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Cohort overlap:
This study included patients in the Boston Lung Cancer Cohort (https://www.hsph.harvard.edu/blcs/). Some part of study population 
was used in previous studies, but automatic diagnosis of ILA has not been investigated.
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Background: It is increasingly recognized that interstitial lung abnormalities (ILAs) detected on 

CT have potential clinical implications, but automated identification of ILAs has not yet been fully 

established.

Purpose: To develop and test an automated ILA probability prediction model using machine 

learning techniques on CT images.

Materials and Methods: This secondary analysis of a retrospective study utilizing CT scans 

from patients in the Boston Lung Cancer Study collected between February 2004 and June 2017. 

Visual scoring of ILAs by two radiologists and a pulmonologist served as the ground truth. An 

automated estimation of ILAs was developed using a stepwise approach, involving slice inference 

(SI) and case inference (CI) models. The SI model outputs the ILA probability for each CT slice, 

while the CI model integrates these probabilities to generate the ILA probability for the case. For 

indeterminate slices and cases, both two- and three-label methods were introduced. In the case 

inference model tested three machine learning models (support vector machine [SVM], random 

forest [RF], and convolutional neural network [CNN]). Receiver operating characteristic analysis 

was performed to calculate the AUC.

Results: A total of 1,382 patients (mean age 67 years ± 11 [SD], 623 men) were included. Of 

the 1,382 patients, ILAs were present in 104 (8%), indeterminate in 492 (36%), and absent in 786 

(57%). The cohort was divided into a training set (n=96; ILA, n=48), a validation set (n=24; ILA, 

n=8), and the test set (n=1262; ILA, n=44). Among the models evaluated (two-label/three-label for 

SI models; two-label/three-label and SVM/RF/CNN for case inference models), the model using 

the three-label method in the SI model and the two-label method and RF in the CI model achieved 

the highest AUC of 0.87.

Conclusion: The automatic model demonstrated substantial performance in estimating ILA 

probability, indicating its potential utility in clinical settings.

Summary statement:

The development of automatic interstitial lung abnormality identification utilized a stepwise 

approach, incorporating both a slice inference and a case inference model, resulting in an achieved 

AUC of 0.87

Introduction

Recent work has shown that interstitial lung abnormalities (ILAs) are associated with poor 

clinical outcomes (1,2). Including progressive respiratory symptoms (3), physiologic decline 

(3,4), an increased incidence of lung cancer (5,6), and higher mortality (6,7). ILAs are 

found at a frequency of 7% according to a recent meta-analysis (8). ILAs may be an early 

precursor to pulmonary fibrosis. ILAs have been studied for their epidemiology, genetics 

(3,4,9,10), associated blood biomarkers (11), radiologic findings (12), and histologic 

findings (13). These investigations have shown that ILAs are part of the spectrum associated 

with early pulmonary fibrosis and are very clinically important (14–16). They represent a 

harbinger of what will become of the lung in those areas of involvement.

Visual subjective evaluation of ILAs on chest CT, based on the Fleischner criteria, has 

reproducibility issues (1,2). Recent work studying this issue showed inter-reader kappa 
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values ranging from 0.43–0.82 (6,17,18). Visual assessment of ILAs is time-consuming, thus 

an automated solution is preferable. To address the need for automation, various machine 

learning methods have been developed (19–21). While these automated methods primarily 

used texture and densitometry-based approaches, the potential for using a probability 

prediction approach has not been well established in the literature.

The objective of this study was to develop and test an automated probability prediction 

method, using machine learning techniques on and the Boston Lung Cancer Study chest CT 

exams, for the presence ILAs and then to determine its efficacy compared to human readers 

(current gold standard).

Materials and Methods

This study was a secondary retrospective analysis of the original Boston Lung Cancer 

Study. It was approved by the institutional review board (Mass General Brigham institutional 

review board Protocol No: 1999P004935). All subjects provided written informed consent 

for the original Boston Lung Cancer Study and this secondary analysis.

Study population

The Boston Lung Cancer Study is a cancer epidemiology cohort of over 12,000 lung 

cancer cases in Massachusetts General Hospital. It included detailed patient demographics, 

radiological imaging, pathology, treatments, oncogenic mutation status, bio-samples, and 

survival data (22).

Inclusion criteria were patients diagnosed in the Boston Lung Cancer Study with CT scans 

available at the beginning of this study (July 2021). The method for the construction of the 

imaging cohort was described previously (22). Exclusion criteria for CT scans included: 

slice thickness > 2.5mm, non-uniform slice interval, non-uniform slice thickness, slice 

interval larger than slice thickness, multiple CT volumes in one series, non-axial slices, 

and lung kernel image. Images with a slice thickness greater than 2.5-mm were excluded 

due to the difficultly in assessing ILA findings in detail with thicker slices. Since most 

CTs were reconstructed with the soft tissue kernel, only soft tissue kernel images were 

included, and lung kernel images were excluded. Exams with preprocessing failures, such as 

lung segmentation errors, were also excluded. Patient selection is summarized in Figure 1. 

Demographic characteristics, including age, sex, smoking status (never, former, and current), 

pack-years of cigarette smoking, and cancer stage (American Joint Committee on Cancer 8th 

edition) were collected.

CT Scan and Image Reconstruction

CT scans were performed using standard chest CT protocols with or without administration 

of the intravenous contrast. Of the 1,382 CT scans, 343 (24%) were non-contrast-enhanced 

and 1,039 (75%) were contrast-enhanced. Axial images were reconstructed with a soft tissue 

kernel. The other scan and reconstruction settings were as follows: tube voltage, 80–150 

kvp; matrix size, 512 × 512; reconstruction diameter (field of view), 270–544 mm; pixel 

size, 0.527–1.0625; slice thickness, 0.6–2.5mm.

Hata et al. Page 3

Radiology. Author manuscript; available in PMC 2024 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Visual Scoring of ILAs

Visual CT scoring of ILAs was performed for the research purpose using a sequential 

reading method previously described (supplementary material) (23,24). This visual scoring 

did not refer clinical radiological reports. ILAs were scored by two thoracic radiologist 

(reader#1 T.H. with 9 years of experience and reader#3 H.H. with >20 years of experience) 

and a pulmonologist (reader#2 G.M.H. with >20 years of experience). ILAs were scored 

using an established 3-point scale: score 0, No-ILA; score 1, Indeterminate for ILA; score 2, 

ILA (4,24,25).

To evaluate the intra- and inter-reader agreement, an additional reading session was 

performed by a thoracic radiologist (reader #4: N.W. with 11 years of experience). Reader 

#4 independently interpreted 50 randomly selected patients. After a 2-week interval, reader 

#4 performed a second interpretation session.

Development of Machine Learning Model

Figure 2 shows a schematic diagram of our proprietary automated ILA probability prediction 

via a stepwise approach. This approach comprises two consecutive machine learning 

models: the initial step involves the slice inference model, followed by the case inference 

model. When presented with a stack of chest CT slices forming a chest CT volume, the 

slice inference model produces the ILA probability for each individual slice. Subsequently, 

the array of ILA probabilities is fed into the case inference model to determine the ILA 

probability for the entire case.

Cohort Split—The cohort split is summarized in Figure 1. For the development of models, 

we used the patients with slice thicknesses of 2.0 or 2.5mm, which constituted the majority 

of the cohort and considered standard for routine chest CT examination. Homogeneous 

data (data with the same conditions) are considered more appropriate for model training. 

Among these patients (n=1,099), 79 were diagnosed with ILA based on visual scoring. 

Three-quarters of the patients with ILA (n=60) were randomly divided into the model 

development set and the rest (n=19) into the test set. To prepare negative patients in the 

model development set, 60 patients (indeterminate for ILA, n=20; no-ILA, n=40) were 

randomly selected. The ratio of indeterminate for ILA to no-ILA (1:2) was determined from 

the ratio in the entire cohort. Among the 120 patients in the model development set, 96 and 

24 patients were randomly divided into the training and validation sets, respectively. The 

remaining patients without ILA and indeterminate for ILA in the group with 2.0- or 2.5-mm 

images (n=979) and patients with slice thickness < 2.0 mm (n=283) were used for the test 

set. As a result, the cohort was divided into the training (n=96), validation (n=24), and test 

sets (n=1,262).

Image preprocessing—As preprocessing, lung segmentation based on thresholding was 

performed. Then, a distance map from chest wall was generated using the result of lung 

segmentation. Pixel intensity normalization in the range of [−1050 HU, 150 HU] was 

applied to the original image. The image combined with the distance map was used as input 

to the following slice inference model. Detailed image preprocessing is described in the 

supplementary material.
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Slice inference model—In developing the slice inference model, a thoracic radiologist 

(T.H. with 9 years of experience [reader #1 in the visual scoring for the entire cohort]) 

undertook the review of CT slices and conducted ground truth labeling for each slice. This 

process resulted in the utilization of 2,184 slices with ILA, 463 slices indeterminate for ILA, 

and 3,118 slices without ILA for model development. The lung slices, including those with 

posterior lungs or lung bases, were utilized in the model development.

To develop slice inference model, we used two methods regarding indeterminate slices: 

two-label and three-label method. In both methods, ILA probability was set to 1.0 for ILA 

slices and 0.0 for no-ILA slices. In the two-label method, ILA probability was set to 0.0 

for indeterminate slices, whereas it was set to 0.5 in the three-label method. Detailed model 

development and ground truth labeling for each slice is described in the supplementary 

material.

Case inference model—The case inference model was developed to integrate the 

probability values generated by the slice inference model. Visual classification (No-ILA, 

Indeterminate for ILA, and ILA) served as the ground truth label. By feeding each slice 

individually to the slice inference model, a list of ILA probabilities was obtained. Given 

the varying number of slices among cases, cubic interpolation was applied to achieve a 

predefined uniform dimension.

In constructing the case inference model, three types of machine learning models—support 

vector machine (SVM), random forest (RF), and convolutional neural network (CNN)—

were employed with grid search to optimize hyperparameters. Similar to the slice inference 

model, both two-label and three-label methods were used. In both approaches, ILA 

probability was set to 1.0 for ILA cases and 0.0 for no-ILA cases. For the two-label method, 

ILA probability was set to 0.0 for indeterminate cases, while in the three-label method, it 

was set to 0.5. Detailed model development is described in the supplementary material.

In total, we developed 12 models, encompassing two-label/three-label for slice inference 

models, and two-label/three-label as well as SVM/RF/CNN for case inference models.

Test and Statistical Analysis

Following model development, the models were applied to the test set, and the probability 

value for each case was obtained. To assess the performance, the case-based probability 

values were compared with visual classifications in the test set. Receiver operating 

characteristic (ROC) analysis was conducted, and the area under the ROC curve (AUC) was 

calculated. In the visual assessment, indeterminate cases were considered negative according 

to previous reports (22,26). Sensitivity and specificity were calculated at the threshold of 

0.5 for the probability value. Additionally, another threshold was determined using the 

Youden index, and sensitivity and specificity were calculated accordingly. In cases where 

multiple values were identified as the Youden index, the value with the highest sensitivity 

was selected.

Intra- and inter-reader agreement of ILA scoring was assessed with a weighted kappa 

coefficient (κw), using the following categorization for kappa: poor (0<κw≤0.20), fair 
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(0.20<κw≤0.40), moderate (0.40<κ≤0.60), good (0.60<κw≤0.80), and excellent (0.80<κw 

≤1.00) (27). Intra-reader agreement was calculated using two sessions by reader #4 and 

inter-reader agreement was calculated between the score by reader #4 and the consensus 

score.

The statistical analyses were performed using pROC (1.18.4) library in R version 4.3.1 

software (R Foundation for Statistical Computing, Vienna, Austria).

Results

Demographic characteristics and reader agreement

The original imaging cohort consisted of 1,884 patients. We excluded 329 patients due to 

thick slices, 139 patients due to inappropriate image settings, and 34 patients due to image 

preprocessing failure. Consequently, 1,382 patients were included in this study (Figure 1). 

The included CT scans were acquired between February 2004 and June 2017.

Of the 1,382 patients in the entire cohort (mean age 67 years ± 11 [standard deviation], 623 

men [45%]), ILAs were present in 104 (8%), indeterminate in 492 (36%), and absent in 786 

(57%). The demographic characteristics are summarized in Table 1. 96 patients (mean age 

69 years ± 10 [standard deviation], 48 men [50%]) were used for the training and 1,262 

patients (mean age 67 years ± 11 [standard deviation], 563 men [45%]) for the test.

The intra-reader agreement was good (κw=0.74), while the inter-reader agreement and 

moderate (κw=0.46), respectively.

Model Performance

The performance (AUC, sensitivity, and specificity) of the obtained 12 models is 

summarized in Table 2. Sensitivity and specificity were calculated at two thresholds for the 

probability value (0.5 and the Youden index value). The highest performance with an AUC 

of 0.87 (95% confidence interval: 0.82, 0.93) was achieved using the three-label method in 

the slice inference model and the two-label method with a RF classifier in the case inference 

model. The sensitivity and specificity were 0.61 and 0.90 respectively when applying 0.5 as 

the threshold. When using 0.47 as the threshold, determined by Youden Index, the sensitivity 

and the specificity were 0.64 and 0.89 respectively. The highest sensitivity was observed 

in the model using the two-label method in both the slice inference model and the case 

inference model (sensitivity, 0.86; specificity, 0.68; threshold, 0.28 [Youden index]). The 

AUCs of the models using CNN were not superior to those using SVM and RF.

The ILA probability distribution of the best-performing AUC model (three-label method 

in slice inference model; two-label method and RF in case inference model) in the test 

set is shown in Figure 3. The distributions were shown separately for ILA, indeterminate 

and no ILA patients. Most ILA cases presented a probability of 1.0 (the rightmost bar), 

whereas indeterminate and no-ILA cases mostly presented a probability of less than 0.5, 

with many presenting 0.0 (the leftmost bar). The ROC curve of the best-performing AUC 

model is shown in Figure 4. The ILA probability distribution and ROC curves for the 

other 11 models are shown in the supplementary figures (The ILA probability distribution, 
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Supplementary Figures S2-S12; ROC curves, Supplementary Figure S13). Representative 

cases with probability values of slice and case inference models are shown in Figure 5.

Discussion

In this study, we developed ILA probability prediction models using a stepwise machine 

learning approach in a lung cancer patient cohort. We tested two-/three-label methods for 

indeterminate slices or cases and tested SVM, RF, and CNN for the case inference model. 

Among the 12 models obtained, the integration of the three-label method within the slice 

inference model, coupled with a two-label approach and RF within the case inference model, 

achieved the highest AUC of 0.87.

Several studies have introduced machine learning into ILA identification, which segments 

interstitial findings (19–21). Chae et al. reported deep learning-based texture analysis for 

ILA identification showed an AUC of 0.99 using visual scoring for ground truth with a cut-

off value of 1.8% of lung area (28). The advantages of texture analysis include quantifiable 

results and the criteria are clear. However, this method often loses location information, such 

as subpleural distribution, which requires further operations beyond simple thresholding. 

This study adopted a probability prediction model, which is a different approach from the 

texture analysis. In this approach, the axial location was taken into account to produce 

probabilities in the slice inference model. In addition, the annotation cost for training in 

texture analysis is high, whereas this approach is cost-effective since the images were simply 

labeled as present or absent.

When using the current algorithm in a screening setting, sensitivity is most important. The 

sensitivity at the threshold of the Youden index in the model with the best AUC was 0.64, 

which may not be sufficiently high for screening. Appropriate threshold settings need to be 

identified for clinical application. It is important to note that this result was based on visual 

scoring, a common, but imperfect method for ILA evaluation. The intra- and inter-reader 

agreement was not perfect (κw=0.74 and 0.46, respectively). Doyle et al. also reported that 

the interrater agreement was modest (kappa=0.43) (17). Determination of the best model or 

threshold should be based on more reliable clinical outcomes, such as survival.

In this study, the CNN-based models did not outperform RF- or SVM-based models. While 

RF and SVM use the probability of each slice directly as a feature, CNN generates new 

features through convolution and other operations. This process requires a large number of 

cases to generate effective features, which is limited in this study, possibly resulting in the 

lower performance of CNN models compared to RF and SVM models.

The model using the three-label method in the slice inference model and the two-label 

method in the case inference model showed the best AUC. This can be explained as follows: 

visually judging ILAs is usually done on a case-by-case basis, and the concept of ILA/

indeterminate/no-ILA on an image-by-image basis is uncommon. Some cases of ILAs may 

have extensive findings in a few slices, while others may have minor findings in many 

slices. Given the gradations in the degree of findings, three labels may be appropriate for 

the slice inference model. As for the cases, some previous studies excluded indeterminate 
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cases from the analysis or analyzed them together with no-ILA (7,22). In the test section of 

this study, indeterminate cases were regarded as just negative. Therefore, a two-label method 

may be appropriate for the case inference model. However, the differences in AUC among 

the models are small. As mentioned, the best method should be determined through analysis 

that includes external validation cohort and clinical outcomes.

This study presents several limitations. First, it relied on a single cohort without external 

validation, although internal validation was performed through a cohort split. Second, 

visual scoring was employed as the reference standard, and the study did not evaluate 

clinical outcomes. Third, we used thicker slice images (≥2mm) and three-quarters of the 

cases were contrast-enhanced CT, which might influence the ILA detection. We chose 

a cut-off of 2.5 mm because we could not include enough CT images with the cut-off 

of 1.5 mm. The contrast enhancement protocol was not unified in our cohort, which 

might affect the visual scoring. The images in our cohort were obtained from real clinical 

practice, leading to this limitation. Fourth, patients with preexisting ILD or at high risk 

of ILD were not excluded. According to the definition of ILAs by the Fleischner Society, 

abnormalities in patients with preexisting ILD or high risk of ILD are not considered ILAs. 

These patients should be excluded in the analysis of clinical outcomes, but our aim was 

to develop an automatic model for ILA identification. Lastly, the Boston Lung Cancer 

Study primarily consists of a lung cancer cohort, potentially impacting the accuracy of ILA 

identification due to the inclusion of lung nodules or masses in the CT scans. Our cancer 

cohort might include lymphangitis carcinomatosa or obstructive pneumonia due to cancer, 

which might affect visual scoring. Future research initiatives are planned to address these 

limitations by incorporating diverse cohorts and evaluating clinical outcomes to enhance the 

generalizability and robustness of the findings.

In summary, we successfully developed ILA probability prediction models, with some 

demonstrating high AUCs of up to 0.87. This automated approach to ILA evaluation holds 

promise for enhancing both clinical practice and research efforts. External validation and 

analysis of clinical outcomes are required in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CNN Convolution Neural Network

ILAs Interstitial Lung Abnormalities
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SVM Support Vector Machine
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Key Results

• In this retrospective study of 1,382 lung cancer patients, automatic interstitial 

lung abnormality identification was developed through a sequential process 

involving slice inference and case inference models.

• To address indeterminate slices and cases, two- and three-label methods were 

introduced. The case inference model incorporated three machine learning 

models: support vector machine, random forest, and convolutional neural 

network.

• AI models showed AUCs ranging from 0.77 to 0.87 and the top-performing 

model showed the sensitivity of 0.64 and the specificity of 0.89.
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Figure 1. 
Flow chart of patient selection and cohort split. In the cohort split, among the ILA patients 

with 2.0- or 2.5-mm slice thickness images (n=79), three-quarters of the patients of ILAs 

(n=60) were randomly divided into the model development set. To prepare negative patients 

in the model validation development set, 60 patients with 2.0- or 2.5-mm slice thickness 

images (indeterminate for ILA, n=20; no-ILA, n=40) were randomly divided into the model 

development set. The other 979 patients with 2.0- or 2.5-mm slice thickness images were 

included in the test set.

*Inappropriate image settings were the CTs only with following setting images: non-

uniform slice interval, non-uniform slice thickness, slice interval larger than slice thickness, 

multiple CT volumes in one series, non-axial slices, and lung kernel image.

ILAs, interstitial lung abnormalities
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Figure 2. 
A schematic diagram of the automated ILA identification model

ILA, interstitial lung abnormality
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Figure 3. 
ILA probability distribution of case inference model using three-label method for slice 

inference model and two-label method and random forest for case inference model. The 

vertical axis is the relative frequency, which is the ratio of the number of cases presenting 

with the probability to the number of each group (ILA, n=44; indeterminate, n=472; no-ILA, 

n=746). The red and green lines represent the thresholds of 0.5 and the Youden index 

(0.47), respectively. The majority of ILA cases presented a probability of 1.0, whereas 

indeterminate and no-ILA cases mostly presented a probability of less than 0.5, with many 

presenting 0.0.

ILA, interstitial lung abnormality
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Figure 4. 
ROC curve for the three-label method for the slice inference model and the two-label 

method and random forest for the case inference model. This model achieved the AUC of 

0.87. The red point represents the threshold of 0.5 with sensitivity and specificity of 0.61 

and 0.90, respectively. The green point represents the threshold of the Youden index with 

sensitivity and specificity of 0.64 and 0.89, respectively.

ROC, receiver operating characteristic; AUC, area under the ROC curve.
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Figure 5. 
Representative ILA cases in the test set. (A, B) A patient with case inference model 

probability of 1.00. The slices showed ground-glass abnormality in the subpleural area 

of the bilateral lungs (arrows) and traction bronchiectasis in the lingula of the left lung 

(A, arrowhead). (C, D) A patient with case inference model probability of 0.53. Slight 

ground-glass abnormality was seen in the subpleural area of the bilateral lungs (C, arrows) 

and the slice inference model probability was moderate (0.49). At the lower slice level 

(D), ground-glass abnormality was more widespread (arrows) and the slice inference model 

probability (0.83) was higher than the slice in C. The probability was calculated with the 

model using the three-label method in the slice inference model and the two-label method 

and random forest in the case inference model.
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ILA, interstitial lung abnormality
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Figure 6. 
Representative cases indeterminate for ILA and without ILA in the test set. (A,B) A patient 

indeterminate for ILA and case inference model probability of 0.49. The slice in E showed 

only emphysema (non-ILA finding; triangle) and the slice inference model probability was 

low (0.22). The slice in F showed ground-glass abnormality (arrows), but the finding was 

considered as a dependent abnormality in the visual assessment. The slice inference model 

probability was moderate (0.49). (C,D) A patient without ILA and with case inference 

model probability of 0.02. There was no abnormality in the lung and the slice inference 

model probabilities were low (<0.01). The probabilities were calculated using the same 

model with Figure 5.
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ILA, interstitial lung abnormality
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Table 1

Patient demographics

Total Training Validation Test

Characteristic N = 1,382 N = 96 N = 24 N = 1,262

Age, Mean (SD) 67 (11) 69 (10) 68 (12) 67 (11)

Sex, n (%)

 Female 759 (55%) 48 (50%) 12 (50%) 699 (55%)

 Male 623 (45%) 48 (50%) 12 (50%) 563 (45%)

Smoking Status, n (%)

 Former Smoker 784 (59%) 47 (51%) 13 (54%) 724 (59%)

 Current Smoker 373 (28%) 35 (38%) 10 (42%) 328 (27%)

 Never Smoker 179 (13%) 11 (12%) 1 (4.2%) 167 (14%)

 Unknown 46 3 43

Smoking Pack Years, Mean (SD) 36 (29) 41 (30) 43 (36) 36 (29)

 Unknown 108 7 101

Stage, n (%)

 Stage 0 1 (<0.1%) 0 (0%) 0 (0%) 1 (<0.1%)

 Stage 1 512 (40%) 30 (37%) 10 (43%) 472 (40%)

 Stage 2 122 (9.5%) 9 (11%) 2 (8.7%) 111 (9.4%)

 Stage 3 218 (17%) 17 (21%) 5 (22%) 196 (17%)

 Stage 4 361 (28%) 21 (26%) 5 (22%) 335 (28%)

 SCLC-ES 35 (2.7%) 3 (3.7%) 1 (4.3%) 31 (2.6%)

 SCLC-LS 38 (3.0%) 2 (2.4%) 0 (0%) 36 (3.0%)

 Unknown 95 14 1 80

SCLC-ES, small-cell lung cancer – extensive stage; SCLC-LS, small cell lung cancer – limited stage
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