Skip to main content
. 2024 Aug 12;10:e2052. doi: 10.7717/peerj-cs.2052

Table 3. Comparison of average metrics among various architectures.

The bold represents the two best values of the metrics (highest accuracy, lowest loss) for the evaluated architectures.

CNN model Training Validation Testing
Accuracy(%) Loss (×10−3) Accuracy(%) Loss (×10−3) Accuracy(%) Loss (×10−3)
32 filters. 1 FC 128 neurons 94.26 15.17 90.00 22.88 87.06 53.69
32 filters. 1 FC 64 neurons 94.65 15.87 90.00 33.65 84.71 44.56
32 filters. 2 FC 64 neurons 88.71 26.96 90.00 26.41 80.00 58.95
32 filters. 2 FC 128 neurons 94.26 15.62 94.00 24.72 92.94 26.38
64 filters. 1 FC 64 neurons 61.98 66.47 66.47 66.31 62.35 66.31
64 filters. 1 FC 128 neurons 94.06 15.57 94.00 20.36 90.59 25.86
64 filters. 2 FC 64 neurons 95.45 11.66 90.00 25.11 89.41 52.80
64 filters. 2FC 128 neurons 86.53 33.56 84.00 40.77 76.47 47.99