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Abstract

Myocyte Enhancer Factor 2C (MEF2C) is a transcription factor that plays a crucial role in

neurogenesis and synapse development. Genetic studies have identified MEF2C as a gene

that influences cognition and risk for neuropsychiatric disorders, including autism spectrum

disorder (ASD) and schizophrenia (SCZ). Here, we investigated the involvement of MEF2C

in these phenotypes using human-derived neural stem cells (NSCs) and glutamatergic

induced neurons (iNs), which represented early and late neurodevelopmental stages. For

these cellular models, MEF2C function had previously been disrupted, either by direct or

indirect mutation, and gene expression assayed using RNA-seq. We integrated these RNA-

seq data with MEF2C ChIP-seq data to identify dysregulated direct target genes of MEF2C

in the NSCs and iNs models. Several MEF2C direct target gene-sets were enriched for

SNP-based heritability for intelligence, educational attainment and SCZ, as well as being

enriched for genes containing rare de novo mutations reported in ASD and/or developmen-

tal disorders. These gene-sets are enriched in both excitatory and inhibitory neurons in the

prenatal and adult brain and are involved in a wide range of biological processes including

neuron generation, differentiation and development, as well as mitochondrial function and

energy production. We observed a trans expression quantitative trait locus (eQTL) effect of

a single SNP at MEF2C (rs6893807, which is associated with IQ) on the expression of a tar-

get gene, BNIP3L. BNIP3L is a prioritized risk gene from the largest genome-wide associa-

tion study of SCZ and has a function in mitophagy in mitochondria. Overall, our analysis

reveals that either direct or indirect disruption of MEF2C dysregulates sets of genes that

contain multiple alleles associated with SCZ risk and cognitive function and implicates neu-

ron development and mitochondrial function in the etiology of these phenotypes.
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Author summary

Schizophrenia is a complex disorder caused by many genes. Current drugs for schizophre-

nia are only partially effective and do not treat cognitive deficits, which are key factors for

explaining disability, leading to unemployment, homelessness and social isolation. Large-

scale genetic studies of schizophrenia and cognitive function have been effective at identi-

fying individual SNPs and genes that contribute to these phenotypes but have struggled to

immediately uncover the bigger picture of the underlying biology of the disorder. Here we

take an individual gene associated with schizophrenia and cognitive function called

MEF2C, which on its own is a very important regulator of brain development. We use

functional genomics data from studies where MEF2C has been mutated to identify sets of

other genes that are influenced by MEF2C in developing and mature neurons. We show

that several of these gene-sets are enriched for common variants associated with schizo-

phrenia and cognitive function, and for rare variants that increase risk of various neurode-

velopmental disorders. These gene-sets are involved in neuron development and

mitochondrial function, providing evidence that these biological processes may be impor-

tant in the context of the molecular mechanisms that underpin schizophrenia and cogni-

tive function.

Introduction

MEF2C, a transcription factor within the myocyte enhancer factor-2 (MEF2) family, is

involved in essential neurodevelopmental processes [1]. MEF2C is expressed during the initial

stages of embryonic brain development and remains expressed at elevated levels in adult

brains, including in the striatum, hippocampus, and cortex, indicating an involvement in both

embryonic and adult brain activity [1,2]. MEF2C plays a critical role in neurogenesis, neuronal

distribution and electrical activity in the neocortex [3–5]. Mutations in the MEF2C gene,

including microdeletions, missense, or nonsense mutations, have been linked to a rare genetic

disorder known as MEF2C haploinsufficiency syndrome. This syndrome is characterized by

intellectual disability (ID), epilepsy, and additional autistic features like absent speech and

impaired social interactions [6]. Genome-wide association studies (GWAS) have identified

common variants in the MEF2C gene that are associated with schizophrenia (SCZ) intelligence

(IQ) and educational attainment (EA) [7–9]. MEF2C is associated with genetic and epigenetic

risk architectures of SCZ [10]. MEF2C motifs were present among the top-scoring single-

nucleotide polymorphisms (SNPs) associated with SCZ in GWAS and deep sequencing of his-

tone methylation landscapes in individuals with SCZ and controls revealed a significant abun-

dance of MEF2C motifs associated with histone hypermethylation in the disorder.

Additionally, the upregulation of MEF2C improved working memory, object recognition

memory, and spinal remodeling in prefrontal projection neurons in mice [10].

Various studies have utilized MEF2C heterozygous or homozygous knockout (KO) animal

models to investigate the role of MEF2C in brain function and to identify molecular mecha-

nisms underlying human phenotypes associated with MEF2C [3,11–15]. Recently, Mohajeri

et al. (2022) evaluated MEF2C loss-of-function mutations in human-derived cell lineages rep-

resenting different stages of neural development [16]. They directly disrupted the gene by tar-

geting the coding sequence of MEF2C with CRISPR-engineered mutations, resulting in 122kb

and 131kb deletions of the gene. Expanding beyond direct disruption of the gene, they utilized

an indirect approach to disrupt the 3D genome organization of the locus and the regulatory
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architecture of the gene. Here, they either deleted the distal boundary (DB) or the proximal

boundary (PB) of the topologically associated domain (TAD) encompassing MEF2C. Specifi-

cally, they performed a targeted deletion of a 3.3kb segment of the DB, which targeted a single

occupied CTCF binding site located more than 1.3Mb distal to the MEF2C promoter. As for

the PB, they carried out a targeted deletion of a single occupied CTCF binding site within a 3’

intron of MEF2C. Following the direct or indirect mutation of MEF2C in human induced plu-

ripotent stem cells (iPSCs), these cells were differentiated into neural stem cells (NSCs) and

glutamatergic induced neurons (iNs) as cellular models [16]. NSCs are undifferentiated cells

that have the ability to self-renew and generate various types of neurons and glial cells. Gluta-

matergic iNs are responsible for synthesizing glutamate, the primary excitatory neurotransmit-

ter in the mammalian central nervous system. Glutamate plays a crucial role in various

essential brain processes, including cognition, learning, memory, and sensory perception [17].

The study used these cellular models to investigate the impact of both direct and indirect dis-

ruptions of MEF2C on global transcriptional signatures and electrophysiological changes in

human neurons [16]. Both the direct disruption and the loss of a PB, but not the deletion of a

DB, led to down-regulation of MEF2C expression, which resulted in reduced synaptic activity.

The presence of common differentially expressed genes (DEGs) associated with neurogenesis

and neuronal differentiation in both direct and indirect MEF2C disruptions suggests shared

functional consequences arising from both types of MEF2C disruption [16].

Here, we expanded upon the findings of Mohajeri et al. (2022) [16] by utilizing their gene

expression data and combining it with chromatin immunoprecipitation sequencing (ChIP-

seq) data for MEF2C (Fig 1) [18]. This integration enabled us to identify putative direct tran-

scriptional targets of MEF2C in both NSCs and iNs that were dysregulated following either

heterozygous or homozygous direct or indirect mutation of the gene. Given MEF2C’s associa-

tion with neuropsychiatric disorders and cognitive function, we sought to investigate if the

direct targets of MEF2C that are dysregulated by different mutations in the different cellular

models are enriched for genes containing SNPs associated with SCZ and cognitive function

from GWAS, as well as enriched for genes harboring rare de novo mutations (DNMs) contrib-

uting to neurodevelopmental disorders. Subsequently, we investigated the biological processes

and specific cell types that are dysregulated as a consequence of MEF2C disruption to better

understand the contribution of MEF2C-regulated genes to the molecular mechanisms of SCZ

and cognition. Finally, we sought to identify trans-expression quantitative trait loci (trans-

eQTL) at the MEF2C gene that are associated with altered expression of downstream MEF2C
target genes (Fig 1).

Materials and methods

Ethics statement

Data were directly downloaded from published studies and no additional ethics approval was

needed. Each study is referenced and details on ethics approval are available in each

manuscript.

MEF2C Transcriptomic data

We utilized transcriptomic data generated in a study of MEF2C conducted by Mohajeri et al.
(2022) [16]. That study used dual-guide CRISPR-Cas9 genome editing to directly (deletion in

the coding region) or indirectly (mutation of the PB of the TAD that encompasses MEF2C)

disrupt MEF2C function in human iPSCs. Single cells were isolated and screened to identify

edited clones and matched unedited controls. Six replicates per genotype (heterozygous (het)

or homozygous (hom) deletion (DEL)) were then differentiated into NSCs and iNs and
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subjected to RNA-seq analysis. This analysis generated eight sets of differentially expressed

genes (DEGs) in these cellular models, labelled as follows with PB denoting the indirect muta-

tion: NSCs_DELhet, NSCs_DELhom, NSCs_DELhet_PB, NSCs_DELhom_PB, iNs_DELhet,

iNs_DELhom, iNs_DELhet_PB, and iNs_DELhom_PB. Each gene-set represented a different

combination of MEF2C disruption and genotype in NSCs or iNs. The significant DEGs were

identified at FDR< 0.1 (S1 Table).

MEF2C ChIP-sequencing data analysis

To investigate MEF2C binding, we utilized existing ChIP-seq data from a study of MEF2C con-

ducted on human fetal brain cultures [18]. Input DNA was used as a control. The raw files,

comprising a single replicate, were provided by the authors. The quality of the raw FastQ files

was assessed using the FastQC (http://bioinformatics.babraham.ac.uk/projects/fastqc/). Reads

were aligned to the human genome (hg19) using Burrows Wheeler Aligner (BWA; http://

bowtie-bio.sourceforge.net/bowtie2) [19]. Post-processing of the alignment data was con-

ducted using Samtools (https://github.com/samtools). We converted the SAM files to BAM

format, sorted the BAM files, removed any potential PCR duplicates and generated a file con-

taining mapping statistics [20]. Peaks were called using MACS2 (parameters: -f BAM -g hg -q

0.01) [21]. ChIPSeeker was used to determine overlap with genomic features and for peak

annotation to the nearest genes [22].

Fig 1. Schematic representation illustrating the stepwise methodology employed in this study. DELhom: Homozygous deletion;

DELhet: Heterozygous deletion; PB: Proximal boundary (indirect mutation of MEF2C); DEGs: Differentially expressed genes; SCZ:

Schizophrenia; ID: Intellectual disability; DD: Developmental delay; ASD: Autism spectrum disorder; GO: Gene ontology; PGC: Psychiatric

Genomics Consortium; GWAS: Genome-wide association study; SNPs: Single nucleotide polymorphisms; eQTL: Expression quantitative

trait loci; GTEx: Genotype-Tissue Expression. Figure created with BioRender.com.

https://doi.org/10.1371/journal.pgen.1011093.g001
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Integrative Analysis of RNA-Seq and ChIP Data

To infer the direct target genes of MEF2C, the eight sets of DEGs described above were inte-

grated with the MEF2C ChIP-seq data using the BETA (Binding and Expression Target Analy-

sis) (http://cistrome.org/BETA/) package software [23]. BETA ranks genes based on two key

factors: the regulatory potential of factor binding sites and the differential expression observed

upon factor binding. The regulatory potential is assessed by considering the distance of the

binding sites from the transcription start site and the cumulative impact of multiple binding

sites. By considering both aspects, a rank product (RP) was calculated for each gene, which can

be interpreted as a probability, indicating the likelihood that a gene is a true direct target of

MEF2C based on both criteria. Genes with a conservative RP< 0.01 were considered as direct

targets of MEF2C (S2 Table).

Stratified linkage disequilibrium score regression (sLDSC) Analysis

Stratified linkage disequilibrium score regression (sLDSC) (https://github.com/bulik/ldsc)

[24] was used to investigate if the MEF2C direct targets were enriched for heritability contrib-

uting to SCZ, IQ, and EA phenotypes. GWAS summary statistics for these phenotypes [7–9]

were obtained from publicly available databases (the Psychiatric Genomics Consortium Web-

site www.med.unc.edu/pgc, the Complex Trait Genetics lab www.ctg.cncr.nl/, and the Social

Science Genetic Association Consortium www.thessgac.org/data). For control purposes, we

performed sLDSC analysis using GWAS summary statistics for an additional four phenotypes,

including attention deficit hyperactivity disorder (ADHD) [25], obsessive–compulsive disor-

der (OCD)[26], Alzheimer’s disease (AD) [27] and stroke [28]. Linkage disequilibrium (LD)

scores between SNPs were estimated using the 1000 Genomes Phase 3 European reference

panel. SNPs present in HapMap 3 with an allele frequency > 0.05 were included. Enrichment

of heritability was assessed controlling for the effects of 53 functional annotations included in

the full baseline model version. Enrichment for heritability was compared to the baseline

model using the Z-score to derive a (one-tailed) P-value. Significant enrichments were deter-

mined using a Bonferroni correction, which set the corrected P value threshold at< 2.08E-03.

Overlapping Genes Implicated in the GWAS of SCZ and IQ/EA

In the GWAS of IQ, 1,016 genes were reported as associated with IQ through positional map-

ping, eQTL mapping, chromatin interaction mapping and gene-based association analysis [8].

For EA, 1,838 genes were prioritized using Data-driven Expression Prioritized Integration for

Complex Traits (DEPICT), which was based on correlations across reconstituted gene-sets [9].

For SCZ, 682 associated genes were identified through fine mapping and summary-data-based

mendelian randomization [7] (S3 Table). To investigate distinct and overlapping associations

with SCZ and cognitive function, we identified genes that are associated with SCZ but not IQ

or EA (n = 472), genes that are associated with at least one of the cognitive phenotypes (IQ or

EA) but not SCZ (n = 2,258) and genes that are associated with both SCZ and at least one of

the cognitive phenotypes (IQ or EA; n = 210).

Gene-set based polygenic risk score (PRS)

PRSice-2 software [20] was utilized for gene-set based PRS analysis aiming to investigate

whether the MEF2C target gene-sets contributed to the shared genetic basis of SCZ and cogni-

tive traits. PRSice-2 calculates PRS for each individual by summing up the number of minor

alleles at each SNP multiplied by the GWAS effect size. It performs regression analysis, adjust-

ing for sex, age, and GWAS array type as covariates, and provides performance metrics
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(Nagelkerke’s R2 and P value). SNP P values and effect sizes for SCZ were derived from a SCZ

GWAS meta-analysis on 40,675 cases and 64,643 controls [7]. Irish samples were excluded

from this GWAS to keep that base/discovery sample independent from the target/test sample

for the PRS analysis. The SNP P values and effect sizes for IQs were based on an IQ GWAS on

269,867 individuals [8]. For each gene-set, SNPs in high LD were clumped according to

PRSice-2 guidelines. Genotype data for the identified SNPs were extracted from the full

GWAS data of the Irish samples, which consisted of 1,512 individuals, including SCZ patients

and controls with IQ measurements [29,30]. Effect-size weighted SCZ-PRS and IQ-PRS were

computed for each gene-set using thresholds ranging from P< 0.05 to P�1 (P< 0.05, 0.1,

0.15, 0.2, 1). To validate the findings, 10,000 randomized phenotypes (equally distributed cases

and controls as per the original dataset) were generated from the Irish samples, and SCZ-PRS

and IQ-PRS were calculated for each gene-set using the randomized data to obtain empirical P

values.

Analysis of De Novo Mutations

The R package denovolyzeR (http://denovolyzer.org/) was used to test for enrichment of rare

de novo mutations (DNMs) in our gene-sets, estimating the expected number of DNMs for

each gene based on sequence context and gene size [31]. Synonymous (Syn), missense (Mis),

and loss of function (Lof) (including nonsense, frameshift, and splice) DNMs reported in

exome sequencing studies of SCZ (n = 3447 trios) [32–35], ASD (n = 6430 trios) [36], and ID

and/or DD (n = 4,851 trios) [37–40] and unaffected siblings (n = 1,995) [32]. S4 Table provides

details about each study along with the respective table names listing the identified DNMs. To

ensure consistency with the Deciphering Developmental Disorders Study (2017), we applied a

filtering step for DNMs. Specifically, DNMs with a posterior probability score below 0.00781

were excluded. Enrichment of DNMs in a gene-set was investigated using a two-sample Pois-

son rate ratio test, using the ratio of observed to expected DNMs in genes outside of the gene-

set as a background model. Significant enrichments were determined using a Bonferroni cor-

rection, which set the corrected P value threshold at< 5.21E-04.

MEF2C Direct Target Genes Analysis with Single-cell RNA-seq

The Expression Weighted Cell-type Enrichment (EWCE) R package (https://github.com/

NathanSkene/EWCE) was used to assess if the direct target genes of MEF2C had higher

expression in a particular cell type than expected by chance [41]. This method generates ran-

dom gene sets (n = 100,000) of equal length from background genes to estimate the probability

distribution. We performed enrichment analysis in a prenatal human dataset and in an adult

human dataset. The prenatal human dataset included single-nuclei RNA sequencing (snRNA-

seq) data from three fetuses from the second trimester of gestation and contained data for 91

distinct clusters of nuclei from five brain regions (frontal cortex (FC), ganglionic eminence

(GE), hippocampus (Hipp), thalamus (Thal), and cerebellum (Cer)) [42]. The adult human

dataset included data for 120 distinct clusters of nuclei from across the human cortex covering

the middle temporal gyrus (MTG), cingulate gyrus (CgG), primary visual cortex (V1C), pri-

mary somatosensory cortex (S1C) and the primary motor cortex (M1C). Nuclei were sampled

from postmortem and neurosurgical (MTG only) donor brains (https://portal.brain-map.org/

atlases-and-data/rnaseq/protocols-human-cortex) [43,44]. The significance of the enriched

expression of the MEF2C direct target genes relative to the background genes in each cell type

was assessed by calculating the difference in standard deviations between the two expression

profiles. Statistically significant enrichments were determined using a Bonferroni correction to

adjust for multiple testing of cell types.
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Functional enrichment analysis

ClueGO (version 2.5.9), a plugin for Cytoscape (version 3.8.2) was used to identify the Gene

Ontology (GO) terms (categorized as biological processes (BP), molecular functions (MF), and

cellular components (CC)) and the biological pathways (KEGG, Reactome, WikiPathways)

enriched for (i) genes proximal to MEF2C peaks identified via ChIP-seq analysis using brain

tissue-expressed genes as the background gene-set (S5 Table) [45] and (ii) the MEF2C direct

target gene-sets using specific cell-type expressed genes as the background gene-set. Brain tis-

sue-expressed genes were obtained directly from the Human Protein Atlas database (https://

www.proteinatlas.org/) [46]. Cell type-specific expressed genes were identified by calculating

Transcripts Per Million (TPM) values from raw reads counts of wild type NSCs and iNs down-

loaded from the gene expression omnibus (GEO GSE204778). Genes with TPM values less

than 1 were filtered out. GO term relationships were determined based on shared genes and

assessed using chance-corrected kappa statistics. Bonferroni correction was applied to adjust

for multiple testing.

Results

Identification and Annotation of MEF2C Binding Peaks

Analysis of ChIP-Seq data using MACS and ChIPSeeker identified 10,620 MEF2C binding

peak regions (FDR� 1%) across the entire genome. Approximately 80% of the peaks were

located in close proximity to gene-encoding regions including promoters (< = 1-kb (55.8%),

1–2 kb (2.35%), 2–3 kb (1.99%)), 5’ UTRs and 3’ UTRs (0.44%), exons (0.18%), first introns

(5.8%), and other intron regions (14.8%) (S6 Table). When the binding peaks were mapped to

the closest RefSeq annotated transcripts, they were found in close proximity to 5,775 protein

coding genes. GO annotation analysis showed these genes were most involved in RNA bind-

ing, transcription and functions within the nucleus (S7 Table).

Identification of MEF2C Direct Target Genes

We integrated MEF2C ChIP-seq data with data on DEGs from cell line models where MEF2C
had been mutated (2 cell types (NSCs or iNs) x 2 DEL mutation types (direct or indirect (PB))

x 2 genotypes (het or hom) = 8 cell line models). Fig 1 illustrates the stepwise methodology

employed in this study, from generating the eight gene-sets from these models through to

enrichment analysis using genetic variation and functional genomics data. We identified that

MEF2C had a direct regulatory influence on approximately 23–57% of the DEGs from the

original study (Table 1). Shared MEF2C direct target genes were observed between different

genotypes within the same cell type in both NSCs and iNs. In NSCs, the proportion of shared

genes for both heterozygous and homozygous genotypes ranged from 37% (direct mutation)

to 42% (indirect mutation), while in iNs, it ranged from 23% (direct mutation) to 34% (indi-

rect mutation) (S1 Fig). Furthermore, there was a limited number of common MEF2C direct

target genes found for the same genotype across different gene disruption types, ranging from

13% (homozygous) to 22% (heterozygous) in NSCs and from 8% (homozygous) to 18% (het-

erozygous) in iNs (S1 Fig). A small fraction of the MEF2C direct target genes (3% in NSCs and

1.4% in iNs) were in each gene-set (S1 Fig), indicating that the downstream effect of different

gene mutations and their genotypic state is to mostly impact distinct sets of genes.

Enrichment analysis for genes containing common variants

We performed sLDSC analysis to investigate if the MEF2C direct target gene-sets are enriched

for genes containing common genetic variants associated with SCZ risk or cognitive ability [7–
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9]. Six of the eight gene-sets were significantly enriched for heritability contributing to at least

one of the studied phenotypes (SCZ, IQ, and/or EA) (Fig 2). Specifically, three gene-sets

(NSCs_DELhom, iNs_DELhet_PB, and iNs_DELhom_PB) were significantly enriched for all

phenotypes after multiple testing correction (Fig 2 and S8 Table). These findings highlight the

potential role of MEF2C in regulating genes involved in SCZ and cognitive function. When we

Table 1. Number of DEGs in each gene-set before and after the integration with MEF2C ChIP-seq data to identify

direct target genes.

Gene-Set # of all DEGs # of MEF2C Direct Targets (% of MEF2C Direct Targets relative to all DEGs)

NSCs

DELhet 366 169 (46%)

DELhom 2187 1170 (53%)

DELhet_PB 492 240 (49%)

DELhom _PB 728 412 (57%)

iNs

DELhet 689 335 (51%)

DELhom 291 145 (50%)

DELhet_PB 2980 1034 (35%)

DELhom _PB 5132 1174 (23%)

NSCs: Neural stem cells; iNs: Induced neurons; DELhom: Homozygous deletion; DELhet: Heterozygous deletion; PB:

Proximal boundary (indirect mutation of MEF2C).

https://doi.org/10.1371/journal.pgen.1011093.t001

Fig 2. Results from sLDSC analysis of MEF2C direct target gene-sets using GWAS data. The graph plots the

enrichment values, defined as the ratio of heritability (h2) to the number SNPs, on the x-axis. The error bars represent the

standard errors. Two asterisks (**) indicate significance after Bonferroni correction, and one asterisk (*) indicates nominal

significance. Gene-sets enriched for the three phenotypes are highlighted in bold. NSCs: Neural stem cells; iNs: induced

neurons; DELhom: Homozygous deletion; DELhet: Heterozygous deletion; PB: Proximal Boundary.

https://doi.org/10.1371/journal.pgen.1011093.g002
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removed genes associated with SCZ from the enrichment analysis of IQ and EA, we saw that

the majority of enriched gene-sets remained significant. When we removed genes associated

with IQ or EA from the enrichment analysis of SCZ, we saw that only the enrichment of the

NSCs_DELhom gene-set remained significant (S9 Table). This suggests that some MEF2C tar-

get genes are contributing to both SCZ and cognitive phenotypes while others are more pheno-

type specific. No significant enrichment was detected for any of the four control phenotypes

(S10 Table).

Genetic Association between SCZ and cognitive function

To explore the genetic overlap between these phenotypes further, gene-set based PRS analysis

was conducted to investigate if the MEF2C target gene-sets contributed to the shared genetic

etiology between SCZ and cognition. This was done by generating a gene-set PRS based on

SCZ risk from GWAS and testing if this SCZ-PRS could explain variance in IQ in an indepen-

dent dataset. We also tested if a gene-set IQ-PRS could predict SCZ case-control status in inde-

pendent dataset. While the IQ-PRS could not predict SCZ case-control status, we found that

the SCZ-PRS derived from three of the eight gene-sets (NSCs_DELhom, iNs_DELhet_PB, and

iNs_DELhom_PB) could explain a significant proportion of variance in IQ (Fig 3 and S11

Table). These are the same three gene-sets that were previously enriched for common variation

Fig 3. Gene-set based PRS analysis to examine associations between the SCZ-PRS and IQ, and between the

IQ-PRS and SCZ. Base on the x-axis refers to a PRS generated using all variants in the genome. The height of the

columns on the y-axis indicates the proportion of variance in the phenotype explained when a gene-set based PRS is

constructed using SCZ GWAS data and is tested against IQ (pink columns) or when a gene-set based PRS is

constructed using IQ GWAS data and is tested against SCZ case-control status (blue columns). Two asterisks (**)
indicate significance after Bonferroni correction, and one asterisk (*) indicates nominal significance. NSCs: Neural

stem cells; iNs: induced neurons; DELhom: Homozygous deletion; DELhet: Heterozygous deletion; PB: Proximal

Boundary.

https://doi.org/10.1371/journal.pgen.1011093.g003
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associated with SCZ, IQ and EA. When we removed genes associated with IQ or EA from

these gene-sets, these three SCZ-PRSs could still explain variance in IQ in an independent

dataset at levels that were nominally significant (S12 Table). These findings suggest that genetic

variants associated with SCZ within these gene-sets also influence cognitive performance and

the effect was not just due to genes already associated with IQ or EA. We performed a sensitiv-

ity analysis with respect to the p-value threshold for SNP inclusion and found that results were

consistent and stable across different p-value thresholds (S11 and S12 Tables).

Enrichment Analysis for Genes Containing De Novo Mutations

To assess the impact of rare variants within the MEF2C gene-sets on SCZ and other neurode-

velopmental disorders where cognitive impairment is a major feature (ASD, ID and DD), we

examined whether these gene-sets exhibited enrichment for Syn, Mis, and Lof DNMs in trio-

based exome sequencing studies of these disorders [32–40]. The same gene-sets that showed

enrichment for common variants associated with SZ, IQ and EA (NSCs_DELhom, iNs_DEL-
het_PB, and iNs_DELhom_PB) were also significantly enriched for genes containing Lof and/or

Mis DNMs reported specifically in ID and/or DD patients after multiple test correction

(Table 2). The NSCs_DELhom gene-set was also significantly enriched for Lof DNMs found in

people with autism (Tables 2 and S13). None of our gene-sets showed enrichment for genes

containing rare DNMs reported in SCZ patients. As a control, our gene-sets were not enriched

for Syn DNMs reported for these disorders and not enriched for any class of DNM reported in

the unaffected siblings of patients.

Cell-type enrichment analysis

We utilized the EWCE R package [41] to investigate which individual cell types are enriched

for these genes in the prenatal and adult human brain using snRNA-seq data. The three gene-

sets with by far the most enriched cell types are the three gene-sets that were enriched for com-

mon variation associated with SCZ, IQ and EA and rare DNMs reported in neurodevelopmen-

tal disorders (NSCs_DELhom, iNs_DELhet_PB and iNs_DELhom_PB). There is a consistent

pattern for these gene-sets in the prenatal and adult data with both glutamatergic excitatory

Table 2. Rare variant enrichment analysis of MEF2C direct target gene-sets using data on DNMs, identified in patients with SCZ, ASD, ID and DD.

Gene-Set SCZ

n = 3394 trios

ASD

n = 6430 trios

ID/DD

n = 4485 trios

Unaffected Siblings

n = 1995

NSCs

DELhet ns ns ns ns

DELhom ns Lof** Mis**, Lof** ns

DELhet_PB ns Lof* ns ns

DELhom _PB ns Lof* Mis ns

iNs

DELhet ns ns Mis* ns

DELhom Syn* ns Mis*, Lof* ns

DELhet_PB ns ns Mis** ns

DELhom _PB Lof* Mis*, Lof* Mis**, Lof** ns

Two asterisks (**) indicate significant enrichment for mutation type after Bonferroni correction, one asterisk (*) indicates significant enrichment for mutation type at

nominal significance level and ns indicates non-significant for all classes of mutation tested. SCZ: Schizophrenia; ASD: Autism spectrum disorder; ID: Intellectual

disability; DD: Developmental delay; Syn: Synonymous mutations, Mis: Missense mutations; Lof: Loss-of-function mutations; NSCs: Neural stem cells; iNs: Induced

neurons; DELhom: Homozygous deletion; DELhet: Heterozygous deletion; PB: Proximal boundary (indirect mutation of MEF2C).

https://doi.org/10.1371/journal.pgen.1011093.t002
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neurons and GABAergic inhibitory neurons enriched across different regions of the prenatal

brain and across regions of the adult cortex (S14 and S15 Tables). The enrichment of genes in

both excitatory and inhibitory neurons is consistent with the role of MEF2C in regulating the

balance of excitatory and inhibitory synapses, the disruption of which may contribute to neu-

rodevelopmental disease [11]. Lastly, the NSCs_DELhom gene-set was enriched within cycling

progenitor cells and intermediate progenitor cells within the prenatal brain, which like the

NSCs can produce new types of neurons and glial cells (S14 Table).

Functional enrichment analysis

ClueGO (version 2.5.9), a plugin for Cytoscape (version 3.8.2) was used to investigate if genes

within the eight sets are over-represented in similar or distinct GO terms for biological pro-

cesses, cellular components and molecular functions, and biological pathways, using specific

cell-type expressed genes as the background gene-set. The NSCs gene-sets were enriched for

GO terms related to neuron development, regulation of neuron and glial cell differentiation

and regulation of metabolic processes (Figs 4–6 and S16–S19 Tables). The iNs gene-sets were

Fig 4. Bar charts of gene ontology (GO) analysis of biological process for MEF2C direct target gene-sets using the ClueGo plugins of Cytoscape. The

Bonferroni method was applied for a p-value correlation (p< 0.05). The vertical axis displays the names of the GO terms. The horizontal axis and bar lengths

represent the significance [−log10 (p-value)]. Colors in the bars represent different MEF2C direct target gene-sets. Results are presented only for the five gene-

sets that were previously enriched for common variation associated with SCZ, IQ and/or EA. Enriched terms that were related to each other in the ontology

were grouped together, with the most significant term(s)/group displayed. All data is detailed in S16–S23 Tables. NSCs: Neural stem cells; iNs: induced

neurons; DELhom: Homozygous deletion; DELhet: Heterozygous deletion; PB: Proximal Boundary.

https://doi.org/10.1371/journal.pgen.1011093.g004
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enriched for GO terms related to mitochondrial function and energy production, including

the oxidative phosphorylation process (Figs 4–6 and S20–S23 Tables). KEGG pathway analysis

revealed that the NSCs gene-sets were enriched in pathways including Orexin receptor path-
way, Protein processing in endoplasmic reticulum and Aerobic glycolysis, while the iNs gene-sets

were enriched in pathways including The citric acid (TCA) cycle and respiratory electron trans-
port and Oxidative phosphorylation (S16–S23 Tables). The enriched GO terms following dis-

ruption of MEF2C are distinct from those observed earlier from the ChIP-seq binding pattern

of MEF2C in the absence of any gene disruption.

Trans expression quantitative trait loci analysis

We hypothesized that genetic variation at MEF2C (associated with SCZ, IQ or EA) could indi-

rectly affect expression of a downstream target gene, mediated through MEF2C’s role as a tran-

scription factor. This would be a trans expression quantitative trait loci (eQTL) effect and

evidence of two risk genes (i.e., MEF2C and a downstream target gene) functioning within a

putative risk pathway. To reduce the number of possible tests of target genes, we first restricted

this analysis to the five gene-sets that were enriched for association with at least one of SCZ, IQ

or EA. We next limited these MEF2C direct target genes to only those in significantly enriched

GO terms (to capture genes with relevant functions; S24 Table) and to those genes among the

120 genes prioritized in the latest GWAS for SCZ (S25 Table) [7]. These 120 genes were identi-

fied through a combination of fine-mapping, transcriptomic analysis and functional genomic

Fig 5. Bar charts of gene ontology (GO) analysis of molecular function for MEF2C direct target gene-sets using the ClueGo plugins of Cytoscape. The

Bonferroni method was applied for a p-value correlation (p< 0.05). The vertical axis displays the names of the GO terms. The horizontal axis and bar lengths

represent the significance [−log10 (p-value)]. Colors in the bars represent different MEF2C direct target gene-sets. Results are presented only for the five gene-

sets that were previously enriched for common variation associated with SCZ, IQ and/or EA. Enriched terms that were related to each other in the ontology

were grouped together, with the most significant term(s)/group displayed. All data is detailed in S16–S23 Tables. NSCs: Neural stem cells; iNs: induced

neurons; DELhom: Homozygous deletion; DELhet: Heterozygous deletion; PB: Proximal Boundary.

https://doi.org/10.1371/journal.pgen.1011093.g005
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annotations [7]. The GWASs of IQ and EA had not performed similar prioritization analysis

and each reported>1,000 associated genes. Fifteen of the 120 genes are MEF2C direct target

genes that were in the enriched GO terms (S26 Table). We took 10 LD-independent SNPs at

MEF2C that were associated with SCZ, EA, and IQ at genome-wide significant levels (S27

Table) and investigated their association with the expression levels of these fifteen genes using

eQTL data obtained from the Genotype-Tissue Expression (GTEx) project (https://gtexportal.

org/home/) [47]. We detected a trans eQTL for a single SNP at MEF2C (rs6893807; associated

with IQ in GWAS) on the expression of the SCZ risk gene BNIP3L in the cerebellar hemi-

sphere following multiple testing correction (P = 1.60E-05, adjusted P = 0.025). The BNIP3L
gene is known to be involved in mitophagy, a process responsible for the selective removal of

Fig 6. Bar charts of gene ontology (GO) analysis of cellular component for MEF2C direct target gene-sets using the ClueGo plugins of Cytoscape. The

Bonferroni method was applied for a p-value correlation (p< 0.05). The vertical axis displays the names of the GO terms. The horizontal axis and bar lengths

represent the significance [−log10 (p-value)]. Colors in the bars represent different MEF2C direct target gene-sets. Results are presented only for the five gene-

sets that were previously enriched for common variation associated with SCZ, IQ and/or EA. Enriched terms that were related to each other in the ontology

were grouped together, with the most significant term(s)/group displayed. All data is detailed in S16–S23 Tables. NSCs: Neural stem cells; iNs: induced

neurons; DELhom: Homozygous deletion; DELhet: Heterozygous deletion; PB: Proximal Boundary.

https://doi.org/10.1371/journal.pgen.1011093.g006
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damaged mitochondria. Finally, to further explore genes with mitochondrial functions beyond

the 120 prioritized SCZ genes, we performed a second trans eQTL analysis. This time we

restricted the target genes to those within enriched GO terms related to mitochondrial func-

tion and energy production that had cell-type specific expression in the enriched cell-types

from that earlier analysis. As a result, we tested the 10 LD-independent SNPs at MEF2C

against 300 genes. Overall, the trans eQTL effect on the expression of BNIP3L, already

detected, was the only finding that survived multiple test correction (S28 Table).

Discussion

The present study aimed to integrate transcriptomic data from human neural cell models of

MEF2C deletion with ChIP-seq data to identify the direct regulatory influence of MEF2C dis-

ruption on global transcriptional signatures. These data from models of early neuronal devel-

opment stem cells (NSCs) and fully differentiated neurons (iNs) provide insight into the sets

of genes downstream of MEF2C that may be important for brain function at different stages of

neurodevelopment. Common variants in MEF2C are associated with SCZ and cognitive func-

tion. We do not expect these sets of downstream dysregulated genes to directly align with the

molecular mechanisms of SCZ and cognitive function. But we have been able to interrogate

these gene sets to determine if they were enriched for other genes associated with these pheno-

types or other neurodevelopmental disorders. From there, we investigated the functionality of

the genes within these sets to generate evidence that supports existing hypotheses about the

molecular basis of SCZ.

All eight gene-sets were significantly enriched for genes associated with at least one pheno-

type but three gene-sets (NSCs_DELhom, iNs_DELhet_PB, and iNs_DELhom_PB) were

enriched for common variants associated with SCZ, IQ and EA and were further enriched for

rare DNMs reported in ID and/or DD patients. We also showed using PRS analysis that

genetic risk for SCZ in each of these gene-sets could explain a significant proportion of vari-

ance in IQ. These data support a role for the genes in these sets in the aetiology of SCZ risk

and associated cognitive dysfunction. Functional enrichment analysis has indicated that genes

regulated by MEF2C may have a dual function in neurodevelopment. In the early stages, they

are implicated in neuron generation, differentiation and development, and metabolic pro-

cesses, while in later stages, these genes are involved in mitochondrial function and energy

production.

The process of neurogenesis forms the fundamental basis of brain development, involving

the differentiation of NSCs and neural progenitor cells (NPCs) into mature neurons [48].

NSCs have the capacity to differentiate into various functional neural lineage cells, such as neu-

rons, astrocytes, and oligodendrocytes [49]. Aberrant neurogenesis from NSCs has been impli-

cated as a potential underlying mechanism in the development of neuropsychiatric disorders

[50,51]. This critical process appears to be susceptible to various genetic and environmental

disruptions during early brain development. The cell-type enrichment analysis of our NSCs

gene-sets indicated that their constituent genes are enriched within cycling progenitor cells

and intermediate progenitor cells in the prenatal brain, which can produce new types of neu-

rons and glial cells. GO analysis of the NSCs gene-sets also indicated a role for MEF2C-regu-

lated genes in neuron development and differentiation. These findings suggest that the

differentiation process from NSCs to these specific neuronal subtypes may be influenced by

MEF2C disruption, and variants within the genes that encode this process may contribute to

SCZ risk and cognitive dysfunction. Dysregulation in the normal development and function-

ing of these neural lineage cells and imbalance between them have been strongly linked to the

underlying causes of SCZ and other neuropsychiatric disorders [52,53]. Enrichment analysis
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of KEGG pathways identified an enrichment of MEF2C direct target genes in NSCs within

Orexin receptor pathway. The regulatory role of orexin (OXA) extends to various functions

including sleep-wake rhythms, attention, cognition, and energy balance, all of which exhibit

significant alterations in individuals with SCZ. Research has found inconsistent links between

the OXA system and SCZ. Schizophrenia patients show decreased OXA plasma levels and

hypothalamic OXA, with lower cortical OX2R mRNA in females. Conversely, males exhibit

higher cortical OX1R and OX2R mRNA levels [54]. Furthermore, elevated OXA plasma levels

have been associated with negative and disorganized symptoms in some studies [55]. We also

observed that both glutamatergic excitatory neurons and GABAergic inhibitory interneurons

in the prenatal and adult brain were enriched for genes from this NSCs set and from the two

iNs sets. This provides further support for the balance of excitatory and inhibitory synapses,

which is affected by MEF2C disruption [11], representing a potential molecular mechanism

for neurodevelopmental disorders.

Synaptic activity is known to be an energy-intensive process that relies heavily on adenosine

triphosphate (ATP) produced through oxidative phosphorylation (OXPHOS) in mitochondria

[56]. OXPHOS involves the activity of electron transport chain (ETC) complexes (Complex I,

II, III, and IV) and ATP synthase (Complex V), where electrons produced by the citric acid

cycle are transferred across mitochondrial respiratory complexes [57]. Mitochondrial ATP

production is crucial for various neuronal functions, including the assembly of the actin cyto-

skeleton for growth cone formation, development of pre-synaptic compartments, generation

of membrane potential, and synaptic vesicle recycling and endocytosis. These processes con-

tribute to essential synaptic activities and neuronal communication [58–60]. GO analysis of

the iNs gene-sets identified that MEF2C directly regulates genes involved in ATP production,

including those associated with OXPHOS.

Mitochondrial dysfunction has been implicated in the complex genetic mechanisms under-

lying SCZ. A total of 295 mitochondria-related genes associated with SCZ were identified

through the examination of various studies encompassing copy number variants (CNVs), rare

and de novo mutations, genome-wide associated SNPs, transcriptomic and proteomic studies

of brain tissue from SCZ patients (reviewed in [61]). Significant associations were identified

between SCZ and 19 nuclear mitochondria-related genes using GWAS data [62]. Four of these

genes (SMDT1, HSPE1, COQ10B, and FOXO3) are in our iNs gene-sets. FOXO3, which is also

significantly associated with IQ [8] is a transcription factor. It can translocate to the mitochon-

dria where it may bind to mtDNA and react with mitochondrial transcription factor A

(TFAM) and mitochondrial RNA polymerase (mtRNApol), inducing the production of vari-

ous mitochondrial genes necessary for OXPHOS [63]. Large-scale brain eQTL studies have

shown significant enrichment of mitochondria-related genes. Approximately 28% of the eQTL

genes implicated in SCZ were related to mitochondria [64]. Furthermore, studies investigating

gene expression in postmortem brain tissues of individuals with SCZ have consistently

revealed a reduction in the expression of mitochondria-related genes. Specifically, genes such

as NADH: ubiquinone oxidoreductase core subunit V1 (NDUFV1), NADH: ubiquinone oxi-

doreductase core subunit V2 (NDUFV2), NADH: ubiquinone oxidoreductase core subunit S1

(NDUFS1) [65–67], and cytochrome c oxidase (COX) show decreased expression levels in a

region-specific manner [68]. NDUFV2 and multiple isoforms of COX are present in the iNs

gene-sets.

One of the most well established CNVs associated with SCZ is the deletion of chromosome

22q11.2, also known as 22q11.2 deletion syndrome (22q11.2DS) [69]. Individuals with

22q11DS often encounter cognitive impairments and a variety of neuropsychiatric disorders,

including attention deficit hyperactivity disorder (ADHD), SCZ, anxiety, and ASD [69].

Among the genes deleted in 22q11DS, six (MRPL40, PRODH, SLC25A1, TXNRD2, T10, and
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ZDHHC8) encode for mitochondrial proteins, and 3 others (COMT, UFD1L, and DGCR8)

have an indirect effect on mitochondrial function [70]. A recent study demonstrated mito-

chondrial deficits in iPSC-derived neurons from individuals with 22q11DS and SCZ. These

deficits included reduced ATP levels, impaired activity of ETC complexes I and IV, and

decreased levels of mitochondrial-translated proteins [71]. Our study revealed the direct regu-

latory influence of MEF2C on two mitochondrial-related genes (TXNRD2 and COMT) located

within the 22q11.2 region in iNs. TXNRD2 encodes for the mitochondrial Thioredoxin Reduc-

tase 2, an enzyme that is essential for reactive oxygen species clearance in brain. In 22q model

transgenic mice, mitochondrial TXNRD2 has been shown to impact synaptic function and is

associated with long-range cortical connectivity and psychosis-related cognitive deficits [72].

A recent investigation demonstrated that an amyotrophic lateral sclerosis (ALS)-associated

SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer ele-

ment, causes neuronal mitochondrial dysfunction. This dysfunction is characterized by

decreased mitochondrial gene expression, impaired ATP production, increased oxidative

stress, and decreased mitochondrial membrane potential [73]. Additionally, mitochondrial

dysfunction can contribute to an imbalance in the excitatory (glutamate) and inhibitory

(GABA) neurotransmitter systems [74–76], which we have referenced already as a potential

molecular mechanism of neurodevelopmental disorder.

The most recent GWAS of SCZ prioritized 120 genes from the 287 genome-wide significant

loci [7]. We identified a trans eQTL effect of a SNP in MEF2C on the expression of one of

these prioritized genes, BNIP3L. Disruption of MEF2C in the iNs cell line resulted in reduced

expression of BNIP3L. BNIP3L is involved in the selective removal of damaged mitochondria

through a process called mitophagy. BNIP3L downregulation induces synaptic dysfunction

arising from the accumulation of damaged mitochondria that leads to reduced mitochondrial

respiration function and synaptic density [77]. It has been reported that mitophagy is signifi-

cantly impaired in neurodegenerative disorders including Alzheimer’s disease, Parkinson’s

disease, amyotrophic lateral sclerosis and Huntington’s [78–81]. A recent investigation has

identified both common and rare mutations in the BNIP3L gene in individuals diagnosed with

SCZ [82]. The effect of identified genome-wide significant SNPs at MEF2C on its function

remains to be elucidated but here is evidence that these variants may have downstream effects

on direct targets of MEF2C, in this case potentially dysregulating BNIP3L and potentially con-

tributing to mitochondrial dysfunction.

A first limitation of this study is that the ChIP-seq data was not generated from the same

human neural cell models as the RNA-seq data, it came from human fetal brain cultures. Ide-

ally, these data would come from the same source when trying to combine them to identify

direct target genes. In addition, it would have strengthened the study to have validated the

ChIP-seq and RNA-seq results at some target genes with quantitative PCR. It is noteworthy

that the three gene-sets that were enriched for common and rare variants associated with neu-

rodevelopmental disorders and phenotypes were also the largest gene-sets (all>1,000 genes)

whereas the other 5 gene-sets each contained <500 genes. Therefore, we likely had greater sta-

tistical power to detect enrichments in these larger gene-sets. The smaller gene-sets were all

enriched for variants associated with SCZ, IQ or EA at least nominally significant levels and

thus may also index relevant functions to these phenotypes.

In conclusion, our study leverages data from human neural cell models of MEF2C to inves-

tigate putative molecular mechanisms of SCZ and cognitive dysfunction. These include neu-

ron development, metabolic processes and mitochondrial dysfunction including impaired

ATP production, synaptic dysfunction, imbalance in neurotransmitter systems, and disrupted

mitophagy. These mechanisms provide valuable insights into how MEF2C dysregulation could

contribute to the development of these complex disorders. Further investigations into the
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precise molecular mechanisms by which MEF2C and mitochondrial genes contribute to the

development of these disorders are needed. Such insights may pave the way for the develop-

ment of novel therapeutic strategies targeting mitochondrial pathways in the treatment of neu-

ropsychiatric disorders.
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49. Thier M, Wörsdörfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P,
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