Table 3. Comparison of average metrics among various architectures.
The bold represents the two best values of the metrics (highest accuracy, lowest loss) for the evaluated architectures.
| CNN model | Training | Validation | Testing | |||
|---|---|---|---|---|---|---|
| Accuracy(%) | Loss (×10−3) | Accuracy(%) | Loss (×10−3) | Accuracy(%) | Loss (×10−3) | |
| 32 filters. 1 FC 128 neurons | 94.26 | 15.17 | 90.00 | 22.88 | 87.06 | 53.69 |
| 32 filters. 1 FC 64 neurons | 94.65 | 15.87 | 90.00 | 33.65 | 84.71 | 44.56 |
| 32 filters. 2 FC 64 neurons | 88.71 | 26.96 | 90.00 | 26.41 | 80.00 | 58.95 |
| 32 filters. 2 FC 128 neurons | 94.26 | 15.62 | 94.00 | 24.72 | 92.94 | 26.38 |
| 64 filters. 1 FC 64 neurons | 61.98 | 66.47 | 66.47 | 66.31 | 62.35 | 66.31 |
| 64 filters. 1 FC 128 neurons | 94.06 | 15.57 | 94.00 | 20.36 | 90.59 | 25.86 |
| 64 filters. 2 FC 64 neurons | 95.45 | 11.66 | 90.00 | 25.11 | 89.41 | 52.80 |
| 64 filters. 2FC 128 neurons | 86.53 | 33.56 | 84.00 | 40.77 | 76.47 | 47.99 |