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We present a method for detecting evidence of natural selection in ancient DNA time-1 
series data that leverages an opportunity not utilized in previous scans: testing for a 2 
consistent trend in allele frequency change over time. By applying this to 8433 West 3 
Eurasians who lived over the past 14000 years and 6510 contemporary people, we find 4 
an order of magnitude more genome-wide significant signals than previous studies: 347 5 
independent loci with >99% probability of selection. Previous work showed that classic 6 
hard sweeps driving advantageous mutations to fixation have been rare over the broad 7 
span of human evolution, but in the last ten millennia, many hundreds of alleles have 8 
been affected by strong directional selection. Discoveries include an increase from ~0% 9 
to ~20% in 4000 years for the major risk factor for celiac disease at HLA-DQB1; a rise 10 
from ~0% to ~8% in 6000 years of blood type B; and fluctuating selection at the TYK2 11 
tuberculosis risk allele rising from ~2% to ~9% from ~5500 to ~3000 years ago before 12 
dropping to ~3%. We identify instances of coordinated selection on alleles affecting the 13 
same trait, with the polygenic score today predictive of body fat percentage decreasing 14 
by around a standard deviation over ten millennia, consistent with the “Thrifty Gene” 15 
hypothesis that a genetic predisposition to store energy during food scarcity became 16 
disadvantageous after farming. We also identify selection for combinations of alleles 17 
that are today associated with lighter skin color, lower risk for schizophrenia and 18 
bipolar disease, slower health decline, and increased measures related to cognitive 19 
performance (scores on intelligence tests, household income, and years of schooling). 20 
These traits are measured in modern industrialized societies, so what phenotypes were 21 
adaptive in the past is unclear. We estimate selection coefficients at 9.9 million variants, 22 
enabling study of how Darwinian forces couple to allelic effects and shape the genetic 23 
architecture of complex traits. 24 
 25 
Ancient DNA data hold extraordinary promise for revealing adaptation, making it possible to 26 
track effects across time and to obtain direct measurements of selection coefficients1–3. 27 
Rather than being trapped in the present and studying the scars left by selection on the 28 
genomes of descendants—for example, searching for alleles too differentiated in frequency 29 
across populations4,5, or too common given their estimated age6–8, or gene genealogies 30 
distorted from the expectation for random drift9—ancient DNA makes it possible to test if 31 
frequencies of variants shifted more than could be expected by chance. Such data also make it 32 
easier to measure selection on variants not of recent mutational origin, which is challenging 33 
to detect using retrospective methods10. Most previous ancient DNA selection studies focused 34 
on two time-points—comparing allele frequencies in earlier to later groups—to search for 35 
alleles with extreme shifts compared to expectation from the genomic background11,12. We 36 
search for a consistently non-zero derivative over time, fully embracing the time-series nature 37 
of ancient DNA and using information differently affected by confounding factors.  38 
 39 
Ancient DNA studies in West Eurasia11–14 (Europe and its neighbors in the Near East) have 40 
identified dozens of alleles influenced by selection15,16. But despite growth in the number of 41 
ancient individuals with data from zero before 2010 to more than 10,000 today, the number 42 
of genome-wide significant loci reported in a single study grew only mildly: from 12 in the 43 
first genome scan in 201511, to 21 in a scan in 202414. The small numbers raise the concern 44 
that the power of ancient DNA to detect selection might be reaching a plateau, and that this 45 
approach might not in fact be able to deliver broad insights into the nature of adaptation. 46 

Three innovations increase statistical power and minimize false signals of selection 47 
Our improved yield of discoveries comes from more power (due to a qualitatively new 48 
method and larger sample size), and fewer artifactual signals (due to intensive data cleaning). 49 
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First, we increased power by testing for a consistent trend in allele-frequency change over 50 
time. Most past studies of selection in ancient DNA dealt with the challenge posed by 51 
admixture by treating more recent populations as linear combinations of more ancient ones, 52 
then searching for alleles whose frequencies were outliers compared to what would be 53 
expected from this history. However, changes in frequency due to selection are often less 54 
than what can be expected from random genetic drift, and in this context, increasing sample 55 
size helps little. We employed a qualitatively different approach, using the genetic similarity 56 
of each individual to every other, and testing if the date when they lived provides additional 57 
predictive power for the allele frequencies of their population beyond what is expected from 58 
the empirical population structure. Our test is simple: at each variant we ask if hypothesizing 59 
a non-zero selection coefficient s—causing allele frequency to trend in the same direction 60 
over all times and places—predicts frequency differences across populations significantly 61 
better than empirically measured population structure alone (Methods). 62 

Second, we increased power through a five-fold increase in sample size. We analyzed 8433 63 
unrelated ancient individuals from the last 14000 years17 (Online Table 1). Data for 6686 64 
come from enriching ancient DNA libraries for more than a million single nucleotide 65 
polymorphisms (SNPs) where median coverage is 3.6-fold (at least 0.44-fold); the remaining 66 
1747 individuals are shotgun sequenced with median 1.6-fold coverage (at least 0.11-fold). 67 
For 3644 ancient individuals, sequences are previously reported. For 318, we increased data 68 
quality on previously reported individuals, largely from 300 newly reported shotgun genomes 69 
with median 4.9-fold coverage (40 at >17-fold coverage) (Online Table 2). For 4471 ancient 70 
individuals obtained by sequencing 5227 newly reported libraries (Online Table 3), we make 71 
data available for studies of selection with the support of sample custodians; archaeological 72 
contextual information will be provided in future publications which should be the references 73 
for analyses of their population history. We co-analyzed with 6510 modern people: 575 74 
largely from the 1000 Genomes Project18, and 5935 from the UK Biobank19 (subsampled so 75 
their countries of origin were evenly spread over West Eurasia) (Extended Data Figure 1a,b).  76 

Third, we increased power and reduced false positives by data cleaning and imputation. We 77 
applied multiple data quality filters, including restricting to sites with similar frequencies in 78 
ancestry-matched modern and ancient people and giving consistent signals of selection with 79 
and without modern people (Supplementary Information section 1). We filled in missing data 80 
by leveraging known patterns of allelic correlation, using GLIMPSE20 to impute diploid 81 
genotypes and thereby increase allele counts at every locus (for imputation we used 82 
sequences aligning everywhere in the genome as we found that this greatly enhances 83 
information even for samples analyzed using in-solution enrichment). We analyzed 8,212,921 84 
SNPs and 1,713,563 insertions/deletions (indels) imputed at high quality across chromosomes 85 
1-22 in all individuals (we did not analyze the sex chromosomes or mitochondrial DNA).  86 
 87 
A test for directional selection with a negligible false-positive rate 88 
For each SNP in the genome, we estimate a selection coefficient, which we found has a 89 
standard error typically around 0.1% for common variants (Figure 2, Extended Data Figure 90 
1c). In theory, a valid test for selection should be Z, the number of standard errors this 91 
quantity is from zero, and we can use a normal distribution to identify scores that pass the 92 
standard threshold of genome-wide significance (P<5x10-8) for Genome-Wide Association 93 
Studies (GWAS). In practice, the median c2 statistic (squared Z-score for number of standard 94 
errors s is from zero) is inflated by 5.26-fold relative to a c2 distribution with one degree of 95 
freedom. In human genetics studies, such inflation can arise due to a variety of factors such as 96 
uncorrected population structure, and is often addressed by rescaling c2 statistics by the 97 
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median inflation across the genome21,22. However, such rescaling is only appropriate if the 98 
great majority of the genome is unaffected by the biological signal being studied. If, instead, 99 
a substantial fraction of the genome has real signal21,23, random locations in the genome will 100 
not provide an appropriate neutral baseline. In fact, we find evidence of exactly this problem: 101 
a large proportion of the genome in linkage disequilibrium (LD) with sites with evidence of 102 
directional selection (Supplementary Information section 2, Extended Data Figure 2b). 103 
 104 
Instead, we calibrated our test by taking advantage of a striking finding about the connection 105 
between selection coefficients and associations to phenotypes in living people. We find that 106 
the proportion of SNPs showing significant association to a phenotype in a GWAS increases 107 
dramatically with our selection statistic Z, plateauing at around 3.9-times the rate of overlap 108 
for random SNPs (Figure 1a) (for this analysis we used 1,363,674 SNPs with a genome-wide 109 
significant association to at least one phenotype for 452 traits in the Pan-UK Biobank24). The 110 
increase is observed even after conditioning on minor allele frequency (MAF) to remove 111 
artifacts due to both selection and phenotypic associations being easier to detect for higher 112 
MAFs. The plateau occurs at the same place when we control for negative selection at linked 113 
loci (Extended Data Figure 3a). This is the pattern expected for a true threshold for genome-114 
wide significance: if SNPs beyond this threshold reflect a combination of true signal and false 115 
discoveries, we would expect enrichment to continue beyond it. Because this threshold occurs 116 
at a value of Z=9.10—1.67-times larger than the standard threshold (5.45) for genome-wide 117 
significance for a normal distribution—we rescale the naïve score by this quantity to obtain 118 
an X-statistic (Z/1.67) whose significance threshold matches the standard threshold. 119 
 120 
To test whether we set an appropriate threshold for genome-wide significance with this 121 
procedure, we used orthogonal information: the sum of squared derived allele frequency in 122 
200 kilobase haplotypes linked to each tested allele: the “Haplotype Allele Frequency” 123 
(HAF) score. Previous work25,26 showed that directional positive selection on derived alleles 124 
can increase HAF scores, while negative selection always decreases it, and we verified this 125 
by simulation (Extended Data Figure 3b, Supplementary Information section 3). After 126 
computing the residual HAF-score for each variant controlling for negative selection at linked 127 
loci27,28, we find it increases with the X-statistic and plateaus around 5.45, the standard 128 
threshold for genome-wide significance in GWAS (Figure 2b, Extended Data Figure 3c). 129 
 130 
To translate X to a posterior probability of selection 𝜋, we used a False Discovery Rate 131 
(FDR) approach (Supplementary Information section 2). We fit a smooth function to the 132 
enrichment curve for GWAS signals and estimate that at X-statistic magnitudes greater than 133 
our threshold for genome-wide significance of 5.45,	𝜋>99% (Extended Data Table 1). 134 
 135 
We confirmed that our X-statistics are detecting biologically meaningful patterns by showing 136 
that signals of selection are unusually associated with specific classes of traits29. In particular, 137 
we find enrichment for SNPs contributing to blood-immune-inflammatory traits (95% 138 
confidence interval (CI) 2.6-6.8)12,13, compared to random SNPs with matched characteristics 139 
defining the baseline of 1-fold. In contrast, for mental-psychiatric-nervous and behavioral 140 
traits, we do not see enrichment (95% CI of 0.2-1.3 and 0.5-1.4) (Figure 1c, Extended Data 141 
Figure 4a). These patterns cannot be explained by differences in allele frequencies or 142 
purifying selection since we control for these factors. The intensity of selection on blood-143 
immune-inflammatory and cardio-metabolic traits increased in the Bronze Age relative to the 144 
pre-farming period (Figure 1c, Extended Data Figure 4b), which may reflect adaptation to 145 
new diets, higher population densities, or living closer to domesticated animals. 146 
 147 
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Hundreds of loci affected by directional natural selection 148 
We identified 347 independent loci (279 excluding the HLA region) with |X|>5.45, 149 
corresponding to a π>99% probability of selection (Figure 2a). To produce this list, we 150 
identified the strongest signal in the genome and considered all SNPs in LD with it in modern 151 
Europeans from the 1000 Genomes Project (r2>0.05) to potentially reflect the same signal. 152 
We then found the second-strongest signal excluding these positions, and so on until no more 153 
SNPs pass this threshold (Extended Data Figure 2b). We provide visualizations of the 154 
trajectories for these 347 loci (Supplementary Information section 5) and summary statistics 155 
for 9.9 million imputed variants (Online Table 4), which can be cross-referenced with GWAS 156 
and viewed along with their frequency trajectories at the AGES internet browser https://reich-157 
ages.rc.hms.harvard.edu. 158 
 159 
The actual number of loci under selection is likely to be much larger. Using a threshold of 160 
|X|=3.16, which corresponding to FDR=50%, we identify 10361 non-HLA loci, implying 161 
>5000 independent episodes of selection. Moreover, our approach to identifying distinct loci 162 
is conservative, because genuinely selected alleles in LD with nearby stronger ones will be 163 
missed. Down-sampling analyses show that further increases in sample size are expected to 164 
increase the number of loci further, with people living >8000 years ago providing the most 165 
added power (Extended Data Figure 1d,e).  166 
 167 
To obtain insight into the phenotypic targets of the loci under natural selection, we take 168 
advantage of the fact that a high proportion (82%) of the variants with genome-wide evidence 169 
of selection are independently associated to a phenotype in at least one Pan-UK Biobank 170 
GWAS in living people. However, biological interpretation is complicated since the allele 171 
that was the target of selection may differ from the tag SNP we are using to represent the 172 
locus (and may even be in a neighboring gene), because some alleles affect multiple 173 
phenotypes, or because the relevant modern trait may not be measured in one of the GWAS 174 
we are analyzing, or because the phenotype in modern societies may not have existed in the 175 
ancient ones where selection acted. The median selection magnitude |s| at the tag SNPs is 176 
0.8% (range 0.4-4.2%), and the median minor allele frequency (MAF) is 19%. Standard 177 
errors in our estimates of |s| for common alleles are ~0.1%, and we have limited power to 178 
detect selection coefficients of magnitude <.5% (Figure 2b) (Extended Data Figure 1c). 179 
 180 
We compared our results to those of five previous selection scans in Holocene West Eurasia 181 
(four based on ancient DNA) (Table 1). Of 39 unique non-HLA loci that met the formal 182 
threshold for genome-wide significance in at least one of the previous studies, 17 pass our 183 
p>0.99 threshold. The other 22 do not replicate, in most cases due to what appears to be 184 
incompletely controlled population structure driven by mixtures of populations with different 185 
allele frequencies before they came together (Supplementary Information section 5). (Two of 186 
the previous studies also reported additional candidate loci that did not pass the author’s own 187 
genome-wide significance threshold, and we found that only ~10% of these replicated, 188 
suggesting most are false-positives8,13.) 189 
 190 
We present a gallery of 36 single-allele trajectories of particular interest (Figure 3) as well as 191 
estimates of how their selection coefficients changed over time (Extended Data Figure 5). 192 
These loci are not necessarily those with the largest X-scores, but are highlighted as they 193 
address long-standing debates. They include 24 passing the π>99% threshold, 7 with 194 
probable evidence of selection (64%<π<98%), and 5 with surprising negative findings. 195 
 196 
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HLB-DQB1: Selection in favor of the major risk factor for celiac disease (panel 1). At the 197 
HLA region of chromosome 6, densely packed genes play key roles in microbe recognition. 198 
rs3891176 (C>A, meaning that the ancestral allele is C and the newly arising mutation is A) 199 
is an excellent tag for HLA-DQB1*02/DQ2, with individuals carrying two A alleles having a 200 
19-fold higher susceptibility for celiac disease or gluten sensitivity (Extended Data Figure 201 
6a,b). The A allele has a selection coefficient of s=4.5% (p>99%), rising from ~0% to ~20% 202 
in the last 4000 years. These findings speak to the debate about the relationship between 203 
agriculture and celiac disease30–32, as the results suggest that the pathogenic exposures that 204 
drove its rise were not a phenomenon only or largely of the Neolithic. 205 
 206 
ABO: Positive selection for B at the expense of the A allele (panel 2). ABO modifies 207 
oligosaccharides in glycoproteins on the surface of red blood cells and codes for the A, B, 208 
and null (O) alleles that interact in different ways with pathogens33,34. We show that the B 209 
allele rose from ~0% to ~10% over the last ~6000 years (s=2.9%, p>99%), and was matched 210 
by a concomitant decrease in A frequency. The A and B alleles are associated with opposite 211 
effects on many phenotypes, suggesting that with changing lifestyles and pathogenic 212 
exposures, the optimal balance of these alleles changed (Extended Data Figure 6c,d).  213 
 214 
TCHH: Selection for an allele that reduced male pattern baldness (panel 3). An allele at 215 
missense SNP rs11803731 (A>T) in TCHH is a strong predictor of straight hair and male 216 
pattern baldness in Europeans. The derived allele T is rare in African and East Asian 217 
populations, and has been hypothesized to have been positively selected, analogous to the 218 
straight-hair EDAR allele in East Asians35. We observe an opposite trend: the derived allele 219 
was negatively selected (s = -0.9%, p>99%), decreasing from ~50% to ~20% in the past 7000 220 
years. This implies a 1.8% decrease in predisposition to baldness over this period. 221 
 222 
TYK2. Reversal of selection at a major factor for tuberculosis (panel 4). Individuals carrying 223 
two copies of the rs34536443 G>C allele have >80% prevalence of clinically significant 224 
tuberculosis36. Previous work37 found evidence of negative selection on the C allele and 225 
hypothesized it was associated with the time tuberculosis began to be endemic in Europe. We 226 
confirm a drop in frequency from ~9% to ~3% in the last ~3000 years (s = -2.3%, p>99%), 227 
but also identify positive selection from ~5500 to ~3000 years ago, from around ~2% to ~9% 228 
(s=2.6%, p>99%). This may reflect changing endemicity of different pathogens over time. 229 
 230 
HLA-DRB1. Elevated MS risk in north Europe is not due to selection on the steppe (panel 5). 231 
A previous study38 discovered positive selection at the rs3135388 G>A tag SNP for the HLA-232 
DRB1*15:01 risk factor for multiple sclerosis (MS)39. Because selection was already 233 
occurring in Yamnaya steppe pastoralists, and Yamnaya ancestry is most common in north 234 
Europeans today, the authors argued that the genetically higher risk for MS in north than in 235 
south Europeans was driven by selection on the steppe. We confirm positive selection at this 236 
allele, rising from ~0% to ~18% between ~6000 and ~2000 years ago (s=4.0%, p>99%). 237 
However, we also document three features of the selection history missed by previous work 238 
(Supplementary Information section 6), and which together show that the primary driver of 239 
the north/south differential in this allele’s frequency was not selection on the steppe. First, 240 
selection did not begin on the steppe38; it was occurring earlier south of the Caucasus 241 
mountains in people without steppe ancestry. Second, after Yamnaya ancestry spread west, 242 
selection was stronger in north Europe at s = 14.5 ± 3.4% than in southwest Europe at s = 5.1 243 
± 2.5% (measured >3500 BP). Third we document negative selection in the last ~2000 years 244 
missed by previous work (s = -2.4%, p>99%), likely reflecting new pathogen exposures.  245 
 246 
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HFE: Reversal of selection at the major risk factor for hemochromatosis (panel 6). The 247 
rs1800562 (G>A) allele predicts pathogenic iron buildup in cells in individuals with two 248 
copies, and we find evidence of positive selection from ~5000 to ~2000 years ago, rising 249 
from ~1% to ~5% (s =2.9%, p=98%), then dropping to ~3% today. This reversal is not 250 
genome-wide significant (s = -1.6%, p=29%), but is compelling as a single hypothesis test at 251 
a locus with long-standing speculation regarding selection. It was hypothesized that the 252 
causal allele protected against Yersinia pestis (the agent of Black Death)40, but this is unlikely 253 
as its frequency was decreasing by the time of the Justinianic and Medieval pandemics41,42. 254 
 255 
CCR5-D32: Positive selection at an allele conferring immunity to HIV-1 infection (panel 7). 256 
The CCR5-D32 allele confers complete resistance to HIV-1 infection in people who carry two 257 
copies43–45. An initial study dated the rise of this allele to medieval times and hypothesized it 258 
may have been selected for resistance to Black Death46, but improved genetic maps revised 259 
its date to >5000 years ago and the signal became non-significant47,48. We find that the allele 260 
was probably positively selected ~6000 to ~2000 years ago, increasing from ~2% to ~8% (s 261 
=1.1%, p=93%). This is too early to be explained by the medieval pandemic, but ancient 262 
pathogen studies show Yersinia was endemic in West Eurasia for the last ~5000 years49–51, 263 
resurrecting the possibility that it was the cause, although other pathogens are possible. 264 
 265 
Selection for light skin at 10 loci (panels 8-17). We find nine loci with genome-wide signals 266 
of selection for light skin, one probable signal, and no loci showing selection for dark skin.  267 
 268 
CFTR: No evidence of selection for the major cystic fibrosis risk allele DF508 (panel 18). 269 
The major risk allele for this recessive disease in Europeans52,53 has been hypothesized to be 270 
an example of heterozygote advantage due to advantages in carriers such as resistance to 271 
cholera54. However, we find no evidence of selection (p<1%), with the earliest direct 272 
observation at ~2200 years ago in Great Britain and the earliest imputed one ~10100 years 273 
ago in Anatolia. It seems unlikely that cholera was endemic in West Eurasia this long; 274 
another explanation is needed for the persistence of this allele which in two copies also 275 
causes male infertility. 276 
 277 
Fourteen other selection discoveries are highlighted in panels 19-32 of Figure 3. Most pass 278 
our threshold for genome-wide significance at π>99%: TSBP1 (Celiac disease, s=4.6%); 279 
HLA-DQB1 (Celiac disease, s = 1.1%); HLA-DRB1 (Rheumatoid arthritis, s = -0.9%); GYPA 280 
(increases MNS blood group N, s = -0.9%); DUOX2 (increases Ferritin level, s=1.3%); 281 
SLC22A4 (Crohn's disease, s=1.9%); TLR1 (Leprosy resistance, s=1.9%); CYP1A2 (decreases 282 
blood pressure, s=1.1%); NADSYN1/ DHCR7 (increases vitamin D, s=0.9%); and ADH1B 283 
(lower risk for alcoholism, s=2.6%). Four more signals are probable: ABCG2 (gout, s=0.9%, 284 
π=98%); APOE (hyperlipidemia, s=0.9%, π=80%); GCKR (hyperlipidemia/gout, s=0.4%, 285 
π=65%), and SERPINA1 (alpha-1 antitrypsin deficiency, s=1.6%, π=73%).  286 
 287 
Panels 33-36 highlight four negative signals at loci previously hypothesized to have been 288 
selected: a second locus at SERPINA1 (alpha-1 antitrypsin deficiency); PTPN22 289 
(hypothyroidism); a second locus at HFE (hemochromatosis); and IL23R (Crohn's disease). 290 
 291 
Directional selection shaped dozens of complex traits  292 
Having examined selection on individual loci, we searched for evidence that groups of alleles 293 
with similar influence on traits today trended in the same direction in the past, as would be 294 
expected if a phenotype with a similar genetic underpinning was the target of selection. To 295 
study this, we leveraged GWAS data for 452 mostly quantitative traits in the Pan-UK 296 
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Biobank, and 107 dichotomous traits from studies especially of common disease55 (Online 297 
Table 5). How phenotypes manifest in modern societies may be very different from how they 298 
manifested in past populations living in different environments with different lifestyles, so 299 
any signals discovered by this approach should not be interpreted as evidence for selection on 300 
the exact phenotype being tested. 301 
 302 
We used three statistics to test for coordinated selection on alleles affecting the same trait. 303 
First, we computed a polygenic score (PGS) for each GWAS: a linear combination of allelic 304 
values, weighted by estimated effect size. We evaluated whether the change in PGS over time 305 
g (which we scaled so one-unit corresponds to a one standard deviation change over ten 306 
millennia) is more than could be expected by genetic drift alone. To test if the observed 307 
deviation is significant, we repeated the test 100 times with randomly flipped signs of GWAS 308 
effect sizes, to correct for LD among neighboring sites. As a second test, we repeated the 309 
procedure without using the magnitudes of the GWAS effects, and instead only the sign, 310 
generating a statistic 𝛾sign that may be less affected by concerns about transferability of PGS 311 
across groups12,56–58. Third, we performed a SNP-by-SNP comparison for each trait, using 312 
cross-trait LD Score Regression (LDSC) to estimate genetic correlation (rs) between selection 313 
summary statistics and GWAS summary statistics59, accounting for non-independence of 314 
SNPs. We computed a standard error from a Block Jackknife to test if this correlation is 315 
significantly different from zero. We find high Pearson's correlation for all three tests (75-316 
91%; Extended Data Figure 7). 317 
 318 
For 31 of the 559 traits examined, we were able to carry out a further test of robustness by 319 
leveraging data from East Asian GWAS. Early studies claimed selection for greater height in 320 
north than in south Europeans, but this was later shown to be a false-positive due to 321 
uncorrected population structure in GWAS (ancestry differentially carried by north and south 322 
Europeans) that is correlated to structure in the groups tested for selection60,61. However, 323 
population structure in East Asia should be almost completely uncorrelated to that in the 324 
ancient West Eurasians, so it is difficult to see how validation by this test could be anything 325 
but a real signal of selection12,56. 326 
 327 
We identified 12 traits with significant signals from all three tests after correction for number 328 
of traits tested (p<10-4, correcting for ~500 hypotheses) (Figure 4, Extended Data Figure 8). 329 
 330 
One of the strongest signals is an increase over time in the PGS for light skin pigmentation (𝛾 331 
=1.77 ± 0.13 standard deviations increase in mean PGS in ten millennia, P=3.0x10-45; Figure 332 
4, Extended Data Figure 8). This plausibly reflects selection for increased synthesis of 333 
vitamin D in regions of low sunlight in farmers with little of it in their diets. Previous ancient 334 
DNA analysis57 found most of the phenotypic shift is driven by a few loci. Our results agree: 335 
50% of the shift is due to SLC45A2 alone, and 69% by the top 7 loci (Extended Data Figure 336 
9). However, the selection was extraordinarily polygenic as we need to drop the top 104 loci 337 
before the signal disappears (Extended Data Figure 10). A model in which selection for 338 
pigmentation impacted all variants in proportion to their effect size fits the data (P=0.10). 339 
 340 
Type 2 diabetes risk factors give compelling signals of negative selection. Thus, we observe 341 
negative selection on combinations of alleles that today increase body fat percentage (𝛾	=	-342 
1.03 ± 0.15), waist circumference (𝛾	=	-1.04 ± 0.15), and waist-to-hip ratio (𝛾	=	-0.80 ± 343 
0.14), supporting the “Thrifty Gene” hypothesis that a genetic adaptation to store fat in times 344 
of plenty, became deleterious after the transition to food-production (Figure 4). For type 2 345 
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diabetes itself, the signal (𝛾 = -0.40 ± 0.11) just misses the multiple hypothesis-testing 346 
corrected threshold, but the other two exceed it (𝛾sign = -0.51 ± 0.12; rs = -0.16 ± 0.04). 347 
 348 
We find signals of negative polygenic selection against alleles associated today with 349 
psychoses such as bipolar disorder (𝛾 = -0.67 ± 0.14) and schzophrenia (𝛾 = -0.84 ± 0.14) 350 
(Figure 4). Superficially this is in tension with the finding that variants with genome-wide 351 
significant of selection are not enriched for variants known to modulate psychiatric traits 352 
(Figure 2b). However, for variants with weaker signals, we do observe heritability 353 
enrichment (Extended Data Figure 4a). Brain traits have qualitatively different genetic 354 
architectures than blood-immune-inflammatory ones, with a higher total proportion of sites 355 
modulating them and smaller effect sizes on average per allele62. If brain traits tend to be 356 
associated with many alleles with small selection coefficients, this may reduce heritability 357 
enrichment at precisely the loci in the genome giving the strongest selection signals. These 358 
traits too are extraordinarily polygenic: we have to drop 740 loci for bipolar disorder and 726 359 
loci for schizophrenia for the signals to become non-significant (Extended Data Figure 10).  360 
 361 
We observe signals of selection for combinations of alleles that at today associated with 362 
healthy lifestyles into old age. This includes selection for alleles that promote faster walking 363 
pace (𝛾 = 0.99 ± 0.14), against alleles that today are associated with smoking (𝛾 = -0.54 ± 364 
0.14), and against alleles contributing to overall health decline (𝛾 =-1.00 ± 0.14). 365 
 366 
We finally observe signals of selection for combinations of alleles that today predict three 367 
correlated behavioral traits: scores on intelligence tests (increasing 0.79 ± 0.14), household 368 
income (increasing 1.11 ± 0.14), and years of schooling (increasing 0.61 ± 0.13). These 369 
signals are all highly polygenic, and we have to drop 463 to 1109 loci for the signals to 370 
become nonsignificant (Extended Data Figure 10). We also tested for a correlation of East 371 
Asian GWAS effect size measurements to West Eurasian selection. We observe a significant 372 
correlation for gsign (P=3.8x10-6) and rs (P=1.9x10-10) (Extended Data Figure 11), which is 373 
very difficult to explain as an artifact of population structure. 374 
 375 
There are caveats when interpreting signals of polygenic adaptation, especially for the three 376 
genetically correlated traits of scores on intelligence tests, household income, and years of 377 
schooling. These traits—for which there is evidence of significant negative selection in the 378 
last century, for example in Iceland, in the opposite direction to the long-term increase we 379 
detect63–65—are only relevant to modern societies, and would have been unmeasurable in the 380 
preliterate societies over the vast majority of the period during which selection acted. The 381 
difficulty of interpretation is enhanced by the fact that the alleles driving down the frequency 382 
of type 2 diabetes-related traits, are highly correlated to those contributing to the increased 383 
scores for years of school, household income, and intelligence tests (Extended Data Figure 384 
12). We could not gain meaningful additional insight into the selection mechanism by 385 
repeating analyses in family-based GWAS66 due to the limited sample sizes in these studies 386 
(Extended Data Figure 13).  387 
 388 
Discussion 389 
Previous work has shown that classic selective sweeps driving alleles to fixation have been 390 
rare over the broad span of human evolution67,68. Thus, we were surprised that over the last 391 
14,000 years in West Eurasia there have been many hundreds of instances of directional 392 
selection with coefficients on the order of 0.5% or more (Figure 2b). This is large enough that 393 
if a similarly dense landscape of directionally selected variants had existed tens of thousands 394 
of years ago, and if the selection coefficients had been constant since then, we would expect 395 
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many fixed differences across populations, despite the fact that previous studies have shown 396 
there are only a handful—hardly more than would be expected based on random drift68. 397 
 398 
The simplest way to resolve this paradox is to recognize that selection coefficients are 399 
unlikely to have been constant over time, even though we make this simplifying assumption 400 
to make it possible to detect selection. By sliding a 2000-year window through our time 401 
transect and re-estimating selection coefficient within each window, we can already see that 402 
there have in fact been changes in selection pressures at a number of the loci we analyze 403 
(Extended Data Figure 6), including at HLA-DRB1, TYK2 and HFE (Figure 3). By comparing 404 
the estimated age of the mutation that contributed each selected allele9, to the extrapolated 405 
time to reach fixation given its estimated s-value, we find that around half of the mutations 406 
have true ages an order of magnitude larger than the expected sweep age, which means that 407 
selection coefficients on the alleles must have shifted over time (Figure 2c). 408 
 409 
An alternative explanation for this paradox is to hypothesize that West Eurasians have been 410 
experiencing qualitatively more and different natural selection in the Holocene than in earlier 411 
periods because of rapidly changing lifestyles and economies. Without a comparable time 412 
transect before the advent of food production and societies with high population densities, it 413 
is impossible to test this directly. However, this hypothesis is consistent with our evidence of 414 
particular intense selection for blood-immune-inflammatory traits, and our evidence that 415 
selection for these traits becoming even stronger in the Bronze Age than it was in earlier 416 
periods (Figure 1c, Extended Data Figure 4b). 417 
 418 
We project that there are at least 5000 independent signals of directional selection (half of the 419 
10361 non-HLA loci found at the FDR=50% threshold) that are in linkage disequilibrium 420 
with the overwhelming majority of variants in the genome (Extended Data Figure 2b). This 421 
seem to be at odds with findings that there has been relatively little contribution from 422 
directional selection to allele frequency changes in genome compared to much larger forces 423 
of gene flow, genetic drift, and purifying or stabilizing selection69. In fact, there is no conflict. 424 
Our method allows us to partition the effects of selection at each SNP into the effects of 425 
directional selection (s), and the combined effects of fluctuating selection and drift (s2). We 426 
estimate that only 2.35 ± 0.13% (jackknife standard deviation) of allele frequency changes 427 
are due to directional selection. These results suggest that selection is so rampant that even if 428 
a tiny fraction of allele-frequency change is due to directional selection, this corresponds to 429 
many hundreds of loci. A corollary is that recent studies finding that stabilizing selection is 430 
relatively more important than directional selection in shaping the human allele frequency 431 
spectrum70 are fully reconcilable with our analyses.  432 
 433 
It is important to apply similar approaches to ancient DNA time series over longer times and 434 
to other world regions. Comparison of ancient DNA time transects would allow more 435 
generalizable insights by identifying which patterns of selection are shared and which are 436 
distinctive to the human population history of Holocene West Eurasia.  437 
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Methods 
 
Testing for selection while correcting for population structure  438 
We used a generalized linear mixed model (GLMM) approach to correct for population 439 
structure, a major confounder in scans for significant changes in frequency over time 440 
especially as major migration and population mixture have been common in almost all parts 441 
of the world. Previous studies have corrected for structure in ancient DNA time transects by 442 
modeling the population history and estimating mixture proportions, which works optimally 443 
only if there are data from the true source population, which is rarely the case. It is tempting 444 
to use an unsupervised approach like Principal Component (PC) to address population 445 
structure. However, after experimentation we found this is not effective as PCs are correlated 446 
with sample dates which creates collinearity with the quantity we are most interested in (the 447 
time-varying component), inflating the empirically estimated variance and reducing power. 448 
 449 
The mixed model approach, which is often deployed in the context of genetic association 450 
studies to address similar challenges71, offers a way to address these issues by combining the 451 
structured data in an unsupervised manner and estimating fewer parameters over a wider span 452 
of time which results in greater power compared to employing separate regression analyses 453 
for each population or comparing the estimated means from different groups. Our simulations 454 
show that under simplifying assumptions, a GLMM is more powerful in controlling for 455 
population structure and detecting change in allele frequency compared to a generalized 456 
linear model using the top principal components (PC) as covariates (Extended Data Figure 457 
14). Thus, despite the fact that the model fitted by the GLMM is far from that expected under 458 
true selection, and will miss real signals at sites with fluctuating selection like TYK2 459 
rs34536443, the method has advantages, and we found in practice that it detected many loci. 460 
 461 
We used our GLMM to fit a linear time-varying component to the logit (log-odds) 462 
transformation of allele frequency at each position in the genome, and then to test if there is 463 
evidence for a consistent trend in allele frequency change over time for all populations. We 464 
search for evidence of such a trend beyond the prediction based on population structure and 465 
associated genetic drift relating sampled individuals in space and time as measured by the 466 
covariance of genotypes over all the individuals, known as the Genetic Relationship Matrix 467 
(GRM). In our GLMM, the response variable for each tested allele j is the allele count. The 468 
allele counts for an individual i are drawn from a binomial distribution B(2, pij), where 2 is 469 
the number of chromosomes each person carries at each position, and pij is the unknown 470 
frequency of allele j in the population in which the tested individual i lives. A logit link 471 
function allows the frequency pij to be modeled as a linear combination of covariates. This is 472 
a generalization of the Logistic Mixed Model where the response variable is binary:  473 
 

𝑙𝑛 . !!"
"#!!"

/ = 𝛼$ + 𝑠$𝑡% +𝑀𝑉𝑁70, 𝜎$&𝑲;, (1)	
 

The logit function, 𝑙𝑛 . !!"
"#!!"

/, transforms allele frequency so its expected change per 474 

generation is proportional to the selection coefficient 𝑠$ (regardless of pij)72,73. 𝛼$ 	is a constant 475 
related to the average logit transformation of allele frequency in sampled individuals at time 476 
t=0 today. 𝑠$ is the per-generation selection strength at the allele, assumed constant over time 477 
and space during the period of our time transect; our test for selection is simply a test for 478 
whether the equation fits significantly better if 𝑠$ is non-zero than if it is zero. 𝑡% is the 479 
negative sampling date in the past, in units of twice the generation interval72,73 (assuming 29 480 
years per generation). 𝑔%$ is a random effect, an error term capturing individual-specific 481 
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variability not explained by fixed effects (𝛼$ + 𝑠$𝑡%). It differs from the error term in a 482 
Generalized Linear Model, which is independently and identically distributed following a 483 
normal distribution. In our GLMM, the error term is drawn from the vector 484 
𝒈𝒋~𝑀𝑉𝑁70, 𝜎$&𝑲;, following a multivariate normal distribution, where K is the covariance 485 
matrix structure (the GRM), the empirically observed relatedness of all individuals to each 486 
other, and 𝜎$&	measures the drift at that variant.  487 
 488 
𝑠$, 𝜎$& and 𝛼$ are independently estimated for each of 9.9 million variants. Refitting them 489 
without being constrained by the values at other variants means the methodology is robust to 490 
false-positives due to processes that vary across SNPs such as degree of background selection 491 
which increases the effective amount of random genetic drift or variation in minor allele 492 
frequency (MAF); these nuisance random effects are soaked up by allowing 𝜎$& and 𝛼$ to 493 
vary, allowing us to test for a time-dependent influence on allele frequency fluctuations 𝑠$ 494 
beyond what can be explained by the GRM. Our test for a non-zero 𝑠$ is thus a test for 495 
selection above and beyond what could be explained not just by structure but also other non-496 
time-dependent processes. The penalty we pay for estimating variance components at 497 
millions of SNPs—in contrast to the constant variance component assumption used in mixed 498 
model analysis in Genome-Wide Association Studies (GWAS)71—is computational load. We 499 
grouped individuals with similar ancestry and dates into 3000 clusters (Supplementary 500 
Information section 7); at this resolution, our method required ~140,000 CPU hours.  501 
 502 
Using the GLMM, we obtain a point estimate for the selection coefficient at each variant and 503 
its standard error, and a Z-score for the number of standard errors this is from zero, a naïve 504 
test for selection. In practice, the statistic needs recalibration as it is inflated due to 505 
unmodeled features of the data, so we empirically assess significance from enrichment of 506 
signals in independent GWAS (Supplementary Information section 2). 507 
 508 
Fitting the generalized linear mixed model (GLMM) 509 
We developed PQLseq2, a faster implementation of PQLseq74 for fitting the GLMM to count 510 
data. Despite a 27-fold speed increase, running a GLMM on ~15,000 individuals for ~9.9 511 
million variants was infeasible given our resources. To make analysis tractable, we grouped 512 
individuals into clusters of individuals with similar ancestry and coming from similar times.  513 
 514 
To identify the T = 3000 clusters we analyze, we required there to be a maximum date gap G 515 
= 500 years between any two individuals in each cluster. We initialized the interval I = (l=2, 516 
r=T) with midpoint m. We applied hierarchical clustering on the top 30 principal components 517 
(PCs) using the sklearn.cluster.AgglomerativeClustering function in Python with default 518 
parameters and n_clusters = m. For each of the S clusters from the previous step, we 519 
performed hierarchical clustering on the dates with distance_threshold = G and n_clusters = 520 
None. If the resulting number of clusters was larger than T + 1, we repeated the process with 521 
I = (l, m). If it was less than T-1, we updated I = (m, r). We repeated these steps until the final 522 
number of clusters was within T-1 to T+1. Across 3,000 clusters, the individuals per cluster 523 
has a first quartile of 1, a median of 3, a third quartile of 6, and a maximum of 46.  524 
 525 
We use the same GLMM model as for the single variant analysis. However, the cluster can 526 
include more than one individual. The allele counts for each cluster i are drawn from a 527 
binomial distribution B(2ni, pij), where ni is the number of diploid individuals in the cluster, 528 
and pij unknown frequency of allele j in the population where individuals in cluster i reside. 529 
 530 
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Proportion of variance explained by directional selection 531 
The proportion of variance in allele frequency on the logit scale for each SNP j is: 532 
 

Proportion	of	variance	for	SNP	j	 =
("
#⋅*+,(.)

("
#⋅012(.)34"

#   (2) 

 
We used 1000 independent SNPs, randomly selected across the genome with pairwise LD (r2) 533 
less than 0.05, to estimate that directional selection explains an average of 2.35% of the 534 
variance in allele frequency, with a standard error of 0.13% based on jackknife estimation. 535 
The GLMM used for this analysis is based on the full sample size, rather than clustering 536 
individuals according to their ancestry and date. 537 
 538 
Covariance structure for the GLMM 539 
The covariance structure matrix K for clusters m and n is defined as: 540 
 

K56 =
"

7$7%
∑ ∑ 𝐴%$$∈9%%∈9$	 	                   (3) 

 
Where 𝑐; is the set of individuals in cluster m, 𝑁; is the number of individuals in cluster m, 541 
and A<= is the genetic relationship matrix (GRM) between individuals i and j and defined as17: 542 
 

A<= =
"
>
∑ (?!&#&@&)(?"&#&@&)

&@&("#@&)
		>

AB"                  (4) 
 
Here 𝐺%A is the genotype for SNP k of individual i, 𝑓A is the allele frequency of SNP k, and 543 
M is the number of SNPs. We created a GRM using all autosomal SNPs and applied a leave-544 
one-chromosome-out (LOCO) scheme to prevent proximal contamination75,76, creating a 545 
separate GRM for each chromosome. 546 
 547 
Polygenic score computation 548 
The polygenic score (PGS) is a weighted average of genotypes for M independent variants. 549 
 

𝑃𝐺𝑆% = ∑ 𝑤$𝐺%$>
$B"                  (5) 

 
Here, 𝐺%$ is the genotype for SNP j of individual i and 𝑤$ is the SNP weight. We generate 550 
four variations of the PGS score by including or excluding the HLA region, and utilizing the 551 
GWAS effect values (βi) or only the sign of the effects, sign(βi), as weights. For each 552 
phenotype, we generate an independent set of SNPs using a two-step clumping and 553 
thresholding proces s. Initially, we clump SNPs with PLINK using a P-value <10-3, 554 
r2<0.05, and a 500 kb window. Then, we select the SNP with the smallest P-value as the 555 
index SNP, remove SNPs with D' > 0.2 within 500 kb, and repeat until no SNP remains. 556 
Consequently, all remaining SNPs have P<0.001, and if two SNPs are within 500 kb, their r2 557 
< 0.05 and D' < 0.2. To minimize residual population structure, we use the linear mixed 558 
model (LMM),  559 
 

𝑦% = 𝛼	 + 𝑡%𝛾 + 𝑔% + 𝑒%               (6) 
 
Here, 𝑦% is the polygenic score of the sample 𝑖, centered at zero and scaled by the standard 560 
error of PGS of the modern samples; 𝑡% is the date scaled down by -10000 (so it is in units of 561 
ten millennia); 𝛼 is the intercept; 𝒈~𝑀𝑉𝑁70, 𝜎C&𝑲; is a vector of random effects where the 562 
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covariance structure matrix K is the genetic relationship matrix; and 𝒆 = 𝑀𝑉𝑁(0, 𝜎D&𝑰) is a 563 
vector of residual errors where I is the identity matrix. The coefficient 𝛾 is the change of the 564 
polygenic score over 10000 years in unit of standard deviation from the zero-centered PGS of 565 
the modern samples. We use the coefficient 𝛾 as a proxy for directional polygenic selection. 566 
 567 
Fitting the linear mixed model (LMM) 568 
We used GEMMA (v0.98.5)77 to fit the LMM and estimate the polygenic selection 569 
coefficient (𝛾). The running time was tractable, so we did not apply the clustering algorithm 570 
used in the GLMM analysis. We used the genetic relationship matrix as the covariance 571 
structure matrix K. Here, PGS is calculated over all autosomes, and we could not use the 572 
LOCO approach from single-variant GLMM to avoid influence from neighboring positions. 573 
Instead, we used 80,085 high-quality, independent SNPs generated by the 'indep-pairwise 574 
1000 1 0.05' option of PLINK2 to calculate a GRM, using this as a covariance structure in the 575 
LMM to handle population structure and reduce proximal contamination. 576 
 577 
Analyzing correlation between GWAS summary statistics and selection coefficients 578 
We use LD score regression (LDSC) version 1.0.123,29,59 to calculate the genetic correlation 579 
between GWAS summary statistics and the estimated selection coefficient. We use the pre-580 
calculated LD scores computed using individuals of European ancestry from the 1000 581 
Genomes Project, which are provided with the LDSC software. To compute trans-ethnic 582 
genetic correlation, we used S-LDXR software78. We used the pre-calculated reference files 583 
for European and East Asian populations that are provided with this software. 584 
 585 
Studying heritability enrichment and computing standardized effect size (𝝉∗) 586 
We utilized stratified LD score regression (S-LDSC)29 to estimate the contribution of each 587 
annotation to the heritability of polygenic traits. The set of annotations of interest was 588 
combined with the baseline-LD model (v2.2), which includes 97 annotations modeling minor 589 
allele frequency (MAF), linkage disequilibrium (LD), and functional architectures including 590 
coding regions, promoters, enhancers, and conserved elements29,79,80. Heritability enrichment 591 
quantifies the effects of the annotation. It is defined as the proportion of heritability explained 592 
by SNPs in the annotation divided by the proportion of SNPs in the annotation. The 593 
standardized effect size (𝝉∗) measures the effects unique to the focal annotation after 594 
conditioning on all the other annotations in the baseline-LD model67. 595 
 596 
Adjusting for residual inflation in directional polygenic analysis  597 
To adjust for residual inflation in the estimated 𝒁𝜸 for each trait, we carried out 100 598 
randomizations for each trait of interest, using the same SNPs employed for calculating the 599 
PGS of that trait and randomly assigning a weight of +1 or -1 to each SNPs for each 600 
simulation. The simulated PGS is not expected to show a signal of selection, as the weights 601 
are randomly flipped and should cancel for polygenic traits. Therefore, for each trait, we 602 
define an inflation factor by calculating the ratio of the median 𝒁𝜸𝟐 for the simulation to the 603 
median of the chi-square distribution with 1 degree of freedom (0.455). If the inflation factor 604 
exceeds the median of 3.13 across all traits, we apply the median value as the correction 605 
factor for the test statistics. This allows us to carry out a valid analysis of polygenic signals 606 
driven by only a few SNPs under strong selection, which can cause a large inflation factor. 607 
 608 
Simulation of genotypes 609 
To simulate the genotypes of individuals for a variant with a selection coefficient sj, we used 610 
a random sample drawn from a Gaussian distribution with a covariance matrix of 𝜎$&𝐾. We 611 
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estimated the genetic relationship matrix A using real data, and randomly selected 𝜎$&	from 612 
an empirical distribution. This distribution was derived by applying a GLMM to real data, 613 
specifically for 1000 randomly chosen SNPs, without clustering. We employed equation 1 to 614 
simulate different selection coefficients and determined the initial allele frequency by 615 
drawing from an empirical distribution of allele frequency in modern samples. We used this 616 
value as a constraint to define the constant α$. To sample genotypes, we drew from a 617 
binomial distribution, with the probability of the alternative allele calculated using the 618 
standard logistic function applied to both sides of equation 1. 619 
 620 
Sources of data for 8433 ancient individuals 621 
We restricted to 8433 ancient individuals living between longitude 25W and 60E and latitude 622 
35N to 80N (Online Table 1). For 3644 ancient individuals, the sequences we analyze are 623 
published in other papers11,81–196 and are reanalyzed here. For 244 ancient individuals, we 624 
newly publish shotgun sequencing data obtained on Illumina instruments on libraries for 625 
which either in-solution enrichment data from the same ancient DNA samples, extracts, or 626 
libraries was previously published; the present study serves as the formal report of these new 627 
sequences, and reanalysis of the data presented here should cite both the present study and the 628 
study that originally reported data from these individuals. Online Table 2 lists these samples 629 
along with newly reported shotgun data for an additional 56 anonymized newly reported 630 
individuals (for a total of 300 newly reported shotgun genomes which have a median of 4.87-631 
fold coverage and of which 40 have at least 17-fold coverage). 632 
 633 
For 74 ancient individuals, we publish higher coverage in-solution enrichment data based on 634 
additional extracts, libraries and sometimes recaptures of libraries for which smaller amounts 635 
of in-solution enrichment data from the same samples were previous published, obtained by 636 
adding data from 155 newly reported ancient DNA libraries (Online Table 3). The present 637 
study serves as the formal report of these merges of previously published data with the newly 638 
generated data. Reanalysis of the data presented here should cite both the present study and 639 
the study that originally reported data from these individuals. 640 
 641 
For 4471 never-before-reported ancient individuals obtained by sequencing 5227 newly 642 
reported ancient DNA libraries (Online Table 3), we release raw ancient DNA data with 643 
permission of sample custodians. The individuals are anonymized, with the only information 644 
provided about them being point estimates of their dates and broad geographic categorization 645 
into five regions of West Eurasia. Analyses of population history and presentation of full 646 
archaeological information will be provided in subsequent studies and we request that the 647 
research community respects “Fort Lauderdale principles”15 , allowing the generators of the 648 
data to report the first population history analyses. Any researchers are welcome to analyze 649 
the full dataset for studies of natural selection.  650 
 651 
Sources of data for contemporary individuals 652 
We analyzed data from 6,510 contemporary individuals, comprising 5,935 from the UK 653 
Biobank19, 503 from the 1000 Genomes Project18, and 72 from published studies174,197–201. 654 
 655 
For the UK Biobank data, we selected individuals genotyped on the UK Biobank Axiom 656 
array, excluding those sequenced on the UK BiLEVE array to minimize batch effects. To 657 
ensure broad representation across Western Eurasia, we subsampled the UK Biobank, 658 
limiting the selection to at most 300 people per "country of birth" within Western Eurasia, 659 
focusing on countries with ancient DNA in this study. This yielded 6,088 individuals. 660 
 661 
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For the remaining individuals, we calculated the Mahalanobis distance P-value based on the 662 
top 20 principal components, assuming the squared Mahalanobis distance follows a 𝜒² 663 
distribution with 20 degrees of freedom. Samples with P-values below the Bonferroni-664 
corrected threshold of 8.2e-6 were removed, resulting in a final set of 5,935 individuals from 665 
58 countries, with a median of 55 and a mean of 102 individuals per country. These principal 666 
components were derived from the full set of UK Biobank samples. 667 
 668 
Ancient DNA data generation  669 
The great majority of wet laboratory work was performed in the ancient DNA laboratory at 670 
Harvard Medical School in Boston, USA, following established protocols that evolved over 671 
time from mostly manual processing (sample preparation, DNA extraction with silica 672 
columns202,203 and partial UDG treated double-stranded library preparation204,205; capture was 673 
automated using a Perkin Elmer EP3 or Agilent Bravo NGS Workstations11,206,207) to mostly 674 
automated processing (DNA extraction208, double- and single-stranded library preparation209, 675 
capture, pooling for sequencing). New libraries (if not deeply shotgun sequenced) were 676 
enriched with the Twist Ancient DNA panel193, whereas older libraries were enriched with 677 
the 1240k reagent (or its predecessor, 390k and 840k). We sequenced on an Illumina 678 
NextSeq500 instrument until 2019, when we switched to an Illumina HiSeq X10 instrument, 679 
and finally to an Illumina NovaSeq X instrument in 2022. Archaeologists or collaborators 680 
from other ancient DNA laboratories in some cases provided sample powder, DNA extracts, 681 
or libraries, which we continued to process. Online Table 3 provides summary statistics based 682 
on in-solution enrichment for 5382 ancient DNA libraries for which we newly report data.  683 
 684 
Ancient DNA bioinformatic processing  685 
Most of the newly reported data come from sequencing the products of in-solution 686 
enrichment targeting a set of more than a million known polymorphisms193,207. In-solution 687 
enrichment extracts more information by enriching sequenced molecules to overlap sites that 688 
are polymorphic in humans (which also helps to greatly reduce the proportion of non-689 
endogenous bacterial/microbial sources that colonized the samples post-mortem). The great 690 
majority of ancient DNA libraries we analyzed are marked with identification tags (barcodes 691 
and indices) before sequencing in pools. We merged paired-end sequences, requiring that 692 
there is no more than one mismatch in the overlap between paired sequences where the base 693 
quality is at least 20 or three mismatches if the base quality is <20. We did not analyzed 694 
sequences we could not merge. We stripped adapters and identification tags to prepare 695 
molecules for alignment. A custom toolkit (https://github.com/DReichLab/ADNA-Tools) 696 
was used for all these steps. We aligned merged sequences to the hg19 version of the human 697 
reference genome with decoy sequences (hs37d5) using the single-ended aligner, BWA 698 
SAMSE v.0.7.15210 with typical ancient DNA alignment parameters -n 0.01 -o 2 and -l 16500 699 
which disables pre-alignment seeding. Duplicate reads were marked using Picard 700 
MarkDuplicates (v.2.17.10)211. In addition, merged sequences are also mapped with the same 701 
parameters as the Reconstructed Sapiens Reference Sequence (RSRS)212, which enables 702 
mitochondrial-specific metrics. Our bioinformatic processing produces data and key metrics, 703 
including estimates of authenticity based on elevated damage rates at the end of sequences 704 
(indicative of ancient DNA), contamination rates, and endogenous rates. A subset of libraries 705 
that had a very high proportion of human DNA were additionally shotgun sequenced to 706 
generate coverage throughout the genome and underwent the same bioinformatics processing.  707 
 708 
Imputation 709 
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To carry out imputation, we used as input either data from ancient individuals (mapped 710 
sequences) or modern individuals (SNP array genotypes), and then used allelic correlation 711 
patterns in a haplotype reference panel18,213 to predict genotypes at millions of sites. 712 
 713 
In detail, for each sample we used bcftools mpileup (v1.13)214 to generate genotype 714 
likelihoods for all variants (SNPs and indels) in the panel. We used the high coverage (30x) 715 
1000 Genomes Project18 phase 3 sequences as the reference panel and converted the 716 
assembly version to GRCh37/hg19 using CrossMap (v0.5.2)215. We kept 2504 unrelated 717 
samples and biallelic variants that pass all the quality control filters reported by gnomAD 718 
(v2.1.1)216. We used GLIMPSE (v1.0.0)20 with the reference panel to impute and phase each 719 
sample individually. Due to higher reference bias for indels, we ignored their genotype 720 
likelihood, set them to missing, and passed this to GLIMPSE to impute all biallelic autosomal 721 
SNPs and indels based on genotype likelihood of SNPs and haplotype information for both 722 
SNPs and indels in the reference panel. This means we only use reference panel information 723 
to impute indels even where we have sequences overlapping the indels. After imputation is 724 
done, we add the genotype caller information of all variants (SNPs and indels) to the final bcf 725 
file. 726 
 727 
To minimize discrepancies between imputation of ancient DNA and UK Biobank data, we re-728 
imputed the UK Biobank genotyping data. We utilized Affymetrix confidence files to 729 
simulate genotype likelihoods and processed these through the same imputation pipeline 730 
employed for ancient DNA. 731 
 732 
Sample quality control 733 
For each imputed sample, we define imputation quality score 𝐼𝑄𝑆 = 𝑚𝑒𝑎𝑛(𝐺𝑃"|𝐺𝑇 = 1), 734 
where 𝐺𝑇 is the most likely genotype based on the imputed genotype posterior 𝑮𝑷 =735 
(𝐺𝑃H, 𝐺𝑃", 𝐺𝑃&) and ∑ 𝐺𝑃%&

%BH = 1. We only kept samples with high imputation quality score 736 
IQS>0.9. We used KING to detect duplicates and related samples up to the second degree. 737 
We prioritize samples by their IQS and drop relatives up to the second degree until there are 738 
no two samples that are second-degree related or closer. We also fit a linear regression model 739 
to the top 100 PCs as explanatory variables and used the reported date of samples as the 740 
response variable to remove outliers where reported and predicted date are very different. 741 
Sample quality control is described in detail in Supplementary Information section 1. 742 
 743 
Variant quality control 744 
The data analyzed in this study come from multiple sources and sequencing technologies: 745 
imputed ancient DNA sequences (shotgun sequences and enrichment for more than a million 746 
SNPs), European ancestry individuals largely from the 1000 Genomes Project, and imputed 747 
individuals of Western Eurasian ancestry from the UK Biobank genotyped using the UK 748 
Biobank Axiom Array. Variant quality control involved a two-step procedure. Initially, we 749 
applied brute-force filtering to compute principal components, allowing for the identification 750 
of ancestry-matching samples across datasets with similar allele frequencies. We filtered out 751 
variants if their allele frequencies differed strongly between sample sets, with the goal of 752 
minimizing batch effects from combining samples from different sources. This results in 753 
9,926,484 variants, including 8,212,921SNPs and 1,713,563 indels, passing the final variant 754 
QC out of 52,382,872 imputed variants. The step-by-step variant quality control process is 755 
detailed in Supplementary Information section 1. 756 
 757 
Allele frequency trajectories 758 
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We computed allele frequency trajectories using all individuals in the time series. We used a 759 
moving average sliding window, with a window size of 1000 years and a step size of 100. We 760 
used a binomial likelihood function to estimate the mean, confidence intervals, and standard 761 
error. We smoothed the mean and standard error using the GaussianProcessRegressor 762 
function from the Scikit-learn library in Python. We parameterized this function with alpha = 763 
1e-4 and a 1*RationalQuadratic kernel, with length_scale_bounds set to (10, 1e6). We 764 
clipped the resulting values to remain within the range of 0 and 1. 765 
 766 
Assembly of GWAS data to which we correlated selection coefficients 767 
We processed 6,951 phenotypes with European ancestry from the Pan-UK Biobank24, of 768 
which 452 passed quality control with the flag phenotype_qc_EUR being PASS. We also 769 
analyzed 107 curated sets of independent GWAS studies55,217 with European ancestry for 770 
meta-analysis.	For the trans-ethnic analysis, we analyzed 31 phenotypes in East Asians: 30 771 
phenotypes from the Biobank of Japan (BBJ)218 and the GWAS summary statistics from the 772 
study of years of schooling GWAS by Chen et al. 2024219. We then co-analyzed these GWAS 773 
results with that of the corresponding phenotypes in the Pan-UK Biobank. 774 
 775 
  776 
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Data availability 777 
The aligned sequences for newly reported data are available through the European Nucleotide 778 
Archive under an accession number that will be made available upon final publication. 779 
Imputed genomes for all ancient and modern individuals are available at the permanent 780 
Dataverse repository at a link that will made available upon final publication. 781 
 782 
Software and code availability 783 
An interactive web application for this study is available at https://reich-784 
ages.rc.hms.harvard.edu. The PQLseq2 software is available from 785 
https://github.com/zhengli09/PQLseq2. 786 
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Tables 
 
Table 1. Re-evaluation of signals from five scans for selection in Holocene West Eurasia 
 Genome wide significant loci Less stringent threshold 
 Total Pass QC 𝜋>99% 𝜋>50% Total Pass QC 𝜋>99% 𝜋>50% 
Mathieson et al. 2015 12 11 10 11     
Field et al. 2016 3 3 2 2 37 35 3 10 
Le et al. 2022 24 22 9 10     
Kerner et al. 2023 3 3 3 3 139 123 14 24 
Irving-Pease et al. 2024 21 21 13 17     
 

Note: Significance of selection according to our analysis for loci identified in five previous scans for selection in Holocene West 
Eurasia (all but Field et al. are ancient DNA-based scans). The less stringent P-value thresholds are 10-5 for Field et al. 2016 and 
0.05 for Kerner et al. 2023. The cumulative number of non-HLA signals identified as genome-wide significant and confirmed in 
our re-analysis with a posterior probability of selection 𝜋>99% is 17 (6% of the 279 non-HLA loci with 𝜋>99%). Of these, 8 
were found in Mathieson et al., Field et al. added 0, Le et al. added 3, Kerner et al. added 0, and Irving-Pease et al. added 6.  
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Figure Legends 
 
Figure 1: Multiple lines of evidence show we are detecting genuine signals of directional 813 
selection. (a) Proportion of SNPs significant in at least one of 452 Pan-UKBB GWAS, for 814 
SNPs with |X| above the value on the x-axis, and controlling for allele frequency. (b) 815 
Residual mean HAF-score [(HAF)/n], computed as observed minus expected value, with n 816 
the haploid sample size, from a linear regression correcting for background selection, and a 817 
window size of 200 kb. (c) The heritability enrichment column is a meta-analysis on 818 
heritability enrichment for annotations based on a binary selection annotation, with FDR 819 
either below 1% (=1) or above 1% (=0). Z-score for change in selection intensity over time is 820 
based on a meta-analysis of heritability enrichment comparing key cultural transitions: 821 
Mesolithic-Neolithic (MN) to Bronze Age (BA); and Bronze Age (BA) to Historical Era 822 
(HE). We annotate each SNP according to whether it is among the top 5% with the highest 823 
probability of a stronger magnitude of selection coefficient in one time transect vs. another. 824 
 825 
Figure 2: Genome scan for directional selection. (a) The x-axis is chromosomal position, 826 
and the y-axis the selection signal for each variant. The dotted line indicates our genome-827 
wide significance threshold of |X|=5.45. For clarity, only select loci are annotated. (b) 828 
Selection coefficient (s) estimated from our scan plotted against minor allele frequency of 829 
tagging SNPs at independent loci with FDR<5%. Overlaid grids are simulation-based power 830 
estimates (90%, 70%, 50%, 30%, and 10% probability of detection). (c) The estimated age of 831 
the favored allele in a selective sweep versus the date of origin of the mutation is inferred 832 
from RELATE9, for tagging SNPs with FDR<5% at independent loci. The age of the sweep 833 
is defined as the time in the past when the frequency of the favored allele is expected to have 834 
been 0.0001 given the present-day frequency in 1000 Genomes Project European populations 835 
and assuming the selection coefficient has been constant over time. 836 
 837 
Figure 3: Gallery of notable single-locus selection trajectories. Each panel displays the 838 
derived allele frequency trajectory over time for a variant (uncorrected for structure), along 839 
with selection coefficient (s), selection statistic (X), and posterior probability of selection (𝜋). 840 
Circles represent frequencies in Western Hunter-Gatherers (orange), Early European Farmers 841 
(green), and Steppe Pastoralists (blue). The highlighted loci are not necessarily those with the 842 
strongest signals, and even include negative results. We highlight them here because of their 843 
biological interest and because they speak to long-standing debates. For Panels 4, 5, 6, 33, 35, 844 
and 36 separate analyses are shown for transects before and after a manually selected peak 845 
(marked by a black line), with 200-year overlap. In cases where 𝜋>90%, the confidence 846 
interval is shaded blue (or blue for before and red for after the split); otherwise, the shading is 847 
gray. Variants reported in other ancient DNA studies are marked with an asterisk. 848 
 849 
Figure 4: Coordinated selection on alleles affecting same traits (polygenic adaptation). 850 
The polygenic score of Western Eurasians over 14000 years in black, with 95% confidence 851 
interval in gray. Red represents the linear mixed model regression, adjusted for population 852 
structure, with slope 𝛾. Three tests of polygenic selection—𝛾,	𝛾sign, and rs—are all significant 853 
for each of these twelve traits, with the relevant statistics at the top of each panel.   854 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2024. ; https://doi.org/10.1101/2024.09.14.613021doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.14.613021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 22 

Extended Data Figure Legends 
 
Extended Data Figure 1: Spatiotemporal distribution of individuals and effect on power. 855 
(a) Geographic origin: North (N), Central (C), East (E), Southwest (SW) and Southeast (SE). 856 
(b) Temporal distribution (x-axis on a logarithmic scale). (c) Power analysis based on 857 
simulations. Sample size, dates, and pattern of genetic relatedness are matched to real data. 858 
Power is defined as proportion of true positives expected at p<5x10-8. We ran 20000 859 
simulations for each selection coefficient, with minor allele frequency (MAF) at present 860 
(time=0) randomly drawn from the MAF distribution in modern Europeans. (d) Number of 861 
independent and significant loci as function of sample size (from downsampling). (e) Effect 862 
of age on power. Data are divided into 10 non-overlapping periods; modern individuals are a 863 
separate bin. In top panel, y-axis is proportion of loci that remain significant after excluding 864 
100 random individuals from that bin (bottom is number of individuals in the same bin). 865 
 866 
Extended Data Figure 2: High proportion of genome affected by directional selection. 867 
(a) LD score plot for nominal χ² statistics, with each point representing an LD score quantile. 868 
Values are averaged across each bin. (b) Mapping X-score to posterior probability (π), False 869 
Discovery Rate (FDR), number of independent loci excluding the HLA region (N), and the 870 
percentage of the genome in LD (r² > 0.05) with tag SNPs representing these loci. 871 
 872 
Extended Data Figure 3: Robustness of directional selection signals (related to Figure 873 
1a,b). (a) Proportion of SNPs significant in any of 452 pan-UK Biobank GWAS studies for 874 
X-statistics with magnitudes larger than the threshold on the x-axis, adjusted for minor allele 875 
frequency and measures of linked purifying selection (McVicker-B, Murphy-phastCons, and 876 
Murphy-CADD). Background selection tends to be higher in functional genomic regions, so 877 
SNPs with higher |X| are more penalized than in Figure 1a hence the lower plateau. (b) 878 
Simulating neutral, negative, and positive selection for a 200 kb window around a focal SNP, 879 
with derived allele frequency drawn uniformly from [0,1]. The focal SNP has s=0.01, 880 
population size is constant at 20000 diploid individuals, mutation rate per base pair per 881 
generation is 2x10-8, and recombination rate is 1 cM per 1 Mb. (c) Residual mean (HAF)/n 882 
for a haploid sample size n over 200 bp windows is observed minus expected value. Expected 883 
value is determined using a linear regression model with McVicker-B, Murphy-phastCons, 884 
and Murphy-CADD as variables, providing the expected mean (HAF)/n conditioned on them.  885 
 886 
Extended Data Figure 4: Stratified LD Score Regression shows that alleles affecting 887 
blood-immune-inflammatory and cardio-metabolic traits were unusually affected by 888 
selection, and that selection intensity increased in the Bronze Age (related to Figure 1c). 889 
(a) We annotated sites based on their inferred strength of selection—based on their FDR 890 
being above a specified threshold, or 1-FDR as a continuous annotation—and used Stratified 891 
LD Score Regression (S-LDSC) to study enrichment of GWAS signals and standardized 892 
effect sizes (𝝉*) for traits in different functional categories. Our analysis adjusts for 97 893 
annotations that are known to affect heritability and are part of the standard correction in S-894 
LDSC; dots represent significance of elevation above the baseline of 1 expected for random 895 
variants. (b) Tests for changes in selection intensity during different cultural transitions: 896 
Mesolithic-Neolithic (MN) to Bronze Age (BA); and Bronze Age (BA) to Historical Era 897 
(HE). Each annotation is binary, identifying SNPs among the top 5% with the highest 898 
probability of experiencing stronger selection during one time period compared to another. 899 
This is determined using the estimated selection coefficient and standard error from models 900 
separately fit to each cultural period. Error bars are 95% confidence intervals. 901 
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 902 
Extended Data Figure 5: How selection coefficients on single variants changed in 903 
intensity over time (for the gallery of 36 loci also highlighted in Figure 3). Time-variant 904 
selection coefficients are estimated by refitting our model in sliding windows of 2000 years, 905 
with a step size of 100 years, and a minimum of 500 people per window. The present-day is 906 
excluded. Color map represents the Z-score for the selection coefficient being non-zero in 907 
that window, ranging from -5 (dark red) to 5 (dark blue). 908 
 909 
Extended Data Figure 6: Genotype-phenotype correlations for the signals of selection 910 
for Celiac disease at HLA and the ABO blood group locus. (a) Prevalence and (b) 911 
prevalence ratio of individuals with celiac disease or gluten sensitivity (data field 21068) in 912 
the UK Biobank, conditioned on the genotype of rs3891176 (C>A). The prevalence ratio 913 
compared to the A/A genotype as a baseline; bars are 95% confidence intervals. (c) Left: 914 
Blood type frequency trajectories for O, A, B, and AB estimated from our aDNA time series. 915 
Right: Genealogy of the ABO alleles approximated by Shelton et al. 2021220. The allele 916 
frequencies are estimated from Europeans in the 1000 Genomes Project; shading gives 95% 917 
confidence interval. (d) Significant association to traits in Pan-UKBB for the two base pair 918 
insertion rs8176719 (T>TC) and SNP rs8176746 (G>T), approximating the alleles A and B.  919 
 920 
Extended Data Figure 7: High correlation of 3 tests for polygenic selection (𝛾, 𝛾sign, rs). 921 
Each dot represents a phenotype, some annotated by colors. Pearson’s correlation for x and y 922 
axes at top; dashed line is the P<0.0001 significance threshold (correcting for 500 tests). 923 
 924 
Extended Data Figure 8: How coordinated selection on alleles affecting the same traits 925 
changed in intensity over time (gallery of 12 complex traits also highlighted in Figure 4). 926 
We estimate time-variant polygenic selection intensity 𝛾 by refitting our model in sliding 927 
windows of 2000 years, with a step size of 100 years, and a minimum of 500 people per 928 
window. The present-day is excluded. Color map represents the Z-score for the selection 929 
coefficient being non-zero in that window, ranging from -5 (dark red) to 5 (dark blue). 930 
 931 
Extended Data Figure 9: Pigmentation is oligogenic but selection on it was polygenic. 932 
Selection coefficient (s) and effect size (β) from the pan-UKBB skin color phenotype for 110 933 
independent SNPs passing the GWAS P-value threshold of p<5x10-8. Following 57, the 934 
orange line is a linear regression on all SNPs (99 blue and 11 orange markers), while the blue 935 
line includes only SNPs with |β| < 0.05 (99 blue markers). Although the correlation appears 936 
different (with the difference between Fisher Z-transformed Pearson r showing a P-value of 937 
0.001), the slopes are not significantly different (P = 0.10), consistent with a model in which 938 
selection for pigmentation had an equal impact on all variants in proportion to effect size. 939 
 940 
Extended Data Figure 10: Estimating the minimum number of SNPs affected by 941 
selection for each trait (gallery of 12 traits also highlighted in Figure 4).  Each panel 942 
shows the correlation of a trait with selection summary statistics (rs) as a function of number 943 
of dropped loci. The right axis displays rs in blue; P-value on the left axis in orange. For each 944 
SNP, we define a priority score | β × s × f × (1-f) |, where β is the GWAS effect size, s the 945 
selection coefficient, and f allele frequency. SNPs are sorted by priority score, and in each 946 
iteration, a 2cM region around the highest priority SNP is dropped, rs is recalculated for the 947 
remaining genome, and this continues until no SNPs are left. (b) We similarly show 𝛾 948 
estimates at right as a function of number of dropped SNPs (blue), and P-value for polygenic 949 
selection at left with dark orange P<0.0001, light orange P<0.05, and gray otherwise. 950 
 951 
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Extended Data Figure 11: Replication of signals of polygenic selection using effect size 952 
estimates in East Asians whose population structure is uncorrelated to West Eurasians.  953 
We applied our polygenic selection test to 31 traits using pairs of GWAS studies for the trait, 954 
one from Europe and one from East Asia. We assessed if PGS (𝛾), PGS-sign (𝛾sign), and 955 
genetic correlation tests (rs) were consistent in these two analyses. 956 
 957 
Extended Data Figure 12: Correlations of polygenic scores for complex traits  with 958 
strong evidence of coordinated selection (the same 12 traits highlighted in Figure 4).  959 
Genetic correlations of traits were computed using LDSC. Asterisks indicate significance 960 
level (n asterisks represent a jackknife estimated P<0.5x10-n). 961 
 962 
Extended Data Figure 13: Consistency of polygenic selection signals using effect sizes 963 
estimated from both GWAS of unrelated people, and sibling-based GWAS66. The first 964 
three columns show estimates for each of the three polygenic tests of selection. The fourth 965 
column replicates Figure 5 from66, and shows the estimated SNP heritability h2 by LDSC. 966 
The fifth column shows the sample sizes for both GWAS of unrelated people (blue) and 967 
sibling-based GWAS (orange). Error bars indicate the 95% confidence interval, which is 968 
often larger for the sibling-based GWAS due to limited sample size. 969 
 970 
Extended Data Figure 14: Our generalized linear mixed model (GLMM) method is far 971 
more powerful than a generalized linear model (GLM) with PC covariates. To compute 972 
the inflation factor for different approaches, we ran 10000 simulations of neutral evolution 973 
for a scenario of population structure, sample size, and temporal distribution of samples 974 
matching real data. For the power calculation, we ran 20000 simulations of selective sweeps 975 
for a range of selection coefficients (power is the proportion of true positives at P<5x10-8). 976 
Because of co-linearity of time and population structure, correcting for PCs greatly weakens 977 
power to detect selection, but the GLMM methodology does not suffer from this.  978 
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Supplementary Data Sets 
 
Online Table 1: List of 8433 ancient individuals analyzed in our time transect. Data 979 
Source 1 is 3644 individuals whose previously published sequences we reanalyze. Data 980 
Source 2 is 244 individuals with previously published in-solution enrichment data for which 981 
we report and analyze whole genome shotgun data. Data Source 3 is 74 individuals with 982 
previously published in-solution enrichment data for which we report and analyze additional 983 
in-solution enrichment data. Data Source 4 is 4471 never-before-reported individuals for 984 
which we report and analyze data that is anonymized except for a point estimate of the data 985 
of origin and information about broad region in West Eurasia. Available as an Excel table. 986 
 987 
Online Table 2: List of 300 newly reported shotgun ancient genomes. Most are from 988 
individuals with previously reported in-solution enrichment data (n=244; the remainder are 989 
from samples reported for the first time (n=56). Available as an Excel table. 990 
 991 
Online Table 3: List of 5382 newly reported ancient DNA libraries. The majority 992 
(n=5227) are from 4471 never-before-reported ancient individuals; the rest (n=155) are from 993 
74 individuals for which we increase data quality. Available as an Excel table. 994 
 995 
Online Table 4: Summary statistics for selection in 9.9 million variants. The data are 996 
provided as a tab-delimited text file, compressed using gzip. Available at Harvard Dataverse: 997 
https://doi.org/10.7910/DVN/7RVV9N. 998 
 999 
Online Table 5: Summary statistics for tests of polygenic selection. The data includes: 452 1000 
European GWAS from Pan-UKBB24, 107 curated European GWAS used for S-LDSC meta-1001 
analysis55,217, 50 European GWAS with 25 pairs of sibling and population GWAS from Howe 1002 
et al. 202266, 30 East Asian GWAS from Biobank Japan, and one from Chen et al. 2024219. 1003 
Available as an Excel table.  1004 
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Category Number of 
traits

Heritability 
enrichment 
(95% CI)

Z-score for selection stronger in

Bronze Age than 
Neolithic/Mesolithic

Historical period than 
Bronze Age

Biomarkers 9 4.03 (2.28-5.78) 2.84 0.74
Blood/immune/inflammatory 20 4.71 (2.65-6.77) 3.82 1.50

Cardio/metabolic 20 1.55 (1.09-2.01) 3.53 -0.08
Life history/reproduction 7 1.54 (1.13-1.95) 1.95 -1.06

Behavioral 13 0.96 (0.55-1.36) -0.14 1.43
Mental/psychiatric/nervous 13 0.77 (0.23-1.31) 0.26 0.44

Other 25 1.47 (1.03-1.91) 2.98 1.31
All 107 1.87 (1.43-2.31) 6.49 2.01
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ba
|X| 𝜋𝜋 FDR N Percentage of 

genome in LD
5.4513 0.9900 0.0058 279 13.87±1.59
5.3514 0.9800 0.0097 310 15.03±1.62
5.3453 0.9793 0.0100 311 15.03±1.62
5.2730 0.9700 0.0136 329 15.37±1.62
5.2075 0.9600 0.0175 365 16.95±1.73
5.1697 0.9540 0.0200 376 17.16±1.74
5.1475 0.9500 0.0216 382 17.54±1.74
5.0434 0.9302 0.0300 445 19.31±1.82
4.9388 0.9074 0.0400 539 23.09±1.93
4.9073 0.9000 0.0434 564 23.5±1.94
4.8505 0.8861 0.0500 616 25.86±1.99
4.5471 0.8000 0.0958 967 39.55±2.23
4.5256 0.7934 0.1000 1002 40.85±2.23
4.2419 0.7000 0.1606 1633 68.63±2.02
4.0900 0.6481 0.2000 2149 80.74±1.65
3.9531 0.6000 0.2384 2747 90.6±1.16
3.7537 0.5305 0.3000 3914 98.03±0.43
3.6688 0.5000 0.3269 4565 98.93±0.35
3.4493 0.4225 0.4000 6705 99.82±0.08
3.1552 0.3222 0.5000 10361 99.93±0.05
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