SST

10 kb

G

α-cell

β-cell

δ-cell

acinar cell

duct cell

(0-1600)

ac
in

ar
 c

el
l

AT
AC

-s
eq

H
iC

hI
P 

lo
op

s

20 kb

TRBV27
TRBV28

TRBV29-1
PRSS1

H

α-cell

β-cell

δ-cell

acinar cell

duct cell

du
ct

 c
el

l
AT

AC
-s

eq
H

iC
hI

P 
lo

op
s

20 kb

CA3

CA2

(0-2000)

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


Figure 1. Mapping enhancer-promoter interactions using donor pancreas

A. Overview of the experimental approach.

B - C. The PCA plots show the clustering of HiChIP samples based on loop profiles across different 
pancreatic cell types. Each point represents a sample, and the samples are color-coded according to 
their respective cell type.

D - H. UCSC genome browser tracks showing loci representing cell type-specific HiChIP loops and 
corresponding ATAC-seq data.
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Figure 2. Parsing enhancer-promoter interactions using graph-based tree models

A. Cartoon illustrating how HiChIP interactions are transformed into tree models. Promoter forms the 
root of the tree, enhancers form the branches, and HiChIP loops are the edges connecting these 
nodes.

B. Enhancers (nodes) and loops (edges) are assigned levels to represent their connectivity within 
the tree. Bar graphs show the distribution of node and edge numbers by level. Also see 
Supplementary Figure 2. 

C. The bar graph shows the proportion of E1 enhancers that are located further from the TSS 
(transcription start site) than E2 enhancers (dark blue) and the proportion where E1 enhancers are 
closer to the TSS than E2 enhancers (light blue). Possible looping configurations are depicted for 
each scenario.

D. Bar graph shows the fraction of enhancers looping to the nearest gene (dark grey) or a distal 
gene (light grey) in each cell type.

E. Heat maps show the expression specificity (ESS, red) and abundance (blue) of distally looped or 
skipped genes. Each row represents a gene pair that are either distally looped to or skipped by the 
same enhancer in β-cells. See Supplementary Figure 2 for graphs of the other cell types. Paired 
t-test was performed on ESS values or transcript levels of each gene pair, ††P-value < 0.0001;
†P-value < 0.001.

F. Box plots depict the relationship between transcript abundance and the size of enhancer-promoter 
trees as measured by the number of enhancers linked to a single promoter. The x-axis represents 
the quantiles of expression specificity (ESS) or transcript abundance (normalized counts). The 
individual data points represent specific tree sizes for genes within each quantile. Data for β-cells is 
shown. For the plots involving other cell types, see Supplementary Figure 2I.
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Figure 3. Dissecting enhancer interconnectivity using tree models

A.  Violin plots show the distribution of forest features in each cell type. From left to right: number of 
trees, the number of nodes and the genomic span per forest. 

B. Bar plots show the fraction of trees whose promoters connect to other trees (with PP loops) and 
those that do not engage in PP interactions (no PP loops) within each forest.

C. Bar plots show fraction of tree enhancers linking to other trees (linking trees) and those that do 
not (not linking trees) within each forest.

D. Violin plots show the distribution of promoter-promoter (PP) interactions in enhancer forests that 
either contain or do not contain cell type-specific promoters. Mann-Whitney test comparing number 
of PP interactions in these two categories **** P-value <0.0001. 

E. Model representing the structure of enhancer forests. Promoters that connect different enhancer 
trees form a central core. Most enhancer nodes within the forest are confined to their own trees 
forming distinct ‘modules’. Only a few enhancers with high-multiplicity connect multiple trees within 
the forest, linking these separate modules.
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Figure 4. EPIC: A machine learning model to prioritize enhancers impacting cell-type specific 
gene expression

A.Schematic representation of the data preparation, modeling, and performance evaluation process. 
Annotated enhancer-promoter trees were divided into two categories: cell type-specific and not cell 
type-specific, based on expression specificity derived from single-cell RNAseq data. For each tree, 
chromatin-derived features were calculated, including enhancer accessibility (ATAC-seq), 
enhancer-promoter interactions (HiChIP PET counts), and enhancer activity (product of accessibility 
and interaction), and whether the interactions are direct or indirect. The k-Nearest Neighbor (kNN) 
algorithm was employed to classify trees into their respective cell types using these features. A 10-fold 
cross-validation was performed to determine the optimal number of neighbors and to evaluate the 
model’s performance using the accuracy metric.

B. Cartoon illustrating alternative models using chromatin features. 

C. ROC curves showing performance results of models shown in B. The performance of tree-based 
models was compared to two alternative models: the promoter accessibility model and the linear 
model. 

D. Schematic describing in silico enhancer perturbations using enhancer trees. Enhancer importance 
was evaluated by iteratively removing each enhancer from the enhancer-promoter tree and recalculat-
ing the model performance (accuracy) using the kNN classifier. The performance of the perturbed 
model (with a specific enhancer removed) was compared to the full model (with all enhancers). The 
EPIC effect size for each enhancer was calculated as the deviation in accuracy between the full 
model and the perturbed model, averaged over multiple iterations. Enhancers with larger deviations 
were considered to have a greater impact on their associated promoter activity.
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Figure 5. Experimental validation platform of EPIC-prioritized enhancers in single cells using 
donor pancreas

A. Schematic illustrating the experimental workflow. See methods for details. Red cells represent 
dCas9-VP64-mCherry+ or dCas9-KRAB-mCherry+cells after transduction with adenovirus.

B. Images showing mCherry+ human pancreas cells after transduction. Scale bar: 500μm.

C. Bubble plots depict the expression specificity (ESS) and abundance of PCSK1 and PCSK2 transcripts 
in human pancreas cells based on single-cell RNA-seq data.

D. Network representation of the β-cell PCSK1 enhancer tree. Nodes represent enhancers, with the size 
of each node reflecting the ATAC-seq tag density in β-cells and the thickness of the lines (edges) 
indicating the strength of the enhancer-promoter interactions as detected by HiChIP. The blue highlighted 
nodes indicate EPIC-prioritized enhancers. Also see Supplementary Figure 4.

E. RNA FISH images showing PCSK1 transcripts (magenta) in β-cells (INS probe, green) and α-cells 
(GCG probe, green) after CRISPRa (dCas9-VP64) modulation. The top row shows cells with no gRNAs, 
and the bottom row shows cells targeted with gRNAs against the enhancer 5.3108E. Scale bar: 50μm.

F. Quantification of PCSK1 transcript levels in mCherry+ β-cells and mCherry+ α-cells after CRISPRa 
(dCas9-VP64) modulation. Mean PCSK1 probe intensity per cell is shown for cells transduced with 
gRNAs targeting the promoter (positive control), enhancers 5.3108E and 5.3120E, and a negative control 
region. The effect of CRISPRa perturbation was analyzed using one-way ANOVA, followed by Dunnett's 
multiple comparison test to compare enhancer gRNA targeting conditions to the no gRNA control group. 
Asterisks indicate P-value < 0.0001; ns, not significant. n(mCherry+ β-cells)= 1215, n(mCherry+ α-cells)= 
535, results were reproduced with at least two independent donors.

G. Same as D, except the network represents α-cell PCSK2 enhancer tree, and the red highlighted nodes 
indicate its EPIC-prioritized enhancers. Also see Supplementary Figure 4.

H. Same as E, except PCSK2 transcript is shown in magenta, and the bottom row shows cells targeted 
with gRNAs against the enhancer 20.1000E.

I.  Quantification of PCSK2 transcript levels in mCherry+ α-cells and mCherry+ β-cells after CRISPRa 
(dCas9-VP64) targeting. Mean PCSK2 probe intensity per cell is shown for cells transduced with gRNAs 
targeting the promoter, enhancers 20.995E, 20.1000E, and 20.973E. The effect of CRISPRa perturbation 
was analyzed using one-way ANOVA, followed by Dunnett's multiple comparison test to compare 
enhancer gRNA targeting conditions to the no gRNA control group. Asterisks indicate P-value < 0.0001. 
n(mCherry+ α-cells)= 1602, n(mCherry+ β-cells)= 7477, results were reproduced with at least two 
independent donors.
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Figure 6. Enhancer-promoter trees and EPIC facilitate annotation of genetic variants linked to 
disease risk

A. Heat map represents the enrichment analysis results of risk SNPs associated with pancreas 
disorders and negative control traits in cell type-specific enhancer or promoter nodes.
 
B. Box plots with overlaid data points showing the distribution of effect sizes for acinar cell enhancers 
associated with type 2 diabetes (left) and pancreatic ductal adenocarcinoma (PDAC) (right). Enhancers 
are grouped by gene, with dark blue points representing enhancers that overlap with a SNP and light 
blue points indicating those without an overlapping SNP. The whiskers extend to the most extreme data 
points not considered outliers. 
 
C. Network representation of the XBP1 enhancer tree in acinar cells. Nodes represent enhancers, with 
the size of each node reflecting the ATAC-seq tag density and the thickness of the lines (edges) 
indicating the strength of the enhancer-promoter interactions as detected by HiChIP. The nodes with the 
asterisks indicate the SNP enriched enhancers.

D. Combined UCSC genome browser and locus zoom plots displaying the enhancer tree elements at 
the XBP1 locus in acinar cells. The upper panel shows the locus zoom plot with GWAS P-values for 
SNPs associated with PDAC, highlighting significant SNPs (rs2267131, rs5752810, and rs5752811) in 
red. The UCSC genome browser tracks below show the corresponding ATAC-seq peaks and HiChIP 
loops detected in acinar cells. Red highlights the nodes enriched with the significant SNPs.

E. Bubble plot depicts the expression specificity (ESS) and the abundance of XBP1 transcripts in human 
pancreas cells based on single-cell RNA-seq data. XBP1 is most abundant in acinar cells.

F. Scatter plot displaying the ranked effect sizes of acinar cell XBP1 tree enhancers. The enhancers that 
were tested in CRISPR perturbation assays are marked in red.

G. RNA FISH images showing XBP1 transcripts (magenta) in acinar cells (CPA1 probe, green) after 
CRISPRi (dCas9-KRAB) modulation. The top row shows cells without gRNA treatment, and the bottom 
row shows cells targeted with gRNAs against the enhancer 22.1008E. Scale bar: 50μm.

H. Quantification of XBP1 transcript levels in mCherry+ acinar cells after CRISPRi (dCas9-KRAB) 
perturbation. Mean XBP1 probe intensity per cell is shown for cells transduced with gRNAs targeting the 
promoter (positive control), enhancers 22.1008E (top-ranking), 22.1015E (mid-rank), 22.1040 (low-rank). 
The effect of CRISPRi perturbation was analyzed using one-way ANOVA, followed by Dunnett's multiple 
comparison test to compare enhancer gRNA targeting conditions to the no gRNA control group. 
****, P-value < 0.0001; ***, P-value < 0.001; ns, not significant. n(mCherry+ acinar cells)= 2319, results 
were reproduced by at least two independent donors.
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Supplementary Figure 1 (relates to Figure 1): 

A. FACS plots showing the gating strategy to isolate different pancreas cell populations. Also see 
Supplementary Table 2.

B. Bar plots showing the enrichment and depletion of marker genes in each purified cell population as 
determined by qPCR analysis. Results were normalized to pre-sorted cells.

C. The Principal Component Analysis shows the clustering of ATAC-seq samples based on chromatin 
accessibility profiles across different pancreatic cell types. Each point represents a sample, and the 
samples are color-coded according to their respective cell type. The number of donors (n) used for each 
cell type is indicated.
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Wang et al, Supplementary Figure 2 (cont.)
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Supplementary Figure 2 (relates to Figure 2)

A. Flowchart describing consensus loop development.

B. Schematic detaling enhancer tree construction based on consensus loops.

C-D. Bar graphs depict the distribution of nodes (C) and edges (D) by connectivity level in enhancer 
trees before pruning.

E. Interaction frequency stratified by distance of E1 and E2 relative to their corresponding promoters. 
Mann-Whitney test, **** P-value < 0.0001; * P-value < 0.05; ns, not significant.

F. Heat maps show the expression specificity (ESS, red) and abundance (blue) of distally looped or 
skipped genes. Each row represents a gene pair that are either distally looped to or skipped by the 
same enhancer in α-, δ-, acinar or duct cells.

G. Distribution of gene pairs based on their type in distally looping and skipped gene interactions 
across different pancreatic cell types (α-, β-, δ-, acinar or duct cells.). The dark green bars represent 
the percentage of gene pairs where both the distally looping and skipped genes are coding genes 
(coding.skip.coding). The light green bars show the percentage of pairs where the distally looping 
gene is a coding gene, but the skipped gene is a non-coding gene (coding.skip.noncoding).

H. Fraction of enhancers looping to the nearest gene (dark grey) or a distal gene (light grey) in each 
cell type when noncoding genes are excluded from the datasets.

I. Box plots depict the relationship between transcript abundance and the size of enhancer-promoter 
trees as measured by the number of enhancers linked to a single promoter. The x-axis represents the 
quantiles of expression specificity (ESS) or transcript abundance. The individual data points represent 
specific tree sizes for genes within each quantile.

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.07.611794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.07.611794


Supplementary Figure 3 (relates to Figure 3)

A. Bar graph shows fraction of enhancers connecting to one, two, three or more promoters quantified in each 
pancreatic cell type. 

B. Bar graph shows the proportion of enhancers that connect to multiple promoters in terms of level changes 
in each cell type. 

C. Table showing the number of trees belonging to a forest, stratified by cell type.
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Supplementary Figure 4 (relates to Figure 5)

A. UCSC genome browser tracks displaying ATAC-seq peaks and HiChIP loops at the PCSK1 locus 
across different pancreas cell types. The top set of tracks shows a broader region around the PCSK1 
gene, showing all the enhancer-promoter interactions corresponding to the PCSK1 tree in β-cells. The 
bottom set of tracks zooms in on a region around PCSK1, blue highlighted regions indicate the 
top-ranking enhancers 5.3108E and 5.3120E, the promoter and the negative control regions.

B. Scatter plots displaying the ranked effect sizes of β-cell PCSK1 tree enhancers (left) and α-cell 
PCSK2 tree enhancers (right). Each point represents an enhancer, ordered by effect size. The 
enhancers that were tested in CRISPR perturbation assays are marked in red.

C. Quantification of PCSK1 transcript levels in mCherry+ acinar cells and mCherry+ duct cells after 
CRISPRa targeting. Mean PCSK1 probe intensity per cell is shown for cells treated with gRNAs 
targeting the promoter (positive control), enhancers 5.3108E and 5.3120E, and a negative control 
region. No activation was observed in either cell type or perturbation condition. n(mCherry+ acinar 
cells)= 4714, n(mCherry+ duct cells)= 2193, results were reproduced by at least two independent 
donors.

D. UCSC genome browser tracks displaying ATAC-seq peaks and HiChIP loops at the PCSK2 locus 
across different pancreas cell types. Blue highlighted regions indicate the promoter and 
EPIC-prioritized enhancers regions. 
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Wang et al, Supplementary Figure 5
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Supplementary Figure 5 (relates to Figure 6)

A. Network representation of the GATA4 enhancer tree in acinar cells. Nodes represent enhancers, with 
the size of each node reflecting the ATAC-seq tag density and the thickness of the lines (edges) 
indicating the strength of the enhancer-promoter interactions as detected by HiChIP. The node with the 
asterisk indicates the SNP enriched enhancer. 

B. Combined UCSC genome browser and locus zoom plots displaying the enhancer tree elements at the 
GATA4 locus in acinar cells. The locus zoom plot highlighting significant SNPs in red. The UCSC 
genome browser tracks below show the corresponding ATAC-seq peaks and HiChIP loops detected in 
acinar cells. Red highlights the node enriched with the significant SNPs. 

C. Bubble plot depicts the expression specificity (ESS) and transcript abundance (normalized counts) of 
GATA4 transcripts in human pancreas cells based on single-cell RNA-seq data. 

D-G. Cumulative Distribution Function (CDF) plots comparing the enhancer ranks based on EPIC’s 
prioritization, with and without SNP overlap, for different cell types and GWAS traits. The top-ranking 
enhancer has the value of 1, and bottom-ranking enhancer has the value of zero.

(D)  The red line represents enhancers that overlap with SNPs associated with type 2 diabetes (T2D) in 
β-cells, while the black line represents enhancers without SNP overlap.
(E) The same comparison for enhancers in acinar cells associated with T2D.
(F) Enhancers overlapping with SNPs (red) and those without SNP overlap (black) in ductal cells 
associated with pancreatic ductal adenocarcinoma (PDAC).
(G) The same comparison for enhancers in acinar cells associated with PDAC.
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