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Abstract 
 
Purpose 
Metabolite amplitude estimates derived from linear combination modeling of MR spectra depend 
upon the precise list of constituent metabolite basis functions used (the “basis set”). The absence 
of clear consensus on the “ideal” composition or objective criteria to determine the suitability of 
a particular basis set contributes to the poor reproducibility of MRS. In this proof-of-concept 
study, we demonstrate a novel, data-driven approach for deciding the basis-set composition using 
Bayesian information criteria (BIC). 
 
Methods 
We have developed an algorithm that iteratively adds metabolites to the basis set using iterative 
modeling, informed by BIC scores. We investigated two quantitative “stopping conditions”, 
referred to as max-BIC and zero-amplitude, and whether to optimize the selection of basis set on 
a per-spectrum basis or at the group level. The algorithm was tested using two groups of 
synthetic in-vivo-like spectra representing healthy brain and tumor spectra, respectively, and the 
derived basis sets (and metabolite amplitude estimates) were compared to the ground truth. 
 
Results 
All derived basis sets correctly identified high-concentration metabolites and provided 
reasonable fits of the spectra. At the single-spectrum level, the two stopping conditions derived 
the underlying basis set with 77-87% accuracy. When optimizing across a group, basis set 
determination accuracy improved to 84-92%.  
 
Conclusion 
Data-driven determination of the basis set composition is feasible. With refinement, this 
approach could provide a valuable data-driven way to derive or refine basis sets, reducing the 
operator bias of MRS analyses, enhancing the objectivity of quantitative analyses, and increasing 
the clinical viability of MRS. 
 
 
Keywords:  magnetic resonance spectroscopy; basis set; information criteria; model 

selection; 2HG; Cystathionine 
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1. Introduction 
 
In vivo proton magnetic resonance spectroscopy (MRS) is a non-invasive method for estimating 
the concentrations of approximately 20 metabolites in the human brain. Levels of 
neurotransmitters and antioxidants, for example, may serve as biomarkers of function and 
pathology, but also general indicators of neuronal health and cell proliferation. Extracting 
metabolite concentrations from the in vivo spectrum depends on reliably resolving the 
contributions of constituent signals. For this task, expert consensus recommends1,2 linear-
combination modeling (LCM), a well-established method that uses a weighted sum of simulated 
signals—basis functions—to approximate the measured spectrum. 
 
To achieve optimal precision and accuracy, the basis set included in LCM should be selected 
without bias. Poor spectral dispersion at clinical field strengths causes overlap between 
metabolite signals, preventing them from being estimated independently. Furthermore, many 
potentially MRS-detectable compounds are present below the threshold of detection in the 
healthy brain, only reaching detectable levels in pathology (e.g., 2-hydroxyglutarate in primary 
brain tumors with isocitrate dehydrogenase mutations3). 
 
In practice, the choice of which metabolites to include in the LCM basis set is delicate because 
many different basis set compositions are admissible, i.e., they could be considered reasonable 
choices. Several fundamental challenges arise from this problem:  

1. Wrongly in- or ex-cluding basis functions can lead to substantial biases of4–8 and 
interactions between9,10 metabolite amplitude estimates. Beyond these studies, the effects 
of basis set composition have received surprisingly little attention. 

2. There is no consensus on the ideal basis set composition even for the healthy brain, let 
alone in pathology. This has resulted in significant analytic variability between research 
groups. 

3. The definition of the basis-set composition currently requires a-priori knowledge (e.g., an 
external brain tumor diagnosis is necessary to adequately model a brain tumor spectrum), 
limiting the clinical application of MRS.  

4. The number of metabolites that can be modeled with reasonable accuracy and precision 
depends strongly on the quality of the data. High-SNR, well-resolved spectra allow the 
modeling of metabolites that might otherwise have simply led to the overfitting of lower-
quality data. 

5. Finally, no objective criteria exist to determine the ideal basis-set composition. Current 
methods do not assess whether a specific basis set will overfit, underfit, or appropriately 
model a spectrum.  

 
To address these challenges, we investigated the feasibility of determining the appropriate basis 
set composition directly from the spectrum itself using model selection. Model selection is the 
process of determining the most suitable model from a list of potential candidates informed by a 
quantitative information criterion (IC). There are several specific definitions of ICs11–14, but 
generally, they attempt to “score” candidate models, balancing goodness-of-fit and model 
complexity in a single value15,16. Higher IC scores are interpreted as a proxy measure of model 
parsimony, i.e., the “cost-effectiveness” of particular candidate models; ICs have previously 
been used in MRS to derive optimal baseline model parameters17.  
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In this study, we demonstrate an automated data-driven procedure—using iterative fitting of the 
spectra and informed by IC scores—to determine the appropriate composition of the basis set. 
We developed two variations of this algorithm: the first determines the optimal basis set for a 
single spectrum, and the second for a group of spectra. We also designed two different stopping 
conditions: the first stops adding metabolites to the basis set after reaching the maximum IC 
score, and the second keeps adding metabolites beyond this point until they no longer contribute 
any signal to the fit. We then tested the performance of the different algorithms with two classes 
of in-vivo-like simulated spectra, representing healthy brain and low-grade glioma. The glioma 
data included two oncometabolites that were not present in the healthy brain data. To establish 
the effectiveness of our new approach, we quantified how well the basis sets selected by the 
different algorithms overlapped with the ground-truth basis sets from which spectra were 
generated. 
 
 

2. Materials & methods 
2.1. Synthetic in-vivo-like data generation 
 
We first simulated realistic in-vivo-like spectra to establish a known ground truth. We generated 
two datasets of 100 spectra, each with distinct spectral characteristics, reflecting healthy-
appearing brain spectra and those typically seen in low-grade glioma, respectively. We chose the 
latter case as low-grade glioma spectra very commonly feature metabolites that are effectively 
absent from healthy brain tissue (namely, cystathionine18,19 and 2-hydroxyglutarate20) and exhibit 
markedly different amplitudes of major metabolites like NAA, choline, myo-inositol, and lactate.  
 
Synthetic spectra were derived from a “library set” of metabolite basis functions, simulated using 
the density-matrix formalism of a 2D-localized 101 x 101 spatial grid (field of view 50% larger 
than the voxel) implemented in MRSCloud21, which is based on FID-A22. We synthesized 3T 
sLASER spectra to reflect a typical acquisition used to measure 2HG (TE = 97 ms with TE1/2 = 
32/65 ms; 8192 complex points; spectral width 4000 Hz). 
 
In total, we simulated 32 metabolite basis functions: Acetoacetate, AcAc; acetate, Ace; alanine, 
Ala; ascorbate, Asc; aspartate, Asp; citrate, Cit; creatine, Cr; creatine methylene, CrCH2; 
cystathionine, Cystat; ethanolamine, EA; ethanol, EtOH; γ-aminobutyric acid, GABA; 
Glycerophosphocholine, GPC; glutathione, GSH; glucose, Glc; glutamine, Gln; glutamate, Glu; 
glycine, Gly; myo-inositol, mI; lactate, Lac; N-acetylaspartate, NAA; N-acetylaspartylglutamate, 
NAAG; phosphocholine, PCh; phosphocreatine, PCr; phosphoethanolamine, PE; phenylalanine, 
Phenyl; scyllo-inositol, sI; serine, Ser; taurine, Tau; tyrosine, Tyros; β-hydroxybutyrate, bHB; 
and 2-hydroxyglutarate, 2HG. We also simulated basis functions for 5 macromolecular (MM09, 
MM12, MM14, MM17, MM20) and 3 lipid resonances (Lip09, Lip13, Lip20) and added them to 
this basis set. Out of the full set of 40 basis functions, we selected 26 to assemble the synthetic 
healthy ground-truth spectra: Asc; Asp; Cr; CrCH2; GABA; GPC; GSH; Gln; Glu; mI; Lac; 
NAA; NAAG; PCh; PCr; PE; sI; Tau; MM09; MM12; MM14; MM17; MM20; Lip09; Lip13; 
and Lip20. The locations, widths, and relative amplitudes of the parameterized lipid and MM 
resonances are reported in Supplementary Table 1 and the full library of basis functions is 
visualized in Supplementary Figure 1. 
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For the tumor spectra, we added additional contributions from 2HG and Cystat for a total of 28 
basis functions in the tumor ground-truth basis set. The metabolite basis functions were 
combined into realistic spectra using the “OspreyGenerateSpectra” function in Osprey23. The 
data generator combined the individual simulated profiles with metabolite-specific amplitudes, 
Gaussian and Lorentzian linebroadening terms, and white noise, taken from Gaussian 
distributions. Crucially, each group was defined with distinct model parameter ranges, which 
were informed by previously modeled in vivo data7,24. Briefly, besides the additional 2HG and 
Cystat contributions, the tumor spectra also had higher tCho (100%), lower tNAA (60%), higher 
mI (30%), lower Glu (25%), higher Lac (1000%), higher lip09 (550%), and higher Lip20 
(550%). The means and standard deviations of the parameters for each group are fully reported 
in Supplementary Table 2 and the two groups of resulting spectra are visualized in 
Supplementary Figure 2.  
 
2.2. Basis set determination algorithm 
 
Our proposed algorithm uses IC scores to build the basis set in an iterative process. Introducing 
more basis functions to the model reduces fit residuals but will also increase the number of 
model parameters (i.e. more metabolite-specific amplitudes, frequency shifts, and lineshape 
parameters). Determining the IC scores for each potential basis set composition allows us to 
counterbalance these two competing modeling aspects to arrive at a parsimonious compromise, 
i.e., to maximize the goodness-of-fit without overfitting. 
 
2.2.1. Information criteria 
 
The Akaike IC (AIC), corrected AIC (AICc), and Bayesian IC (BIC), only differ in how they 
regularize goodness-of-fit against model complexity and are linearly offset from one another for 
our purposes.  We elected to proceed using the BIC as the sole model performance metric in the 
algorithm, defined: 

!"# = −2 ∙ ( ∙ )((σ) − )((() ∙ - 
 
where ( is the number of points, - is the total number of model parameters, and σ	 =
	/∑(residuals!)!

, the root sum square of the fit residual.  

 
2.2.2. Algorithm implementation 
 
We designed an algorithm to determine which of the library set of 40 basis functions (32 
metabolites plus 8 MM/Lips) merits inclusion in the “selected set”.  The selected set (which is 
initially empty) is built up one basis function at a time—the function added in each round of the 
algorithm is chosen from among the remaining candidates in the library set, based upon which 
model had the highest BIC. Thus, the algorithm consists of two nested loops: the outer loop (of 
rounds) to determine which is the next candidate to add to the selected set, and the inner loop (of 
steps) which consists of modeling the data with the current selected set plus one additional 
candidate function.  
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Both loops fill the selected basis set iteratively until a certain stopping condition is triggered. The 
algorithm is illustrated in Figure 1A, and further demonstrated in a Supplementary Video, with 
the specific steps as follows: 

1. Initialize an empty selected set and a full library set. 
2. Perform a preliminary fit using the full library set to estimate global lineshape and phase 

parameters which are then fixed during subsequent model calls. 
3. Round 1: 

a. Step 1 consists of modeling the spectrum with a candidate set containing only the 
first library basis function. 

b. The remaining 39 steps of Round 1 consist of modeling the spectrum with a 
candidate set consisting of each library basis function. The BIC is calculated for 
each model. 

c. Round 1 concludes by moving the candidate function that resulted in the model 
with the highest BIC into the selected basis set. 

4. The 1-th Round then steps over the (41 − 1) remaining library functions, thus: 
a. Form the candidate basis set from the current selected set and the (th basis 

function from those remaining in the library set. 
b. Model the data with the candidate set. 
c. Calculate the BIC and note the amplitude of the (th basis function within the 

model. 
5. Check whether the stopping condition has been met (as described below). 
6. If the stopping condition is not met, move the candidate basis function with the highest 

BIC score from the library set to the selected set and return to step 4. 
 
We investigated two domains of selection, i.e. whether to select a basis set for each spectrum 
individually or to select one basis set at the group level for a set of spectra. For each domain, we 
also investigated two stopping conditions, i.e when to stop adding basis functions to the selected 
set, see Figure 1B. The optimization domains are referred to as: 

1. “Single-spectrum”: Executes the algorithm on each spectrum in isolation. Candidate 
basis functions are added based on the BIC scores derived from that spectrum alone, 
resulting in a spectrum-specific selected set. 

2. “Group-level”: Executes the algorithm as described, but aggregates BIC scores across a 
group of spectra. At each step, we fit all spectra within a group with the candidate set and 
then use the median BIC score across the cohort as the metric to decide which metabolite 
is selected for that round. This procedure results in a single basis set for the entire group. 

The two stopping conditions were: 
1. “Max-BIC”: The algorithm stops adding metabolites to the selected set once the BIC is 

decreased by the inclusion of the next basis function. For the group-level optimization, it 
stops once the median BIC across all datasets decreases. 

2. “Zero amplitude”: The algorithm keeps adding metabolites beyond the maximum BIC 
until the round when no candidate functions are modeled with non-zero amplitude. For 
the group-level optimization, it stops once all potential candidate functions are estimated 
with a median amplitude of zero across all datasets. 

 
To stabilize the procedure, we instructed the algorithm to “link” certain pairs of practically 
indistinguishable basis functions, i.e., add both of them to the temporary candidate basis set as a 
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single step, and, if selected, to add both to the selected basis set. Specifically, we linked Cr and 
PCr (referred to as the tCr step) and PCho and GPC (the tCho step).  
 

 
2.2.3. MRS modeling 
 
All MRS modeling steps were performed using Osprey’s24 general LCM algorithm23, introduced 
in our recent work23,25. Aside from the Gaussian and zero-order phase parameters—which were 
fixed following the initial modeling step—the model was defined using our default in vivo 
parameters, naïve to the composition of the simulated spectra. We performed optimization over 
the range of 0.5–4.2 ppm and included a non-regularized spline baseline with knot spacing of 0.5 
ppm. Metabolite-specific Lorentzian linewidth and frequency shift parameters were regularized 
(as described in the original LCModel publication26) with expectation and standard deviation 
values of 2.75 ± 1.5 and 0 ± 3 Hz, respectively.  
 
2.3. Statistical analysis 
 

 
Figure 1. Basis set selection algorithm. A. A visualization of the algorithm. Metabolites are iteratively moved 
from a library set (dark blue) to a selected set (light blue) using BIC scores. The basis function that yields the 
best BIC score is moved to the selected set (unless a stopping condition is triggered). B. A visualization of 
the evolution of BIC scores as the basis set is optimized. The two stopping conditions are represented by the 
colored arrows and shaded regions. 4 example fits are shown in the panels below (corresponding to red 
points on the curve). 
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The algorithm's performance was primarily judged by its ability to correctly identify the 
metabolite signals that were present in the synthetic spectra. This was assessed using three 
related metrics to compare each derived basis set to the ground truth set: 

1. False positives: The number of basis functions selected for inclusion by the algorithm 
that were not present in the synthetic spectra (incorrectly included). 

2. False negatives: The number of basis functions not selected for inclusion by the 
algorithm that were present in the synthetic spectra (incorrectly omitted). 

3. The Sorensen-Dice coefficient (SDC): The SDC was used as a measure of overlap with 
the ground truth basis set, defined: 

45#	 = 	 !∙TruePositive
!∙TruePositive	$	FalsePositive	$	FalseNegative. 

 
Finally, we investigated the effect that the derived basis set composition had on metabolite 
amplitude estimates. Amplitude deviations from the ground truth are reported as percentage 
changes relative to the known ground-truth value that entered the simulation. We also compared 
the amplitudes derived from each basis set to those derived from a fit using the correct ground 
truth basis set, i.e. modeling the data with only the metabolites we know to be present in the 
simulation. Distributions were compared using paired t-tests. All statistical analyses were 
conducted in Matlab 2022a. 
 
The algorithm implementation, specific Osprey version, and other code used to generate the 
results of this manuscript have been made available online (DOI: 10.17605/OSF.IO/P2USJ). 
 

3. Results 
 
3.1. Algorithmic trends of BIC scores 
 
As the algorithm added basis functions to the selected set, BIC scores tended to follow a 
characteristic trajectory. High-concentration singlet resonances were initially prioritized by the 
algorithm, and their inclusion in the basis set rapidly reduced model residuals and, consequently, 
increased the BIC score. After this—as diminishing contributions are added to the spectrum—the 
rapid ascent of the BIC scores tapered off before reaching a maximum (which triggers the max-
BIC stopping condition). According to the interpretation of BIC scores, this point is considered 
to be optimally parsimonious, and while additional basis functions do continue to reduce the 
residuals, they do not reduce them sufficiently to warrant the additional model parameters. This 
ascent of the BIC scores reliably identified the high-concentration metabolites that were present 
in the simulation. 
 
Beyond the peak, we noted a gradual decrease in the BIC scores as relatively smaller spectral 
contributions lowered the cost-effectiveness of the overall model. Eventually, the candidate 
metabolite basis functions contribute an amplitude of zero when added to the model. In other 
words, it costs model parameters to include the candidate but provides no benefit to the model 
residual (this triggers the 2nd stopping condition: zero-amplitude). After the zero-amplitude point, 
we observed a continued decline as the remaining basis functions were added. Importantly, in 
most cases, ground-truth metabolites (those present in the synthetic spectra) tended to be 
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included before the algorithm reached this final zone. Typical BIC score trajectories across 
rounds of the algorithm are illustrated in Figure 2. 
 

 
 
The single-spectrum results in Figure 2 illustrate the between-spectrum variation of the basis set 
composition. Whilst it is cumbersome to visualize all 200 single-spectrum optimization curves, 
we have attempted to illustrate the initial algorithmic trends of the single-spectrum optimization 
in Figure 3. For healthy spectra, there is a clear prioritization of NAA, tCr, and tCho, in that 

 
Figure 2. BIC scores as a function of algorithm round. The top row shows a conceptual visualization of the 
difference between the two optimization methods. The lower two rows show the results for the healthy 
spectra (middle row) and tumor spectra (bottom row). The left column shows 3 (out of 100) example BIC 
curves for the single-subject optimizations, and the right column shows the group-level optimization 
(median BIC). Text labels indicate the basis function added at each round, with label color reflecting the 
presence/absence (black/grey) of that metabolite in the ground-truth simulation. Line style is used to 
illustrate the extent of the derived basis sets in each stopping condition: included in both stopping 
conditions (solid black line), included only in the zero-amplitude condition (grey line), or included in 
neither (light-grey dotted line). 
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order. The tumor spectra have a less clearly defined hierarchy of signals. The lower NAA and 
higher tCho amplitudes lead to a less unanimous prioritization of the singlets, and the larger lipid 
signals are prioritized as early as the 2nd round. Beyond the 5th round, both groups of spectra had 
a diverse set of metabolites selected. A visualization summarizing the prioritization of basis 
functions across the full optimization process is shown in Supplementary Figure 3. 
 
 

 
 
3.2. Overlap with the ground-truth basis set 
 
For the single-spectrum optimization, we found that the max-BIC stopping condition tended to 
be too conservative (few false positives, many false negatives) whereas the zero-amplitude 
condition tended to be too aggressive (few false negatives, many false positives). Bar plots 
showing the false positives, false negatives, and SDC are shown in Figure 4. Overall, the zero-

 
Figure 3. Histograms of the frequency with which particular metabolites were picked at each round of 
the algorithm. Rows represent the different rounds (increasing from top-to-bottom), and the two 
columns represent the two groups of spectra. 
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amplitude condition exhibited a better overlap with the ground-truth set, as evidenced by the 
SDC for both healthy-appearing spectra (mean difference = 7%, p < 0.005) and tumor spectra 
(mean difference = 8%, p < 0.005).  
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Figure 4. A. Conceptual Venn diagram showing the ground truth, library, and both derived basis sets. B. 
Overlap of the derived basis sets compared to the ground truth for the healthy spectra (top) and tumor 
spectra (bottom). From left to right, columns show the number of false positives, the number of false 
negatives, and the Sorensen-Dice coefficient (SDC) reported as a percentage. Within each panel, the left 
half shows the 100 single-spectrum results, and the right half shows the sole result of the group-wise 
optimization. Stopping conditions are color-coded: Max-BIC (purple) and zero-Amp (orange). Below 
each bar, the mean value is reported. 
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When the optimization was performed at the group level, a similar trend was present, but with 
greater overall fidelity to the ground truth. Across both datasets and both stopping conditions, the 
group-level optimization outperformed the single-spectrum optimization in all metrics with one 
exception (zero-amplitude stopping condition, false negatives for the tumor spectra). This better 
performance of the group-level approach is most clearly summarized in the SDC plots, with the 
ground-truth overlap increasing by 11% for the max-BIC (from 77% to 88%) and 8% for the 
zero-amplitude stopping conditions (from 84% to 92%) in the healthy spectra, and both stopping 
conditions increasing by 5% for the tumor spectra. 
 
3.3. Inclusion of 2HG and Cystat  
 
For the single-spectrum optimization, the inclusion or omission of Cystat and 2HG depended on 
the stopping condition used, with neither providing perfect results. The zero-amplitude condition 
included the oncometabolites in 97% of the tumor spectra (nCystat = 100; n2HG = 94) but also 
provided a large number of false positives for these same metabolites in healthy spectra (nCystat = 
54; n2HG = 42). The situation is reversed for the max-BIC stopping condition. It does better at 
omitting Cystat and 2HG from healthy spectra (nCystat = 0; n2HG = 2), but incorrectly omits these 
metabolites from most tumor spectra (nCystat = 89; n2HG = 85). 
 
For group-level optimization, the results are encouraging and definitive. Cystat and 2HG were 
correctly omitted from the basis set of the healthy spectra and correctly included in the tumor 
spectra for both stopping conditions.  
 
3.4. Effect on metabolite amplitudes 
 
Metabolite amplitude errors depended on the underlying ground truth amplitude, with larger 
relative error for low-concentration metabolites. Figure 5 shows the percentage deviation of 
metabolite amplitude estimates from the ground truth for 5 metabolite measures commonly 
reported in the MRS literature: tNAA (NAA + NAAG), tCr (Cr + PCr), tCho (GPC + PCho), mI, 
and Glx (Glu + Gln). 
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Across both groups and all derived basis set compositions, absolute amplitude errors were 
typically below 15% for these 5 metabolites but with some negative Glx outliers as large as –
37%, namely for max-BIC-derived basis sets. For the major singlet resonances (tNAA, tCr, and 
tCho), absolute amplitude errors were < 16% overall, and ≤ 11 % for the healthy-appearing 
spectra, specifically.  
 
As reported in section 3.2, the max-BIC stopping condition included too few metabolites, and 
this underprescription of the basis set results in larger mean amplitude errors (4.6% for single-
spectrum optimization and 3.9% group-wise) than for the zero-amplitude stopping condition 
(3.2% for both single-spectrum and group-wise optimization). The best-performing optimization 
method (as measured by SDC; group-wise & zero-amplitude) only deviated from the ground 

 
Figure 5. Boxplots of the percentage deviation of amplitude estimates from the simulated ground truth 
for 5 commonly reported metabolites (tNAA, tCr, tCho, mI, and Glx). Results for the healthy spectra are 
shown in the top row and tumor spectra in the bottom. The results using the ground truth basis set (i.e. 
including only the metabolites present in the simulation) are shown in green. The two stopping 
conditions—max-BIC (purple) and zero-Amp (orange)—are shown in each panel, for the single-spectrum 
optimization (left) and group-level optimization (right). Significant deviations from the estimates derived 
using the ground-truth basis set are marked with asterisks: “*” (0.005 ≤ p < 0.05), “**” (0.0005 ≤ p < 
0.005), and “***” (p < 0.0005). Note that the plot limits exclude Glx outliers for comparability. 
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truth amplitude estimates in healthy spectra for Glx (mean difference = 2.1%, p = 0.0071) and 
tCr (mean difference = 1.2%, p < 0.0005). 
 
The deviation of amplitude estimates from ground truth is shown in Figure 6 for Cystat and 2HG 
in the tumor spectra. Note that an estimated amplitude of zero is assumed for single-spectrum-
optimized basis sets which omitted that particular metabolite. This resulted in a cluster of data 
points at –100%. However, 4/10 of these points for the single-spectrum, zero-amplitude basis 
sets were true zero-amplitude estimates of 2HG when it was present in the derived basis set. 
 
The max-BIC stopping condition again exhibited the largest mean amplitude errors for both 
Cystat (19% for single-spectrum, and 16% for group-level optimization) and 2HG (28% for 
single-spectrum, and 73% for group-level optimization).  
  

 
 

4. Discussion 
 
A key challenge for in vivo MRS is that a ‘true’ model of the in vivo MR spectrum cannot be 
known, since the processes that shape it—the interplay of concentrations, microstructure, 
microscopic particle motion, macroscopic subject motion, temperature, pH, etc.—are too 
complex. In practice, all conventional 1H-MRS modeling methods therefore focus on the most 
relevant macroscopic quantities, i.e., signal amplitudes for key metabolites, and must simplify 
other aspects. This epistemic uncertainty has provided a fertile environment in which a multitude 
of model functions, algorithms, software tools, and fitting strategies have grown over the last 
thirty years. Unsurprisingly, the different models and strategies do not agree very well with each 

 
Figure 6. Boxplots of the percentage deviation of amplitude estimates from the simulated ground truth 
for Cystat and 2HG in the tumor spectra. The results using the ground truth basis set (i.e. including only 
the metabolites present in the simulation) are shown in green. The two stopping conditions—max-BIC 
(purple) and zero-Amp (orange)—are shown in each panel, for the single-spectrum optimization (left) 
and group-level optimization (right). Significant deviations from the estimates of the ground-truth basis 
set are marked with asterisks: “*” (0.005 ≤ p < 0.05), “**” (0.0005 ≤ p < 0.005), and “***” (p < 0.0005). 
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other27–29. This analytic variability has contributed to the overall poor reproducibility and 
comparability of metabolite estimates reported in the MRS literature30. 
 
“If we have several options to model our data, which should we pick?” is a common question 
across the sciences. If there are multiple suitable ways to model in vivo MRS data, we posit that 
modeling procedures should not only traverse the parameter space within a single model 
definition (via non-linear least-squares optimization) but also search across model spaces, i.e., 
explore the breadth of reasonably admissible model definitions. Quantitative model selection 
methods provide a formal, rigorous framework to do this—exemplified by the ABfit algorithm, 
which uses model selection to pick the one from many admissible baseline spline models that 
afford just enough flexibility to approximate the data, but not more17. 
 
The composition of the basis set is another prime example of the range of reasonably admissible 
models, having been at the sole discretion of individual researchers since the inception of LCM 
for in vivo MRS. The surprisingly limited number of studies that have investigated the impact of 
this modeling decision highlights the potential for operator bias, with changes to the basis set 
composition substantially affecting metabolite estimates4–10. In this proof-of-concept study, we 
therefore demonstrate the use of model selection for determining basis set composition directly 
from the spectra. 
 
Across all procedural variations we considered, the algorithm was able to derive reasonable basis 
sets and consistently produced fits with flat residuals. High-concentration metabolites were 
correctly included in the algorithm-derived basis sets, without exception. The algorithm’s ability 
to correctly identify lower-concentration metabolites was more varied and depended decidedly 
on the choice of stopping condition and single-vs-group analysis. We found that group-level 
basis set estimation with the ‘zero-amplitude’ stopping condition minimized the number of false 
positives and negatives, correctly recognized 2HG and Cystat in the tumor group, and provided 
metabolite estimates close to those estimated with the ground-truth basis set. This is an 
encouraging starting point, although further investigation is required. 

 
4.1. Choice of Stopping condition 
 
We initially designed the algorithm to select the basis set that simply maximized the BIC—
certainly the most intuitive choice, as it is purported to provide the optimal balance between 
goodness-of-fit and the number of model parameters. In practice, the “max-BIC” condition is too 
conservative: the least-squares model was flexible enough to reasonably mimic the signal of 
metabolites (particularly J-coupled, low-concentration ones) through some combination of 
baseline bumps, lineshape distortions, and overlapping metabolites already present in the basis 
set. This—according to raw BIC scores—is more parsimonious than bringing in a new basis 
function, which would be penalized for the additional model parameters. 
 
Adding further metabolites (beyond the maximum BIC) until all remaining basis functions are fit 
with zero amplitude alleviated these problems, albeit at the expense of including more false 
positives. Despite this, quantitative overlap with the ground truth and amplitude estimation was 
still better than for the max-BIC stopping condition. Together, the two stopping conditions 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2024. ; https://doi.org/10.1101/2024.09.11.612503doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.11.612503
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

delineated a “Goldilocks” region that provided reliable upper and lower bounds on the ground 
truth basis set. 

 
4.2. Group-wise or single-spectrum 
 
Further improvement in basis set estimation was achieved by optimizing across an entire group 
of spectra. This approach counteracted the challenges of reliably discerning the contributions of 
lower-concentration metabolites at the single-spectrum levels. We hypothesize that the 
aggregation of BIC scores across many spectra reduces the impact of noise and individual 
amplitude variations, allowing the algorithm to better prioritize signals that we are less able to 
consistently model on a per-spectrum basis. Still, there are some notable omissions, particularly 
from mutually overlapping lipids and MMs. Asc is also omitted from both group-wise 
optimizations. We ascribe this to Asc having a very small amplitude in the ground truth spectra 
(0.36 ± 0.28, and 0.42 ± 0.31) to begin with, and, for the chosen fit range of 0.5–4.2 ppm, Asc 
only has resonances in the 3.6–4.1 ppm region, in which it heavily overlaps with other 
metabolites it can be easily mistaken for—see Supplementary Figure 1. Future avenues of 
study may benefit from incorporating additional information into the decision-making process to 
tackle issues of strong overlap. These may include Cramer-Rao lower bounds, metabolite 
amplitude correlation matrices derived from the Fisher information matrix, or a modification to 
the IC metric.  
 
It is important to note that the two groups of spectra generated for this study are fairly 
homogeneous, and crucially, group-wise optimization removes our ability to adapt to individual 
outlier spectra that may be present in heterogeneous in vivo samples. The correct inclusion of 
2HG and Cystat in the tumor cohort (and simultaneous exclusion in the healthy cohort) illustrates 
that the selection process might even deem two different models to be most appropriate if two 
cohorts exhibit markedly different spectral characteristics. This is, in general, of course 
desirable! For example, healthy tissue does not produce detectable levels of 2HG31(p2), and model 
selection for a set of healthy spectra should select a model that does not contain a 2HG basis 
function because fewer degrees of freedom will reduce the variance in estimating signals like 
Glu/Gln that overlap with 2HG. However, the idea of running one model for healthy spectra and 
another for tumor spectra does raise challenging questions in terms of model bias and hypothesis 
testing.  
 
4.3. Limitations  
 
Our synthetic data are somewhat idealized since they omitted some common characteristics of in 
vivo MRS data. For example, we did not introduce phase alterations, frequency shifts, correlated 
noise, baseline components, or artifacts like lipids, residual water, or spurious echoes. Broad 
resonances underlying the metabolite signals, in particular, significantly impact the accuracy of 
MRS modeling8,28. Modeling of the baseline would also be further complicated by the frequent 
omission of MM and lipid models from the optimized basis sets, as we saw in our data. The 
algorithm tended to capture some of the—admittedly small—MM signals using the spline 
baseline rather than a specific basis function. While this did reduce the number of model 
parameters, it compromised the validity of our baseline model. Future work could include some 
algorithm penalty term for baseline amplitudes, or perhaps this issue is best solved by including 
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an experimentally acquired MM basis function, as recommended by expert consensus32 and our 
previous investigations28,33.  
 
Lastly, the repeated modeling required for this method obviously takes longer to complete than 
traditional single-model analysis with a single pre-defined basis set. For a library set of size 1, 
our algorithm requires 

%
!1(1 + 1) model calls to complete the full IC curves, like those shown 

in Figure 2. That said, with an initial fit to fix global model parameters, small basis set 
compositions in the early stages, and stopping conditions avoiding the latter algorithm steps, 
computation time, fortunately, does not scale linearly with the number of model calls for this 
algorithm. A computationally cost-effective compromise of our approach could be to use this 
algorithm as a refinement of some predefined basis set. Specifically, an expert-recommended 
starting basis set could be modulated, using the iterative process described here to add (or 
subtract) appropriate metabolites. 
 
4.4. Perspectives 
 
Model selection can, in principle, be applied to any aspect of modeling, not just baseline 
estimation17 or basis set composition. Information criteria may be useful to determine optimal 
lineshape representations, e.g., deciding whether simple Voigtian parametrization suffices, or 
whether a more generalized convolution kernel (with more model parameters) is required to 
adequately fit lineshape irregularities resulting from B0 inhomogeneities. They may also help 
decide whether metabolite-specific frequency shifts are warranted by the data or whether a 
single, global, shift parameter suffices.  
 
Parameter regularization may provide an alternative to model selection. This usually involves 
additional terms in the model expression that penalize the deviation of model parameters from 
certain expectation values or impose constraints on, e.g., smoothness.  
 
This often-overlooked injection of prior knowledge is widely considered to be the “secret 
ingredient” of LCModel. Apart from baseline regularization, the effects of regularization on 
metabolite estimates are not well studied. Future work should therefore explore whether this 
approach can complement model selection. For example, instead of excluding certain 
metabolites like 2HG from a basis altogether, it might be wiser to simply set their amplitude 
expectation values to zero. This would incentivize the model to only assign signal to 2HG when 
it is strongly warranted by the data. Of course, choosing the nature and strength of the 
regularization terms is, yet again, a form of operator bias. 
 
Finally, the best solution to the epistemic uncertainty problem may be to not even try to select a 
single model but to synthesize the evidence from multiple models. So-called multiverse 
analyses34–38 have been pioneered to integrate multiple statistical models in psychology and have 
recently been applied to resting-state fMRI analysis. It has further been proposed to weigh 
different models by their Akaike information criterion scores39–41 to emphasize the evidence 
from more parsimonious models, conceptually similar to CRLB weighting to improve statistical 
inference across multiple spectra42. 
 

Conclusion 
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Data-driven determination of the basis set composition is feasible with single-spectrum and 
group-level optimization. With refinement, this method could provide a valuable data-driven 
way to derive or refine basis sets, reduce the operator bias of MRS analyses, enhance the 
objectivity of quantitative analyses, and increase the clinical viability of MRS. 
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Basis function linewidth Peak frequency Amplitude 
  [Hz] [ppm] [1-proton area] 

MM09 0.14 0.91 3 
MM12 0.15 1.21 2 
MM14 0.17 1.43 2 
MM17 0.15 1.67 2 

MM20 

0.15 2.08 1.33 
0.2 2.25 0.33 

0.15 1.95 0.33 
0.2 3 0.4 

Lip09 0.14 0.89 3 

Lip13 0.15 1.28 2 
0.89 1.28 2 

Lip20 
0.15 2.04 1.33 
0.15 2.25 0.67 

0.2 2.8 0.87 
Supplementary Table 1. The width, center frequency, and rela4ve amplitude of the 
parameterized lipid and MM resonances we included in the basis set. Specific values were 
based on the LCModel parameteriza4ons of these signals. 
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Supplementary figure 1. The full “library” basis set of metabolite basis 
func4ons with 1.3 Hz Lorentzian linebroadening.  
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  Healthy Tumor 
 Gaussian linebroadening [Hz] 7.44 ± 0.56 7.74 ± 0.62 
 Lorentzian linebroadening [Hz] 2.36 ± 0.31 2.44 ± 0.36 
 SNR 223.15 ± 67.06 229.75 ± 56.67 

Am
pl

itu
de

 

Asc 0.36 ± 0.28 0.42 ± 0.31 
Asp 1.46 ± 0.36 1.51 ± 0.36 

Cr 3.82 ± 1.01 4.02 ± 0.79 
CrCH2 0.91 ± 0.52 0.88 ± 0.56 
GABA 0.86 ± 0.43 0.87 ± 0.48 

GPC 0.59 ± 0.37 0.83 ± 0.24 
GSH 1.45 ± 0.45 1.33 ± 0.46 

Gln 1.44 ± 0.79 1.36 ± 0.91 
Glu 5.75 ± 1.88 5.72 ± 0.95 
Lac 0.50 ± 0.34 3.62 ± 0.50 

NAA 8.89 ± 1.42 3.50 ± 1.00 
NAAG 0.95 ± 0.42 0.78 ± 0.68 

PCh 0.47 ± 0.26 1.35 ± 0.22 
PCr 2.36 ± 1.26 1.99 ± 0.91 
PE 1.76 ± 0.65 1.82 ± 0.62 

Tau 1.31 ± 0.76 1.12 ± 0.81 
mI 5.28 ± 0.99 7.01 ± 1.10 
sI 0.18 ± 0.13 0.17 ± 0.12 

Cystat 0 3.22 ± 2.10 
2HG 0 3.55 ± 2.25 

Lip09 1.19 ± 0.51 7.61 ± 0.59 
Lip13 1.58 ± 0.60 1.56 ± 0.69 
Lip20 0.37 ± 0.18 2.59 ± 0.19 

MM09 1.99 ± 0.79 2.02 ± 0.97 
MM12 0.71 ± 0.58 0.64 ± 0.45 
MM14 1.76 ± 1.17 1.68 ± 1.10 
MM17 0.62 ± 0.43 0.67 ± 0.45 
MM20 2.14 ± 1.01 2.25 ± 0.99 

Supplementary Table 2. Ground truth simula4on parameters (mean ± standard devia4on) used 
to derive the healthy-appearing spectra (leL column) and low-grade glioma, “tumor” spectra 
(right column). The top three rows show the Gaussian and Lorentzian linebroadening terms and 
the SNR, with subsequent rows showing the metabolite-specific amplitudes.  
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Supplementary figure 2. The synthe4c dataset used to test the algorithm. 
Healthy-appearing spectra (black) are ploPed alongside the “tumor” spectra, 
represen4ng low-grade glioma pa4ents (red). 
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Supplementary Figure 3. Visualiza4on of the mean (bar) and standard devia4on 
(error bars) of the itera4ons at which each basis func4on was picked. Smaller 
bars, therefore, indicate a higher priori4za4on of a given basis func4on, whilst 
error bars indicate the inter-spectrum variability of the metabolite’s 
priori4za4on. Basis func4ons are ordered based on their mean. The shade of 
the metabolite label indicates the presence (black) or absence (grey) of that 
par4cular metabolite in the ground truth simula4on. 
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