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ABSTRACT
To address the challenge of suboptimal object detection outcomes stemming from
the deformability of marine flexible biological entities, this study introduces an
algorithm tailored for detecting marine flexible biological targets. Initially, we
compiled a dataset comprising marine flexible biological subjects and developed a
Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm,
supplemented with a boundary detection enhancement module, to refine underwater
image quality and accentuate the distinction between the images’ foregrounds and
backgrounds. This enhancement mitigates the issue of foreground-background
similarity encountered in detecting marine flexible biological entities. Moreover, the
proposed adaptation incorporates a Deformable Convolutional Network (DCN)
network module in lieu of the C2f module within the YOLOv8n algorithm
framework, thereby augmenting the model’s proficiency in capturing geometric
transformations and concentrating on pivotal areas. The Neck network module is
enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate
and emphasize essential characteristics of flexible biological targets. To advance the
model’s feature information processing efficiency, we integrated the SimAM
attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels
within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss
function, which serves to refine the anchor boxes’ quality assessment. Simulation
experiments show that, in comparison to the conventional YOLOv8n algorithm, our
method markedly elevates the precision of marine flexible biological target detection.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Neural Networks
Keywords Marine flexible biological targets, Target detection, CLAHE, Improved YOLOv8

INTRODUCTION
With the rapid advancement of target detection algorithms, the detection accuracy for
common tasks in simple scenarios, like pedestrian detection, now exceeds 90%. However,
for targets with unique characteristics, like the flexible biological entities discussed herein,
the algorithm’s performance remains unsatisfactory. Consequently, it is necessary to
customize and improve the algorithm according to these unique characteristics to improve
the detection results.
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Observing flexible marine biology offers a valuable method for assessing marine
biological diversity and forecasting environmental shifts. Recently, underwater target
detection employing machine vision has gained traction in marine studies. Utilizing visual
autonomous perception technology to precisely identify and quantify various marine
species, including sea cucumbers and octopuses in aquatic farms, aids seafood cultivators
in real-time monitoring of marine life growth and environmental alterations, while also
minimizing human labor and avoiding high-risk tasks. Despite this potential, four
significant challenges hinder effective detection of flexible biological entities in marine
settings (Lin & Zhao, 2020):

1) Flexible marine biological objects exhibit considerable variability in shape and
posture due to their soft, deformable bodies.

2) Detection backgrounds in marine environments are often complex and variable.
3) Marine organisms excel in camouflage and concealment compared to inanimate

objects.
4) In underwater environments, light absorption, scattering, and water quality

significantly affect underwater imagery, often resulting in color distortion, blurring, and
detail loss.

Based on the preceding analysis, the challenges can be categorized into two primary
areas (Chen et al., 2023a): underwater image processing and object detection algorithms.
Underwater image processing encompasses methods for image enhancement and image
restoration (Wang et al., 2019). Enhancement techniques include prior model-based
approaches such as ULAP and IBLA (Song et al., 2018; Peng & Cosman, 2017), which rely
on predetermined knowledge or statistical assumptions about the environment. However,
these assumptions may not hold in complex scenarios. Conversely, non-physical
model-based methods, like the CLAHE algorithm, utilize histogram equalization to
improve image clarity. Another example is the Relative Global Histogram
Stretching (RGHS) algorithm, which enhances shallow water images by adjusting
contrast and color, thereby achieving superior image quality with reduced noise
(Huang et al., 2018). Recently, deep learning-inspired methods involving convolutional
neural network (CNN) and generative adversarial network (GAN) like Water-net, have
emerged. These methods employ a network’s self-learning capability to conduct weighted
fusion of input images, resulting in enhanced underwater imagery (Li et al., 2019).

To tackle underwater image restoration, He, Sun & Tang (2020) introduced the Dark
Channel Prior (DCP) algorithm, leveraging prior knowledge for image restoration.
Chiang’s team (Raveendran, Patil & Birajdar, 2021) applied DCP to underwater contexts
and developed a restoration algorithm that incorporates wavelength compensation and
deblurring. Beyond DCP, Wang, Zheng & Zheng (2017) presented the Adaptive
Attenuation-Curve Prior (AACP) algorithm for similar purposes. In the realm of object
detection, algorithms are bifurcated into traditional methods and those predicated on deep
learning (Wei et al., 2023). Traditional approaches (Zou et al., 2023), such as Cascade
+Haar, DP (Deformable Parts Model), and Selective Search (SIFT+SVM), are becoming
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outdated due to technological advancements and increasing data volumes. These
methods often suffer from low computational efficiency due to the sliding window
technique and are hampered by the manual intensity required for feature design and
selection, affecting their accuracy, objectivity, robustness, and generalizability. Deep
learning-based object detection algorithms are categorized into two types: a) two-stage
algorithms, which separate detection into region proposal extraction and proposal
classification and regression, with RCNN (Girshick et al., 2014), Fast region-based
convolutional neural network (R-CNN) (Sabri & Li, 2021), Faster R-CNN (Wang & Xiao,
2023) and Mask R-CNN (Rashid et al., 2022) as prime examples; b) one-stage algorithms,
which concurrently perform detection and classification, outputting class probabilities and
object coordinates directly, exemplified by Cao et al.’s (2020) SSD and the YOLO series
(Jiang et al., 2022) algorithms.

The performances of object detection algorithms, including those based on deep
learning like YOLO and SSD (Chen, 2023; Dong et al., 2022), often diminishes with poor
imaging quality and complex or varied detection backgrounds. Furthermore, the detection
of flexible marine biological objects (Liu, Liu & Jiang, 2023), characterized by their soft
bodies and significant shape changes, demands an algorithm with enhanced modeling
capabilities for geometric transformations and a robust distinction between the foreground
and background of an image.

Accordingly, this article introduces a flexible marine biological object detection
algorithm using an enhanced YOLOv8. “Improvements of the CLAHE Underwater Image
Enhancement Algorithm” discusses the incorporation of the CLAHE image enhancement
algorithm with a boundary detection enhancement module to improve the underwater
image dataset and delineate the boundaries between the image’s foregrounds and
backgrounds. “The Structure of Yolov8n Model and Improvement Strategy” outlines the
comprehensive framework of the object detection algorithm based on YOLOv8n, detailing
improvements in the backbone, neck, and loss function, and integrating the attention
mechanism SimAM. “Experiment Research and Result Analysis” describes the assembly of
a flexible marine biological dataset, the establishment of an experimental environment,
and the execution of ablation studies along with comparative analyses of different models.
“Conclusions” concludes the article.

IMPROVEMENTS OF THE CLAHE UNDERWATER IMAGE
ENHANCEMENT ALGORITHM
CLAHE (Ting et al., 2023) is an advanced image enhancement technique evolved from
Adaptive Histogram Equalization (AHE). The fundamental concept of CLAHE is to
partition the image into multiple segments (or tiles), for example, 8 × 8 = 64 tiles. Unlike
AHE, where histogram equalization is applied to the entire image, CLAHE performs this
operation individually on each tile. While AHE excels in enhancing local image contrast
and delineating image boundaries, it falls short by intensifying image noise. To alleviate
this problem, CLAHE imposes a contrast limitation on each tile to prevent the excessive
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noise amplification associated with AHE. The operational principle of CLAHE is outlined
as follows:

Assuming that the sliding window size of the CLAHE algorithm isM �M, therefore the
local mapping function is

m ið Þ ¼ 255� CDF ið Þ
M �M

: (1)

CDF ið Þ is the cumulative distribution function of the sliding window local histogram; the
slope S of the local mapping function is

S ¼ d m ið Þð Þ
di

¼ Hist ið Þ � 255
M �M

: (2)

According to Formulas (1) and (2), by adjusting S, the height Hist ið Þ can be modified,
which in turn adjusts the image contrast. If the maximum value of S is represented as Smax,
the maximum value of the histogram is

Hmax ¼ Smax �M �M
255

: (3)

To maintain a consistent overall area of the histogram, the part of the histogram that
exceeds Hmax is truncated and evenly distributed within the entire histogram range. In
practice, this truncation is achieved by setting a threshold T (instead of Hmax), which
results in the entire image’s histogram increasing by L. Consequently,

Hmax ¼ T þ L: (4)

Finally, the improved histogram is

Hist ið Þ ¼ Hist ið Þ þ L;Hist ið Þ<T
Hmax ;Hist � T

�
: (5)

To summarize, by adjusting Smax, histograms with different maximum heightsHmax can
be enhanced to varying degrees. To augment the algorithm’s capacity for delineating
foreground and background boundaries in addition to enhancing underwater images, a
Boundary Detection Enhancement Module (BEM) (Guan et al., 2022) is integrated into the
CLAHE algorithm to focus the network’s attention on contour representation. This
module leverages both high-level and low-level features to isolate boundary details and
eliminate irrelevant information. Its operational mechanism is depicted in Fig. 1. The
image information input into the image preprocessing algorithm enters both the CLAHE
algorithm channel and the boundary detection enhancement channel. The CLAHE
algorithm channel adjusts image contrast, while the front and rear edge enhancement
channel concentrates on extracting and intensifying boundary information within the
image. This process not only enhances the boundary information between the foreground
and background but also accentuates the shape details of the target object. Subsequently,
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the outputs from both channels are merged, effectively enhancing the underwater image
alongside the object’s shape and boundary details concurrently.

THE STRUCTURE OF YOLOV8N MODEL AND
IMPROVEMENT STRATEGY
YOLOv8n
YOLOv8, the most recent advancement (Wang et al., 2023) in the YOLO series, is capable
of performing both detection and classification tasks. This SOTA model builds upon
previous iterations, incorporating novel features and enhancements. Notable innovations
include a redesigned backbone network, an anchor-free head, and an updated loss
function. This study utilizes the YOLOv8n variant as the foundational model.

As depicted in Fig. 2, the YOLOv8n architecture comprises four main components:
Input, Backbone, Neck, and Head (Oh & Lim, 2023). The Input segment employs Mosaic
for data augmentation, which is deactivated during the final 10 epochs. The anchor-free
mechanism predicts the object’s center directly, eliminating the need for anchor box offset
predictions and thereby streamlining the non-maximum suppression (NMS) process.

The Backbone serves as the primary feature extraction module, encompassing Conv,
C2f, and SPPFmodules. The Conv module applies convolution, BN, and SiLU activation to
the input image, maintaining a similar structure to YOLOv5’s backbone. Adopting the CSP
concept, the C3 module is substituted with a C2f structure to enhance gradient flow, with
channel numbers tailored to different model scales. Additionally, YOLOv8 retains the
SPPF module from the YOLOv5 (Wu et al., 2021) design, enabling the conversion of
variable-sized feature maps into fixed-size feature vectors.

The Neck’s primary role is to amalgamate multi-scale features and construct a feature
pyramid, utilizing the PANet architecture (Liu et al., 2023). This integral structure
comprises two main components: the feature pyramid network FPN and the path
aggregation network PAN. The synergy between FPN and PAN enables comprehensive
integration of bidirectional information flow within the network, enhancing its detection
capabilities.

The Head segment fragment extracts the classification and positioning details of objects
of different sizes from feature maps of different sizes. In YOLOv8n, the Head has been

Figure 1 The working mechanism of the CLAHE underwater image enhancement algorithm with
foreground and background boundary enhancement module.

Full-size DOI: 10.7717/peerj-cs.2271/fig-1
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updated to the prevalent decoupled head structure, which segregates the classification and
detection functions and transitions from an Anchor-Based to an Anchor-Free approach.

Deformable convolutional network (DCN) module
Given the flexible nature and variable shapes of marine biological objects, object detection
algorithms need to enhanced capabilities to model geometric transformations. Traditional
convolution operations partition the feature map into segments matching the convolution
kernel’s size, with each segment’s position on the feature map being static. This approach is
less effective for objects undergoing complex deformations. As illustrated in Fig. 3A, the
fixed size and shape of a 3 × 3 convolution kernel limit its capacity to model geometric
transformations during convolution. To address this, researchers like Dai et al. (2017)
introduced an innovative concept of integrating an offset to the standard convolution
kernel, as detailed in Fig. 4, showcasing the principles of deformable convolution
operations. Figures 3B–3D depict how each element of the deformable convolution kernel
is adjusted by a specific offset, altering the sampling positions (Nguyen et al., 2023) and
thereby augmenting the convolutional neural network’s capability to model geometric
transformations and improving the model’s proficiency in detecting flexible marine
objects.

Traditional two-dimensional convolution first uses the sampling grid R to sample
on the input feature map x (Li & Liu, 2023), and then uses the weight w to weight
the sampled values. The sampling grid determines the size of receptive field. For

Figure 2 Structure of YOLOv8n network. Full-size DOI: 10.7717/peerj-cs.2271/fig-2
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example, the sampling grid of a regular two-dimensional convolution of size 3 × 3 can be
expressed as:

R ¼ �1;�1ð Þ; �1; 0ð Þ;…; 0; 1ð Þ; 0; 1ð Þ½ �: (6)

For each position p0 in the output feature map y, there is

y p0ð Þ ¼
X
pn

pnð Þ � x ðp0 þ pnÞ � (7)

In Formula (7), pn denotes the enumeration of positions in R. In deformable
convolution, the regular grid R is offset by dp0 ¼ n ¼ 1;…;N

� �
, in which N ¼ Rj j.

Formula (7) then becomes the following form:

y p0ð Þ ¼
X
pn

pnð Þ � x ðp0 þ pn þ dp0Þ � (8)

Figure 4 Principles of deformable convolution operation.
Full-size DOI: 10.7717/peerj-cs.2271/fig-4

Figure 3 (A–D) Sampling point location map of deformable convolution.
Full-size DOI: 10.7717/peerj-cs.2271/fig-3
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This adjustment causes the sampling points to assume irregular and shifted positions.
In deformable convolution, dp0 is determined by convolving on x. The process of

learning dp0 and generating the convolution kernel in deformable convolution is depicted
in Fig. 4. Furthermore, the incorporation of multiple deformable convolutional layers
significantly influences the receptive field and composite deformation, as illustrated in
Fig. 5. Figure 5A employs standard convolution, whereas Fig. 5B utilizes deformable
convolution. Both figures share identical top-level feature maps and sampling points.
However, through successive convolutional layers, it is evident that deformable
convolution allows for the adaptive adjustment of sampling points in response to the
target’s scale and shape.

Convolutional neural networks that incorporate deformable convolution are referred to
as deformable convolutional neural networks (DCNN). From the discussed content, it is
clear that a DCNN model equipped with deformable convolution can effectively modify
the receptive field, enrich the feature map’s useful feature information, and enhance the
network model’s capacity to model the geometric transformation of the detected target
based on its size and shape.

Compared to traditional convolution, deformable convolution introduces additional
parameters and greater flexibility to the network model, but this can complicate the
convergence of the model. Improper design or placement of the deformable convolution
module within the network might lead to training collapse.

Figure 5 (A–D) A comparison of receptive field and positions of sampling points of regular
convolution and deformable convolution operation. Full-size DOI: 10.7717/peerj-cs.2271/fig-5
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To mitigate the risk of network collapse during training, this study draws on the classic
ResNet (Shafiq & Gu, 2022) structure to inform the design of the deformable module unit,
including its stacking method and placement. A skip connection is employed between two
deformable convolution layers to enhance network convergence, as depicted in Fig. 6,
which illustrates the deformable convolution basic module structure utilized in this
experiment. CBL module refers to “convolutional block laver”, which is a basic
convolutional block composed of a series of convolutional layers, batch normalization
layers and activation function layers.

Consequently, the DCNmodule is more adept at managing non-rigid deformations and
positional variations of underwater targets, enhancing detection accuracy. Through
learning deformable convolution parameters, the model dynamically adjusts the
convolution kernel’s sampling positions based on the target’s specific shape and location,
enabling more precise target characterization. This enhancement bolsters the underwater
target detection model’s performance, increasing its adaptability to the complexities and
variability of underwater environments.

RepBi-PAN neck network
The Neck network plays a crucial role in applying transformation and concatenation
operations to the feature map, enriching and diversifying its feature information while
enhancing its robustness. In YOLOv8n, this network incorporates the PANet architecture,
which introduces an additional bottom-up path to FPN, facilitating quicker signal
transmission from low-level to high-level features and vice versa, thus enhancing the
propagation of precise low-level feature signals. Numerous scholars have developed
innovative neck network designs based on FPN and PAN, with RepBi-PAN standing out as
a notable example.

RepBi-PAN features a Bi-directional Concatenation (BiC) module, depicted in Fig. 7.
This module amalgamates feature maps from three adjacent depths by applying 1 × 1
convolutions for dimensionality reduction on feature maps of identical scale and depth.
For larger-scale feature maps from shallower layers, it employs 1 × 1 convolution for
dimensionality reduction followed by a 3 × 3 convolution with a stride of 2 for down-
sampling. Conversely, for smaller-scale feature maps from deeper layers, it uses a 2 × 2
transposed convolution followed by up-sampling. Afterward, it concatenates the three
feature maps and applies another round of 1 × 1 convolution for dimensionality reduction.
Through this process, the BiC structure assimilates feature information across adjacent

Figure 6 The structure of deformable convolution module.
Full-size DOI: 10.7717/peerj-cs.2271/fig-6
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layers, facilitating cross-layer and cross-channel feature fusion, enhancing the interaction
between deep and shallow layers, and significantly improving the neck network’s feature
fusion capability. Furthermore, this module aids in preserving precise positioning signals,
which is particularly crucial for accurately locating smaller objects.

In addition to the BiC structure, RepBi-PAN enhances the SSP structure (Tang et al.,
2023) by streamlining the SPPF block into a version akin to CSP, termed the SlimCSPSPPF
block. Figure 8 illustrates the refined SlimCSPSPPF structure. Upon receiving the deepest
layer’s feature map, SlimCSPSPPF bifurcates it into two pathways. One pathway engages in
multi-scale transformation of the feature map through compound convolution and spatial

Figure 7 The structure of BiC. Full-size DOI: 10.7717/peerj-cs.2271/fig-7

Figure 8 The structure of SlimCSPSPPF. Full-size DOI: 10.7717/peerj-cs.2271/fig-8
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pyramid pooling, while the other employs a skip connection to preserve SlimCSPSPPF’s
integrity. The SlimCSPSPPF structure surpasses the original SPPF in terms of feature
representation, efficiency, and processing speed.

RepBi-PAN integrates the BiC structure to link convolutional layers across four
different depths at the Backbone’s second and third levels of convolutional depth and
implements the SlimCSPSPPF structure at the deepest convolutional layer. By refining the
original YOLOv8n’s PANet structure, RepBi-PAN substantially boosts the model’s
capacity to amalgamate multi-scale features pertinent to flexible marine organisms,
thereby enhancing the detection accuracy of the algorithm for these subjects.

The SimAM attention structure
In tasks involving the detection of marine life, where the target closely resembles the
background, incorporating an attention mechanism prior to the YOLOv8n network’s head
can significantly mitigate the impact of extraneous information. This article employs
SimAM, a three-dimensional, parameter-free attention mechanism (Zhang, Liu &
Jiang, 2022).

Traditional attention mechanisms, such as SE, ECA, and SOCA, are constrained by
their intrinsic designs, typically refining features along either channel or spatial
dimensions and generating one- or two-dimensional weights. This constrains the model’s
capacity to concurrently learn weights across both channels and spatial dimensions and
escalates the model’s parameter count. Unlike these mechanisms, SimAM introduces a
parameter-free approach to generate full 3D weights, achieving three-dimensional weight
derivation without increasing the original network’s parameter load. Figure 9 compares the
operational principles of the SimAM attention structure with those of channel and spatial
attention structures.

Figure 9 illustrates that channel attention generates one-dimensional weights for each
channel, refining the feature map’s channel weights while treating all spatial positions
within a channel uniformly (Zhang, Li & Zhang, 2023). Spatial attention generates two-
dimensional spatial weights, refines the weights of different positions within the same
channel of the feature map, and treats all channels equally. Conversely, the 3D weights
generated by SimAM can refine different positions across various channels. Hence, it
surpasses both channel attention and spatial attention. The mechanism through which the
SimAM attention structure produces 3D weights is detailed below.

Figure 9 (A–C) The comparison of the principles of SimAM attention structure, channel attention
structure and spatial attention structure. Full-size DOI: 10.7717/peerj-cs.2271/fig-9
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The formula for calculating 3D weights is presented as:

_X ¼ sigmoid
1
E

� �
� X: (9)

X is the input feature, and the sigmoid function is applied to constrain any excessive
values in E. E represents the energy function on each channel. The calculation process of E
is

E ¼ 4 r2 þ kð Þ2
t � lð Þ2 þ 2r2 þ 2k

: (10)

In Formula (10), t denotes the value of the input feature, t 2 X. The lower the energy E
is lower, greater the difference between the target neuron t and other neurons xi in the
corresponding dimension, thereby increasing the relative importance. Consequently, the
significance of the neuron can also be denoted by 1=E. k is the constant 1e� 4, l and r2

denote the mean and variance of each channel in X respectively, with the computation
process outlined as follows:

l ¼ 1
M

XM
i¼1

xi (11)

r2 ¼ 1
M

XM
i¼1

xi � lð Þ2: (12)

M denotes the number of neurons, which equals the product of the width (W) and the
height (H) of the feature map. xi represents all the neurons in the dimension
corresponding to the target neuron. By manipulating these neurons, the network can
assign greater weights to those containing crucial information, thereby enhancing
detection and positioning accuracy without the need for additional network parameters.

It is considered that the detection network of flexible marine biological targets is easily
affected by background interference similar to the target, incorporating the SimAM
attention mechanism into the detection network allows for a comprehensive and efficient
evaluation of feature weights and the fusion of target information across multiple
dimensions. This process not only amplifies the information pertaining to flexible marine
biological targets but also diminishes the influence of natural background information,
ensuring a focused target detection. Furthermore, the SimAM attention structure dose not
introduce extra network parameter calculations, thus minimally affecting the model’s
running speed.

The WIoU loss function
In current detection algorithms, researchers designing the bounding box loss function
often presume that the training dataset’s bounding box annotations are of high quality,
focusing on improving the bounding box regression function’s fitting capabilities.
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However, low-quality bounding box annotations are prevalent in many datasets.
Enhancing the fitting ability of the bounding box regression function for these low-quality
images can adversely affect the model’s target positioning performance. The training data
in this study, annotated by the authors, inevitably include such low-quality annotations,
which can diminish the model’s generalization capability.

The baseline model of YOLOv8 employs the CIoU loss function, which considers the
overlapping area, center point distance, and aspect ratio. However, the aspect ratio is
represented as a relative value, introducing a degree of ambiguity. Additionally, it fails to
address the balance issue between challenging and straightforward samples, potentially
leading to slow convergence and reduced prediction accuracy. Given the presence of low-
quality samples in our dataset, factors like aspect ratio and distance can intensify penalties
for these samples, undermining the model’s generalization capabilities. When there is
significant overlap between the target and anchor boxes, reducing the emphasis on
geometric factors can enhance model generalization. Consequently, this study adopts the
WIoU loss function over the CIoU loss function. The WIoU loss function more effectively
addresses sample imbalance, improving the model’s convergence rate.

WIoU employs a dynamic, non-monotonic focusing mechanism to assess the anchor
box’s quality and leverages gradient gain to bolster the efficacy of high-quality anchor
boxes while mitigating the effects of detrimental gradients (Chen et al., 2023b), thereby
enhancing the algorithm’s overall performance. WIoU introduces a dual-layer attention
mechanism to avert slow convergence, augment convergence accuracy, and bolster model
generalization. It is posited that the corresponding position of (x, y) in the target frame is

xgt; ygt
� �

, RWIoU denotes the loss of high-quality anchor boxes. The WIoUv1 formula is

presented as:

LWIoUv1 ¼ RWIoULIoU (13)

In which

RWIoU ¼ exp
x � xgt
� �2 þ y � ygt

� �2
wcð Þ2 þ hcð Þ2� ��

 !
(14)

To circumvent the generation of substantial harmful gradients by low-quality samples,
WIoUv3 is devised utilizing b and WIoUv1. The formula is delineated as follows:

LWIoUv3 ¼ rLWIoUv1: (15)

In which

r ¼ b
ab�d

; b ¼ L�
IoU

LIoU
2 ½0;þ1Þ: (16)

This study employs the WIoUv3 loss function for experimental analyses. This function
incorporates a dynamic, non-monotonic focusing mechanism (Wang et al., 2023). It
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dynamically computes the “outlier degree” to serve as a metric for evaluating the quality of
anchor boxes and implements a gradient gain allocation strategy. A lower outlier degree
indicates a higher-quality anchor box, to which a reduced gradient gain is allocated,
refocusing the bounding box on anchor boxes of average quality. Conversely, assigning
diminished gradient gains to anchor boxes with higher outlier degrees effectively mitigates
the impact of low-quality examples by limiting their potential to generate large,
detrimental gradients. Furthermore, the calculation of the outlier degree is dynamic
throughout the training process, enabling WIoU to continually adapt its gradient gain
distribution strategy to optimize performance in the prevailing context.

As demonstrated in Fig. 10, Wise-IoU can reduce the influence of these low-quality
labels and achieve better prediction when the labeling frames of jellyfish and holothurian
in training data are quite different from the real ones. The dataset for this study was
developed through the authors’ independent collection and annotation of images,
encompassing over 7,000 annotated boxes set against a complex seabed environment
background.

Given the inevitability of missing and low-quality annotations, incorporating WIoU
into the detection algorithm significantly reduces the adverse effects of substandard
training data, boosts the bounding box regression function’s adaptability, and enhances the
algorithm’s performance.

Figure 10 Low-quality bounding box annotations in the training and ideal predictions of Wise-IoU.
Full-size DOI: 10.7717/peerj-cs.2271/fig-10
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The overall framework of marine flexible biological target detection
algorithm based on YOLOv8n
Following the evaluation of the target dataset and application context, enhancements were
made to the original detection algorithm. Figure 11 illustrates the comprehensive
architecture of the refined flexible marine biological object detection algorithm network,
based on YOLOv8n. This architecture combines the original YOLOv8 model with the
improvements mentioned above.

EXPERIMENT RESEARCH AND RESULT ANALYSIS
Configuration of the experiment
The experimental environment comprises Ubuntu 20.04 64-bit, PyCharm 2023.1.2,
Pytorch 2.0.1, CUDA 11.8 (for training acceleration), and Python 3.11. The hardware
setup includes an AMD Radeon 7-5700X CPU and an RTX4080 GPU. These processors
are utilized for image preprocessing and model training, respectively. The enhanced
algorithm’s outcomes are benchmarked against those of leading target detection
algorithms using GPU-accelerated training.

Evaluating index of the model
The evaluation metrics are precision, recall, and mean average precision (mAP).

Figure 11 The overall structure of the improved algorithm model. Full-size DOI: 10.7717/peerj-cs.2271/fig-11
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Precision: the ratio of correctly predicted positive observations to the total predicted
positives.

Precision ¼ TP
TP þ FP

: (17)

Recall: the ratio of correctly predicted positive observations to all observations in actual
class.

Recall ¼ TP
TP þ FN

: (18)

Average precision: By plotting recall on the x-axis and precision on the y-axis, a curve is
generated. The area under this curve represents the AP.

AP ¼
Z
P Rð ÞdR: (19)

AP represents a detailed mean accuracy, computed at intervals of 0.05 across a range
from 0.5 to 0.95. Due to its complexity, the currently commonly used index is AP50, which
refers to the average accuracy when IoU = 0.5. AP50 generally refers to the average
detection accuracy of a single category of targets. The weighted average AP50 value of
multiple categories is also called mAP50 (%) (mean average precision). mAP50 (%) offers a
comprehensive assessment of the model’s detection accuracy across all categories, serving
as the experimental evaluation metric in this study. The mean average precision is
delineated in Formula (20), where N signifies the number of target categories, and AP
represents the average accuracy of a single category target.

mAP ¼
PN
i¼1

APi

N
: (20)

Dataset collection
a) Dataset. To ensure the dataset’s representations of biological object postures, locations,
and scenarios accurately reflect real-world conditions and closely align with the actual data
distribution, this study sourced extensive footage of authentic oceanic environments from
documentaries, employing frame-by-frame annotation to develop a dataset of flexible
marine biological entities. The utilized documentary footage is publicly available, making it
suitable for this research’s dataset needs. Figure 12 displays the distribution of target
categories within the dataset, which comprises a total of 6,749 images featuring prevalent
flexible marine species, such as octopus, holothurian, starfish, and jellyfish. Images were
annotated using Labelimg. The dataset is divided into a training set with 5,341 images and
a validation set consisting of 1,408 images. It encompasses a diverse array of images
captured across various seasons, showcasing the organisms’ body postures during different
activities and habitats, under varying light conditions and environmental settings.
Figure 13 presents a selection of images from the dataset.
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b) Dataset image enhancement. Given that the subjects of this dataset are flexible
biological entities inclined to camouflage and blend into their surroundings, they often
appear in environments closely resembling themselves. Consequently, this study
introduces targeted enhancements to the standard CLAHE underwater image
enhancement algorithm, incorporating boundary detection into the enhancement module
to accentuate the distinction between foreground and background while adjusting
contrast. As illustrated in Fig. 14, the contrast in images processed with HE and CLAHE
has notably improved, with a clear enhancement in detail visibility. However, some HE-
processed images exhibit color shift issues, particularly noticeable in the second image.

Figure 13 Some images in the dataset. Full-size DOI: 10.7717/peerj-cs.2271/fig-13

Figure 12 The histogram of categories of flexible marine biological objects.
Full-size DOI: 10.7717/peerj-cs.2271/fig-12
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DCP-processed images show reduced contrast and intensified blue-green color shifts,
alongside diminished overall brightness. While RGHS processing improves image
brightness, it can lead to distortion and a reddish color tint. In contrast, images enhanced
with the modified CLAHE algorithm display enhanced detail clarity without significant
color shifts or localized over-enhancement. Overall, the image quality significantly benefits
from the enhancements applied by the refined CLAHE algorithm.

To evaluate the impact of various image enhancement algorithms on model detection
outcomes, this study utilized images processed by different algorithms for model training
and testing. The experimental results, presented in Table 1.

Figure 14 Effects of different image processing algorithms.
Full-size DOI: 10.7717/peerj-cs.2271/fig-14

Table 1 Performance index of different models comparison table.

Methods AP50 (%) mAP50 (%)

Holothurian Starfish Jellyfish Octopus

Original image 66.5 77.9 80.5 78.5 75.9

DCP 67.9 78.1 80.3 79.7 76.2

CLAHE 67.7 77.7 82.2 79.2 76.7

HE 68.1 77.2 80.4 79.8 76.4

RGHS 69.0 78.1 79.9 80.5 76.5

Improved CLAHE 68.5 75.5 81.1 81.2 77.1
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The experimental results reveal that, relative to the original image, model detection
accuracy has improved following preprocessing with CLAHE, RGHS, HE, and DCP.
Notably, there was a significant enhancement in the detection quality of octopus. The
mAP50 (%) for the enhanced CLAHE algorithm increased by 1.2% (relative to the original
image), followed by HE at 0.5%, RGHS at 0.6%, DCP at 0.3%, and standard CLAHE at
0.8%. These findings convincingly demonstrate the effectiveness of the enhanced CLAHE
algorithm in augmenting underwater images, prompting its selection for future
experiments in this study.

Model training
Table 2 outlines the model training parameter settings. The dataset is partitioned into a
training set comprising 5,341 images and a validation set with 1,408 images. Moreover, to
mitigate overfitting during training, a label smoothing technique is employed.

Experiment results and analysis
Effectiveness verification of the improved algorithm
To assess the efficacy of the improved algorithm module, this study employs the original
YOLOv8n model as the baseline model and mAP50 (%) as the evaluation metric. Ablation
studies were performed using various combinations of enhancement modules. Compared
to the baseline YOLOv8n model, the following five enhancements each contributed to an
increase in model detection accuracy, as detailed in Table 3. Post-processing with the
enhanced CLAHE algorithm resulted in a 1.2% increase in mAP50 (%). Substituting the
original C2f module with deformable convolution (DCN) led to a 1.3% rise in mAP50 (%).
Incorporation of the RepBi-PAN network model into the neck improved feature fusion,
while the introduction of the SimAM attention module augmented the algorithm’s feature
processing capabilities. Subsequently, adopting the WIoU bounding box loss function in
place of the original CIoU further elevated mAP50 (%). Of all modifications, the DCN
module exhibited the most substantial enhancement, showing the most pronounced effect.
Collectively, these modifications elevated the YOLOv8n-Improve’s mAP50 (%) by 4.6%
compared to the original YOLOv8n, indicating significant improvement.

Figure 15 presents the P-R diagram, illustrating the sequential addition of improvement
methods. The detection accuracy for sea cucumbers, starfish, octopus, and jellyfish has

Table 2 Model training parameters.

Name of parameter Meaning Setting

Pretraining weight Initial weights of the model YOLOv8n.pt

Optimizer Parameter updating algorithm of the model Adam

Image-size Input image size of the model 640 × 640

lr0 Initial learning rate 0.01

Batch size Batch size 16

Epoch Training times of all training sets 200
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seen overall enhancements through these methods. Specifically, the detection accuracy
improvements are as follows: sea cucumbers by 8%, octopus by 6.1%, starfish by 3.1%, and
jellyfish by 1.3%. Consequently, the final detection accuracies are 74.5% for sea cucumbers,
84.6% for octopus, 81.0% for starfish, and 81.8% for jellyfish, indicating substantial
improvement.

Figure 16 illustrates that YOLOv8n-Improve converges more rapidly, and its loss
function values are lower compared to YOLOv8n. The integration of the DCN module
enhances feature extraction efficiency, while the inclusion of RepBi-PAN ensures more
comprehensive feature fusion across layers, thereby improving bounding box regression
accuracy and reducing loss values. In Fig. 17, YOLOv8n-Improve exhibits superior
precision and recall relative to YOLOv8n. This improvement is attributed to the SimAM
attention module’s robust feature information processing capabilities, which effectively
address the challenge of feature information overload due to the diversity of flexible
biological objects’ features. It emphasizes the crucial features of marine biological entities
while minimizing background noise. Furthermore, the adoption of the WIoU bounding
box loss function mitigates the adverse effects of low-quality annotations in the dataset.

Table 3 Ablation experiment result.

Model CLAHE DCN RepBi-PAN SimAM WIoU Recall (%) Precision (%) mAP50 (%)

YOLOv8n 70.7 82.5 75.9

√ 69.8 84.8 77.1

√ √ 71.1 86.6 78.4

√ √ √ 70.8 87.3 79.1

√ √ √ √ 72.2 87.9 80.0

√ √ √ √ √ 71.9 89.8 80.5

Figure 15 The P-R diagram in which the original YOLOv8 and the improving methods is added. Full-size DOI: 10.7717/peerj-cs.2271/fig-15
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To visually assess the impact of the improved algorithm on the model’s detection
performance, the detection confusion matrices of the baseline algorithm and the YOLOv8-
Improve algorithm are compared, as illustrated in Fig. 18.

Figure 18 demonstrates that, following the application of the YOLOv8n-Improve
algorithm, the recall rates for jellyfish, sea cucumbers, and octopus have increased, with the
exception of starfish. Additionally, the missed detection rates for all four flexible biological
targets have decreased to some extent. Both Table 3 and Fig. 18 corroborate the efficacy of
the proposed algorithm.

Comparison of different models’ detection results
To further assess the algorithm’s effectiveness, this study compares the performance of
YOLOv8-Improve with other leading object detection algorithms using a dataset of flexible

Figure 16 Curve of loss functions of YOLOv8n and YOLOv8-Improve. Full-size DOI: 10.7717/peerj-cs.2271/fig-16

Figure 17 Curve of precision and recall of YOLOv8n and YOLOv8-Improve.
Full-size DOI: 10.7717/peerj-cs.2271/fig-17
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marine biological entities. The comparisons, detailed in Table 4, show that YOLOv8n-
Improve offers comparable accuracy to the newly proposed Compared with the newly-
proposed RT-DETR (Lv, Xu & Zhao, 2023) and the target detection algorithm for Marine
environment design in literature (Lei, Tang & Li, 2022), they have similar accuracy, but
YOLOv8-Improve has faster detection speed. Against the two-stage algorithm Faster-
RCNN, YOLOv8n-Improve enhances the mAP50 (%) by 5.4%, with significant reductions
in single-image detection time, Weights (M), and GFLOPs. The SSD algorithm
underperforms on this dataset, achieving the lowest detection accuracy of 71.5% and
subpar results in other metrics. Additionally, YOLOv8n-Improve is benchmarked against

Figure 18 The YOLOv8-Improve algorithm is used to process the contrast graph of the confusion matrix.
Full-size DOI: 10.7717/peerj-cs.2271/fig-18

Table 4 Comparison of different models’ detection results.

Model mAP50 (%) Weights (M) GFLOPs Single image detection time (ms)

SSD 71.5 97.6 273.4 22.1

YOLOv5s 77.5 14.4 16.0 12.1

YOLOv7-tiny 77.1 12.5 13.2 14.8

Faster-RCNN 75.1 109.5 370.2 25.2

YOLOv8n 75.9 6.3 8.2 7.2

RT-DETR 80.3 32.8 110.2 15.8

Literatures (Chen et al., 2023b) 80.2 16.6 20.5 26.8

YOLOv8n-Improve 80.5 7.6 9.1 9.1
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lighter YOLO series networks like YOLOv5n, YOLOv7-tiny, and YOLOv8n. Table 4
reveals that YOLOv8n-Improve’s mAP50 (%) is 80.5%, which is 4.6% higher than the
unenhanced YOLOv8n, with minimal impact on detection speed. The model’s detection
rate of 109.8 fps surpasses the 60 fps threshold, suitable for real-time scene detection. It
shows slight improvements in Weights (M) and GFLOPs over YOLOv7-tiny and
YOLOv5s, with mAP50 (%) gains of 3.4% and 3.0%, respectively. Furthermore, its single-
image detection time of 9.1 ms is more efficient than YOLOv7-tiny’s 14.8 ms and
YOLOv5s’s 12.1 ms. In summary, YOLOv8n-Improve demonstrates commendable
detection performance.

To more vividly illustrate the algorithm’s detection capabilities, this study compares the
detection outcomes of Faster-RCNN, YOLOv8n, and the developed YOLOv8n-Improve
for various marine biological entities. Figure 19, which displays the bounding boxes and
confidence levels for detections of octopus, jellyfish, starfish, and sea cucumber, shows that
YOLOv8n-Improve outperforms the other models in terms of bounding box accuracy and
confidence. Specifically, YOLOv8n occasionally misses smaller objects like starfish and sea
cucumbers. Moreover, in scenes with multiple objects or significant object deformation,
Faster-RCNN and YOLOv8n sometimes produce false detections, evident in the jellyfish
and octopus instances. These observations affirm the superior detection efficacy of
YOLOv8n-Improve on flexible marine organisms.

Figure 19 Visual comparison of different models’ detection results.
Full-size DOI: 10.7717/peerj-cs.2271/fig-19
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CONCLUSIONS
This study addresses the challenge of detecting flexible marine biological objects, which are
characterized by their soft bodies, ease of deformation, large deformation scales, and varied
postures. Initially, a dataset specific to these organisms was created. Subsequently, the
CLAHE underwater image enhancement algorithm was employed, augmented with a
module to enhance foreground and background boundaries for image processing.
Considering the unique traits of these organisms, the YOLOv8 algorithm was selected as
the baseline for object detection experiments, leading to the development of an enhanced
YOLOv8-based detection algorithm. This enhancement includes a deformable
convolution module to improve the feature extraction network’s ability to model the
geometric variations of the organisms. Additionally, the RepBi-PAN network structure
was incorporated to bolster the feature aggregation capability of the algorithm, while the
SimAM attention mechanism was integrated to refine feature processing and reduce
hardware demands. The introduction of the WIoU bounding box loss function aims to
mitigate the effects of poor-quality labels. Although the proposed algorithm exhibits a
slight decrease in detection speed compared to the baseline, it maintains adequate real-
time performance and achieves a 4.6% increase in detection accuracy, demonstrating its
effectiveness for detecting flexible marine biological entities.
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