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Abstract
Objectives: Unstructured and structured data in electronic health records (EHR) are a rich source of
information for research and quality improvement studies. However, extracting accurate information
from EHR is labor-intensive. Here we introduce an automated EHR phenotyping model to identify
patients with Alzheimer's Disease, related dementias (ADRD), or mild cognitive impairment (MCI).

Methods: We assembled medical notes and associated International Classi�cation of Diseases (ICD)
codes and medication prescriptions from 3,626 outpatient adults from two hospitals seen between
February 2015 and June 2022. Ground truth annotations regarding the presence vs. absence of a
diagnosis of MCI or ADRD were determined through manual chart review. Indicators extracted from
notes included the presence of keywords and phrases in unstructured clinical notes, prescriptions of
medications associated with MCI/ADRD, and ICD codes associated with MCI/ADRD. We trained a
regularized logistic regression model to predict the ground truth annotations. Model performance was
evaluated using area under the receiver operating curve (AUROC), area under the precision-recall curve
(AUPRC), accuracy, speci�city, precision/positive predictive value, recall/sensitivity, and F1 score
(harmonic mean of precision and recall).

Results: Thirty percent of patients in the cohort carried diagnoses of MCI/ADRD based on manual review.
When evaluated on a held-out test set, the best model using clinical notes, ICDs, and medications,
achieved an AUROC of 0.98, an AUPRC of 0.98, an accuracy of 0.93, a sensitivity (recall) of 0.91, a
speci�city of 0.96, a precision of 0.96, and an F1 score of 0.93 The estimated overall accuracy for
patients randomly selected from EHRs was 99.88%.

Conclusion: Automated EHR phenotyping accurately identi�es patients with MCI/ADRD based on clinical
notes, ICD codes, and medication records. This approach holds potential for large-scale MCI/ADRD
research utilizing EHR databases.

Introduction
Globally, 12% to 18% of people aged 60 or older are living with mild cognitive impairment (MCI) 1, and

10% to 15% of individuals living with MCI develop dementia each year 2. About one-third of people living
with MCI due to Alzheimer’s disease (AD) develop dementia within �ve years3.  The number of people in
the United States with AD dementia will increase dramatically in the next 30 years due to growth of the
population over the age of 65 4. Observational data from Electronic Health Records (EHRs) are an

increasingly important resource for research on risk factors and potential interventions for MCI and AD 5-

7. A key challenge in scaling up EHR-based research is the accurate phenotyping of patients with a
diagnosis of MCI and ADRD. Many studies rely on billing codes (International Classi�cation of Diseases:
ICD-9, ICD-10) 8,9;  however, these are often inaccurate10. Manual review of clinical notes is more

accurate 11-15 but labor intensive and impossible to conduct at large scale 16-18. 
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Automated EHR phenotyping seeks to address these challenges by automatically extracting information
from clinical notes and combining this with structured information (e.g., medication prescriptions and
diagnostic billing codes) to infer information of interest 19. Here, we present a machine learning (ML)-
based EHR phenotyping model to automate the process of chart review for MCI/ADRD. We demonstrate
that our model combining information from clinical notes, ICD codes, and medications provides an
accurate MCI/ADRD phenotyping and is thus suitable for large-scale EHR research.

Materials And Methods
study cohort 

EHR data was extracted under protocols approved by the Massachusetts General Hospital (MGH) and
Beth Israel Deaconess Medical Center (BIDMC) Institutional Review Boards with waivers of informed
consent. A consort diagram is provided in Figure 1.

Patients were selected from MGH and BIDMC EHR archives from visits that took place between January
3rd, 2012, to November 3rd, 2017. Because ADRD/MCI is an age-associated disease, only patients aged
50 years or older were included. We randomly selected patients for inclusion using a strati�ed sampling
strategy, to ensure adequate representation of patients with low, medium, and high likelihood of having
an MCI/ADRD diagnosis to facilitate subsequent model development. Speci�cally, we created 4 groups
based on the presence or absence of computable criteria (i.e. criteria that do not depend on analysis of
unstructured text data): 'MED-ICD-', 'MED+ICD+', 'MED+ICD-', 'MED-ICD+', denoting groups of patients with
and without ICD codes and medications (MED) associated with MCI/ADRD. Notes for patients within
each of these groups were subsequently manually reviewed to determine which patients had an
MCI/ADRD diagnosis (described below). 

study data

Study data included unstructured (i.e., free text) clinical notes and structured data. Structured data
included International Classi�cation of Diseases (ICD) codes 20 for MCI/ADRD, and dementia-related
medications (see below). Clinical notes included o�ce visit notes, admission notes, progress notes,
discharge notes, and correspondence from all medical specialties in the MGH and BIDMC systems.
Clinical notes contain a wide range of information such as chief complaint; history of present illness;
physician examinations, observations, assessments, and treatment plans; active problems; and current
and past medications. All patients included in the study had at least one clinical note. If a patient had any
MED or ICD records, only notes recorded after the �rst appearance of a MED or ICD record were selected
for analysis. We removed notes with fewer than 500 words as these were generally administrative notes
without signi�cant medical content.  

Ground truth labels: Manual chart review
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We used a web-based tool developed in house that highlights keywords within notes from a provided list.
A neurologist (MBW) performed manual review of all notes in each of the 'MED+ ICD+', 'MED+ ICD-',
'MED- ICD+', and 'MED-ICD-' groups, and assigned a �nal yes/no label regarding MCI/ADRD status. Cases
marked as ‘uncertain’ were excluded. 

In the 'MED+ICD+' group, patients were prescribed medications typically associated with ADRD/MCI
('MED+') and had ADRD/MCI-related ICD codes ('ICD+'). In the 'MED+ICD-' group, patients were
prescribed ADRD/MCI-related medication ('MED+'), but no ADRD/MCI-related ICD codes ('ICD-') were
present in their medical records. In the 'MED- ICD+' group, patients were not prescribed ADRD/MCI-
related medications ('MED-'), yet their medical records contained ADRD/MCI-related ICD codes
('ICD+'). 'MED-ICD-' cases involved neither ADRD-related medication ('MED-') nor ADRD-related ICD codes
('ICD-') in the medical records.

Predictors included in the model

The entire method is depicted in Figure 2. Features included as input to the model included 9 groups of
medications, 6 groups of ICD codes, and text features. 

ICD code groupings: ICD groupings and medications were de�ned a priori by three neurologists (MBW,
SZ, SM), including: “Alzheimer's disease” – ICD-10 F00, G30.0, G30.1, G30.8, G30.9 and ICD-9 290.0,
290.2x, 290.3, 331.0; “Vascular Dementia” – ICD-10 F01.X and ICD-9 290.4X; “Lewy Body Dementia” –
ICD-10 G31.83 and ICD-9 331.82; “Frontotemporal Dementia” – ICD-10 G31.0, G31.01, G31.09 and ICD-9
311.11, 331.19; “Unspeci�ed Dementias” – ICD-10 F02.8x, F03.9x and ICD-9 294.1x, 294.2x; “Mild
Cognitive Impairment” ICD-10 F06.7 and ICD-9 331.83. One day before and after the visit was considered
for assignment of an ICD code to account for prior or delayed data entry. 

Medications: Aricept, donepezil, Exelon, rivastigmine, memantine, Namenda, Namzaric, Razadyne, and
galantamine 21.

Text features: Keywords, phrases, and word patterns were extracted from notes. We converted the text in
each note to lowercase, removed stop words and special characters, and applied lemmatization.
Subsequently, we extracted unique words from each note. We also extracted unique bigrams (two
consecutive words) and trigrams (three consecutive words) to identify potentially discriminative
features. For each note, we created a vector representation of the information within the note using Term
Frequency-Inverse Document Frequency (TF-IDF) weighting 22,23. TF-IDF quanti�es the importance of a
word within a note, relative to its prevalence across a collection of notes. Speci�cally, we created vectors
containing TF-IDF values for each of the candidate features identi�ed above. TF-IDF features were
assembled into a single overall vector which serves as input to the classi�cation model.

Classi�cation model training and testing
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We trained a logistic regression model to assign a probability to each note, representing the likelihood of
the clinical note indicating MCI/ADRD. To deal with imbalanced numbers of positive and negative
subsamples, we used class weights inversely proportional to subsample size. LASSO regularization was
employed for automated feature selection, with the relative importance of each feature assessed based
on the magnitude of the resulting regression coe�cients. To evaluate the performance of our model and
assess generalizability, we implemented 5-fold strati�ed nested cross-validation. Hyperparameter
optimization was conducted using internal cross-validation.  To compare the informativeness of
different data types, we trained models with the following input combinations: (1) clinical notes, ICDs,
and medications combined, (2) clinical notes only; (3) ICDs only; and (4) medications only. Feature
importance analysis was performed to determine which variables had the most signi�cant impact on the
model’s predictions.

Model performance metrics

Model performance was evaluated using accuracy, precision, recall, speci�city, F1-score, area under the
AUROC, and area under the AUPRC 24. For each metric, we present micro-average performance metrics
for positive and negative diagnoses of MCI/ADRD. We conducted 1000 iterations of bootstrapping to
obtain the 95% con�dence intervals (CI). Additionally, confusion matrices for various training and testing
datasets further illustrate the model's performance across different data splits. Error analysis was
conducted to identify the primary sources of misclassi�cation. 

Generalizability experiments

To evaluate the model's generalizability across institutions and to enhance robustness by incorporating
data from both, we conducted �ve experiments: 1) MGH as Training Set, BIDMC as Testing Set: We
trained the model exclusively with data from MGH and tested the model on data from BIDMC. 2) BIDMC
as Training Set, MGH as Testing Set: We trained the model exclusively with BIDMC and tested the model
on MGH data. 3) MGH+ BIDMC Training Set, MGH+ BIDMC Testing Set: Training data came from both
MGH and BIDMC, as did testing data. 4) MGH+ BIDMC Training Set, MGH Testing Set: Training data came
from both MGH and BIDMC, testing data from MGH only. 5) MGH+ BIDMC Training Set, BIDMC Testing
Set: Training data from both MGH and BIDMC, testing data from BIDMC only.

Performance in unselected / random EHR samples 

The sample utilized for training and testing is, by construction, enriched for “positive” cases, i.e. there are
more MED+/ICD+, MED+/ICD-, and MED-/ICD+, and fewer MED-/ICD- cases than would be present in a
random sample. Thus, although the overall error rate and other overall performance statistics calculated
for our cohort are “biased”, i.e. they do not represent the performance that we would expect in a general,
unselected hospital population. To obtain an unbiased estimate of model performance, we �rst
estimated the error rates within each of the 4 groups (Pe++, Pe+-, Pe-+, Pe--), then combined these with

estimates of the prevalences of the 4 groups in the general hospital population to obtain an estimate of
the unbiased error rate. Speci�cally, obtained estimates of the prevalences of each group (p++, p+-, p-+,
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p--) by sampling 500 patients randomly from BIDMC and 500 from randomly from MGH, and calculated
the proportions falling within each of the 4 groups. The prevalences and error rates are then combined to
give an overall expected error P[E] rate using the following formula:  

P[E] = (Pe++ × p++) + (Pe+- × p+-) + (Pe-+ × p-+) + (Pe-- × p--)

Results
Patient population

Figure 1 presents the CONSORT diagram illustrating the cohort selection process. The MGH cohort
comprised 2,058 patients with 3,332 visits, while the BIDMC cohort included 1,819 patients with 3,479
visits. A total of 112 cases, accounting for 765 visits, were excluded due to uncertain manual
annotations. After categorizing patients into four sampling groups, the �nal counts were as follows:
3,626 patients with 5,612 visits. Speci�cally, the 'MED+ ICD+' group had 133 patients with 1,751 visits;
the 'MED+ ICD-' group included 466 patients with 481 visits; the 'MED- ICD+' group consisted of 214
patients with 214 visits; and the 'MED- ICD-' group contained 2,813 patients with 3,166 visits. In the
subgroup analysis, the 'MED+ ICD+' group had 121 ADRD/MCI-positive patients with 1,643 visits and 12
MCI/ADRD-negative patients with 108 visits. The 'MED+ ICD-' group included 338 ADRD/MCI-positive
patients with 353 visits and 121 MCI/ADRD-negative patients with 128 visits. The 'MED- ICD+' subgroup
comprised 125 ADRD/MCI-positive patients with 125 visits and 89 MCI/ADRD-negative patients with 89
visits. The largest group, 'MED- ICD-', included 522 ADRD/MCI-positive patients with 592 visits and 2,291
MCI/ADRD-negative patients with 2,574 visits. The cohort was selected to ensure su�cient patients with
MCI/ADRD diagnoses for model training. Consequently, the �nal MGH and BIDMC cohort included 1,106
(30.5%) MCI/ADRD-positive patients from 1,634 visits and 2,587 MCI/ADRD-negative patients from 3,978
visits.

Table 1 summarizes the baseline characteristics of the cohort. The average age was 67.6 years, with
47% of patients being male and 53% female. Racial distribution included 16.0% Black or African
American, 1.5% Asian, 70.5% White, and 11.94% categorized as 'Other'. The MCI/ADRD diagnosis rate
was 30.5%. Among the four sampling groups, the 'MED+ ICD+' group had 10.94%, the 'MED+ ICD-' group
had 30.56%, the 'MED- ICD+' group had 11.3%, and the 'MED- ICD-' group had 47.2%.

Table 1: Cohort characteristics.
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Characteristic

 

Value(N=3,626)

Age (a) (years, mean (SD)) 67.6 (16.7)

Sex, n (%)  

Male 1704 (47%)

Female 1922 (53%)

Race, n (%)  

Black or African American 580 (16.0%)

Asian 55 (1.5%)

White 2558 (70.5%)

Other (b) 433 (11.94%)

MCI/ADRD diagnosis, n (%) 1106 (30.5%)

MED+ICD+ group 121 (10.94%)

MED+ICD- group 338 (30.56%)

MED-ICD+ group 125 (11.3%)

MED-ICD-     group 522 (47.2%)

(a) Age at baseline for the �rst visit in the study period. (b) ‘Other’ includes ‘unknown’, ‘declined to
answer’, ‘American Indian or Alaska Native’ and ‘Native Hawaiian or other Paci�c Islander’

Model performance

Performance results for predicting MCI/ADRD chart diagnoses are presented in Table 2, which varies the
model inputs, and Table 3, which varies the training and testing cohorts. Table 2 presents the average
performance for logistic regression models using ICD Only, Med Only, Note Only, and ICD+MED+Note
inputs in the MGH+BIDMC training sets and MGH+BIDMC testing sets. The �ndings indicate a clear
pattern in the performance of logistic regression models based on different input data types. Models
that incorporate textual note data, either alone or in combination with ICD codes and medication data,
consistently outperform models using only ICD codes or only medication data across all performance
metrics, with an accuracy of 0.89, speci�city of 0.90, AUROC of 0.95, and AUPRC of 0.95.  In Table 3, the
highest performance was observed when the MGH+ BIDMC training set was tested on the MGH set,
achieving an AUROC of 0.98, an AUPRC of 0.98, an accuracy of 0.93, a speci�city of 0.96, a precision of
0.96, an F1 score of 0.93 and a recall of 0.91.
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Figure 3 provides a comparative analysis of various training and testing approaches using ROC curves
(left panel) and Precision-Recall (PR) curves (right panel). The highest ROC observed is 0.99 for the MGH
training and MGH testing set. The Precision-Recall curves demonstrate the trade-off between precision
and recall, with the highest Precision-Recall AUC being 0.98 for multiple model con�gurations, including
MGH training tested on the MGH set and MGH+BIDMC training tested on the MGH set.

Table 2: Average performance  and [95% con�dence intervals] for logistic regression models using ICD
Only, Med Only, Note Only, and ICD+MED+Note in the MGH+BIDMC training sets and MGH+BIDMC
testing sets
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Model Input  Accuracy Speci�city F1-
score

Recall Precision AUROC AUPRC

ICD Only 0.54

[0.52-
0.55]

0.37

[0.35-
0.38]

0.60

[0.59-
0.62]

0.7

[0.69-
0.72]

0.53

[0.51-
0.55]

0.54

[0.52-
0.55]

0.69

[0.68-0.70]    
                       
                       
                       
                       
                       
                       
                       
                       
         

Med Only 0.56

[0.55-
0.58]

0.43

[0.41-
0.45]

0.61

[0.60-
0.63]

0.69

[0.68-
0.71]

0.55

[0.53-
0.57]

0.56

[0.55-
0.58]

0.70              
                       
               

[0.69-0.71]

 Note Only 0.88

[0.87-
0.91]

0.90

[0.89-
0.93]

0.88

[0.86-
0.90]

0.87

[0.85-
0.88]

0.88

[0.87-
0.91]

0.94

[0.93-
0.95]

0.94

[0.93-0.95]

ICD+MED+Note 0.89

[0.88-
0.90]

0.90

[0.89-
0.92]

0.88

[0.87-
0.90]

0.88

[0.86-
0.90]

0.88

[0.88-
0.91]

0.95

[0.94-
0.96]

0.95

[0.94-0.96]

 

AUROC: Area Under the Receiver Operating Characteristic curve, shows model's ability to distinguish
between classes. 

AUPRC: Area Under the Precision-Recall Curve, summarizes the precision and recall across different
thresholds. 

Inputs: ICD Only: Models using only International Classi�cation of Diseases codes. Med Only: Models
using only medication data. 

Note Only: Models using only textual note data. ICD+MED+Note: Models combining ICD codes,
medication data, and textual note data. 

Data Sets: MGH+ BIDMC: Data derived from Massachusetts General Hospital and Beth Israel
Deaconess Medical Center.

Table 3: Average performance and [95% con�dence intervals] for logistic regression model using all
features in the different testing sets 
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Training
set

Testing
set

Accuracy Speci�city F1-
score

Recall Precision AUROC AUPRC

MGH+

BIDMC

BIDMC 0.86

[0.84-
0.87]

0.86

[0.83-0.87]

0.84

[0.82-
0.86]

0.85

[0.83-
0.88]

0.82

[0.80-
0.84]

0.92

[0.91-
0.94]

0.91

[0.90-
0.93]

MGH BIDMC 0.90

[0.89-
0.92]

0.92

[0.91-0.93]

0.83

[0.81-
0.85]

0.88

[0.86-
0.90]

0.79

[0.77-
0.83]

0.95

[0.93-
0.96]

0.90

[0.89-
0.92]

BIDMC MGH 0.94

[0.94-
0.95]

0.96

[0.96-0.97]

0.91

[0.89-
0.92]

0.90

[0.88-
0.91]

0.91

[0.91-
0.93]

0.98

[0.97-
0.98]

0.98

[0.97-
0.98]

MGH+
BIDMC

MGH 0.93

[0.92-
0.95]

0.96

[0.95-0.98]

0.93

[0.92-
0.95]

0.91

[0.88-
0.92]

0.96

[0.94-
0.99]

0.98

[0.97-
0.99]

0.98

[0.98-
0.99]

MGH+
BIDMC

MGH+
BIDMC

0.89

[0.88-
0.90]

0.90

[0.89-0.92]

0.88

[0.87-
0.90]

0.88

[0.86-
0.90]

0.88

[0.88-
0.91]

0.95

[0.94-
0.96]

0.95

[0.94-
0.96]

The bootstrapping results in 95% con�dence intervals are in parenthesis. ACC – accuracy, Spec –
speci�city, AP – average precision, AUROC – Area under the receiver operating characteristic curve,
AUPRC – area under the precision-recall curve.  Data Sets: MGH: Data derived from Massachusetts
General Hospital. BI: Data derived from Beth Israel Deaconess Medical Center. MGH+ BIDMC: Data
derived from Massachusetts General Hospital and Beth Israel Deaconess Medical Center.

Figure 4  shows the confusion matrices representing various training/testing experiments in the context
of predicting MCI/ADRD. The columns correspond to predicted MCI/ADRD status, while rows represent
the ground truth classi�cation based on chart review. The model trained and tested on MGH data shows
the highest accuracy, with 98.17% for negative and 91.48% for positive predictions. Conversely, models
trained on one dataset and tested on another exhibit lower performance, particularly in positive
predictions. Combining both datasets for training (MGH+BI) and testing on the combined or individual
datasets yields intermediate performance.

Figure 5 compares the performance of the model across the four sampling groups, 'MED-ICD-', 'MED-
ICD+', 'MED+ICD-', and 'MED+ICD+'. Performance is consistently higher for all metrics except recall in the
patients with congruent ICD and medication information ('MED-ICD-', 'MED+ICD+' subgroups) across
most metrics, and lower for patients with ‘mixed’ information ('MED+ICD-', 'MED-ICD+'). In terms of
accuracy, the 'MED+ICD+' group performed best (0.94) and 'MED-ICD+' performed worst (0.81). Precision
was highest for 'MED-ICD-' (0.86) and lowest for 'MED+ICD-' (0.73). Recall was best for 'MED-ICD+' (0.96)
with little difference among the other groups. The F1 Score was highest for 'MED-ICD-' (0.89) and lowest
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for 'MED+ICD-' (0.81). AUROC was the same for 'MED-ICD-', 'MED+ICD-', and 'MED+ICD+' (0.97), while
'MED-ICD+' was the lowest (0.88). AUPRC was highest for 'MED-ICD-' (0.95) and lowest for 'MED-ICD+'
(0.90).

Figure 6 shows the coe�cient values of the top 15 features selected during model training. Notably, the
presence of the word "dementia" in a note emerged as the most informative feature, followed closely by
the prescription of MCI/ADRD-related medications, including donepezil, aricept, rivastigmine, and
memantine. Other top-15 MCI/ADRD-related keywords included "cognitive impairment", "Alzheimer",
"MCI", "memory", "cognitive", and "decline". 

Performance in unselected / random EHR samples

We calculated the expected error rate in a general hospital population following the procedure described
in the Methods section. In the random sample selected (N = 1000, 500 from MGH, 500 from BIDMC), the
proportion (and numbers) falling within each of the 4 groups were: MED+ ICD+, Pe++ = .1% (n = 1);
MED+ICD−, Pe+-.4% (n = 4); MED− ICD+, Pe-+  = 0.3% (n = 3); MED−ICD−, Pe--  = 0.2% (n = 2). Combining
these with the error rates in each group (p++, p+-, p-+, p--) , we obtain as an estimate of the overall
(unbiased) error rate: 

P[E] = (Pe++ × p++) + (Pe+- × p+-) + (Pe-+ × p-+) + (Pe-- × p--)

= (0.06 × 0.001) + (0.1 × 0.004) + (0.19 × 0.003) + (0.07 × 0.002)

=  0.00006+0.0004+0.00057+0.00014=0.00117≈0.12%

The overall error rate in the general hospital population is estimated to be 0.12%, i.e. accuracy of 99.88%.

Error analysis

We conducted a manual review of cases to gain qualitative insights into reasons for model errors. False
positives arose primarily from clinical notes describing symptoms resembling MCI/ADRD, such as
memory loss and cognitive decline attributable to alternative causes such as depression and anxiety.
Conversely, false negatives arose primarily from notes from specialists seeing patients with MCI/ADRD
for specialized care in other areas of medicine, such as nephrology or gynecology, who commented
sparsely on issues related to the MCI/ADRD diagnosis in their notes. 

Discussion
Our machine learning-based automated EHR phenotyping model accurately identi�es patients diagnosed
with MCI/ADRD using unstructured clinical notes, ICD codes, and MCI/ADRD medications. Models
incorporating textual notes, either alone or combined with ICD codes and medication data, consistently
outperformed those relying solely on ICD codes or medication data. The ICD+MED+Note model achieved
the highest performance, underscoring the importance of integrating diverse data sources for enhanced
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accuracy and reliability. As shown in Table 2, models using only ICD codes exhibit lower speci�city (i.e.,
higher false positive rate). In contrast, models based solely on clinical notes demonstrate superior
performance, with notable differences in AUROC (0.94 vs. 0.54), AUPRC (0.69 vs. 0.95), and F1-score
(0.78 vs. 0.60). 

Our analysis revealed an important �nding that the information in clinical notes leads to much better
performance than using ICD codes alone 25,26.  For example, the ICDs may be triggered by a broad range
of cognitive symptoms that are not necessarily due to MCI or dementia. This is more likely in the older
population where other disease conditions are common, including medication side effects or
interactions, depression /mood di�culties27, hypothyroidism, substance use (such as alcohol and

marijuana), and sleep di�culties28. The accurate diagnosis of MCI or dementia requires comprehensive
testing29-31, including cognitive testing, physical examination, and often neuroimaging 32. The clinical
notes often contain more detailed descriptions and therefore more information about the ground truth.

The performance indicates good generalizability across sites. Nevertheless, there are notable site
differences. Performance on MGH test data was better compared to performance on BIDMC test data,
regardless of the source (BIDMC or MGH) of the training data, suggesting that the MGH dataset may
present fewer complexities or challenges. Conversely, adding data from BIDMC to the training dataset
resulted in a slight decline in performance on tests conducted at BIDMC. Speci�cally, the AUROC
decreased from 0.98 to 0.92, and the AUPRC decreased from 0.98 to 0.91. These changes represent a
minimal impact on the model's performance. The alignment of the features identi�ed for retention within
the model with existing medical knowledge and their consistency with an established understanding of
dementia and MCI/ADRD medications suggests that the model has learned a reasonable, interpretable
pattern.  In the future, we hope to apply this model to identify MCI/ADRD patients from electronic health
records at scale, thus creating opportunities for large-scale EHR-based studies.

A strength of our approach is the use of data across two health networks (MGH and BIDMC); most
published studies focus on single-site data25,33-35. This multi-site comparison allowed for a broader
validation of our model, showing consistency in performance metrics such as accuracy, speci�city, and
AUC across different institutional datasets. Our model achieved high AUROC (0.98), demonstrating
robust discrimination across testing scenarios. We also emphasize the importance of the highly
observed AUPRC, particularly as it relates to the clinical relevance in contexts where class imbalance is
pronounced. The high AUPRC indicates that our model effectively identi�es "rare" events, such as
ADRD/MCI diagnoses, from large healthcare datasets. This strong performance in correctly identifying
true positive cases is crucial for accurately diagnosing fewer common conditions with signi�cant clinical
implications.

Additionally, our study included a larger patient cohort than those typically reported 25,33-35, which
enhances the generalizability of our �ndings. References to other studies comparing site performance
are scarce, making our contributions signi�cant for future multicentric studies. The testing performance
was generally better on MGH data than on BIDMC data, regardless of the site of origin of the training
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data. This suggests that there may be a larger proportion of di�cult or ambiguous cases in
the BIDMC test set. Nevertheless, test performance was excellent for both sites, suggesting
generalizability across notes written within different medical institutions. 

Our study has important limitations. While our experiments included two medical centers, these are
located in the same geographic region (Boston, United States), and may thus not be representative of
other US and non-US populations. Thus, future studies that utilize our model across different hospitals
and EHR systems should check for performance biases that might arise due to different demographics,
larger sample sizes, bias in data collection, and EHR data stored formats. An additional limitation is that
our model does not identify speci�c subtypes of ADRD and provides no information about the severity of
ADRD or MCI. Incorporating large language models (LLMs) like GPT may enhance the feature extraction
and interpretation of clinical notes by handling complex medical language and context-speci�c nuances
more effectively – an approach we did not use. Overall, this study represents an important step towards
unlocking the vast potential of EHR data to advance our understanding of mild cognitive impairment and
dementia and enables various downstream studies.

In conclusion, our model combining the clinical notes, ICD codes, and medications from the EHR system
provides accurate MCI/ADRD phenotyping. In the future, this work will enable important downstream
large-scale analyses to understand various aspects of MCI/ADRD.
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Figure 1

CONSORT diagram. N is the number of unique patients. n is the number of visits.



Page 20/22

Figure 2

Method �owchart.

Figure 3

Left panel: Comparative analysis of all training/testing approaches using Receiver Operating
Characteristic (ROC) curves.  Right panel: Comparative analysis of all training/testing approaches using
Precision-Recall curves.
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Figure 4

Comparative analysis of all training/testing approaches using confusion matrix.

Figure 5

Performance Evaluation of Different Subgroups Across Multiple Metrics.
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Figure 6

Top 15 important features based on model coe�cients.


