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Abstract
Motivation: Neoantigens, derived from somatic mutations in cancer cells, can elicit anti-tumor immune responses when presented to autologous 
T cells by human leukocyte antigen. Identifying immunogenic neoantigens is crucial for cancer immunotherapy development. However, the accuracy 
of current bioinformatic methods remains unsatisfactory. Surface and structural features of peptide–HLA class I (pHLA-I) complexes offer valuable 
insight into the immunogenicity of neoantigens.
Results: We present NeoaPred, a deep-learning framework for neoantigen prediction. NeoaPred accurately constructs pHLA-I complex structures, 
with 82.37% of the predicted structures showing an RMSD of < 1 Å. Using these structures, NeoaPred integrates differences in surface, structural, 
and atom group features between the mutant peptide and its wild-type counterpart to predict a foreignness score. This foreignness score is an 
effective factor for neoantigen prediction, achieving an AUROC (Area Under the Receiver Operating Characteristic Curve) of 0.81 and an AUPRC 
(Area Under the Precision-Recall Curve) of 0.54 in the test set, outperforming existing methods.
Availability and implementation: The source code is released under an Apache v2.0 license and is available at the GitHub repository (https:// 
github.com/Dulab2020/NeoaPred).

1 Introduction
Somatic mutations in cancer can give rise to neoantigens that 
trigger an anti-tumor immune response when presented by 
HLA and recognized by autologous T cells. Due to their 
advantages of tumor specificity and immunogenicity, neoan-
tigens are considered promising targets for immunotherapy 
(Wells et al. 2020, Xie et al. 2023). Currently, many 
neoantigen-based immunotherapeutic strategies have been 
developed. Neoantigen vaccines, including long-peptide vac-
cines, RNA vaccines, and dendritic cell vaccines, as well as 
adoptive cell therapy with neoantigen-reactive T cells, have 
shown efficacy in inducing tumor rejection (Gubin et al. 
2014, Carreno et al. 2015, Sahin et al. 2017, Keskin et al. 
2019, Kristensen et al. 2022).

The effective identification of neoantigens generally relies 
on two key factors: the binding affinity of peptides to HLA 
molecules, and the foreignness of the mutant peptides. The 
complex formed by the binding of peptides to HLA molecules 
is the target of T-cell receptors, making their binding strength 
crucial for neoantigen recognition by T cells. Foreignness, 
on the other hand, refers to the “non-self” characteristic of 

an antigen as recognized by the host immune system. 
Neoantigens with a high degree of foreignness are more likely 
to be recognized as threats and consequently stimulate an im-
mune response (Lang et al. 2022). Typically, foreignness is 
measured by comparing the sequence dissimilarity between 
the mutant peptide and the self-proteome (Richman et al. 
2019) or by evaluating the sequence similarity between the 
mutant peptide and a homologous pathogenic peptide 
(Łuksza et al. 2017). Both methods focus on the sequence 
characteristics of peptides. However, the three-dimensional 
structure and physicochemical properties of molecular surfa-
ces are also important features of peptides that should not be 
overlooked when calculating foreignness. In light of this, we 
present NeoaPred (neoantigen prediction) (Fig. 1A), a deep- 
learning framework designed to calculate foreignness with 
explicit consideration of the surface and structural features of 
the pHLA complex.

The molecular surface features, including geometric fea-
tures and chemical features, have been successfully applied to 
analyze protein interactions with other biomolecules 
(Shulman-Peleg et al. 2004, Gainza et al. 2020, 2023). In the 
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field of neoantigen prediction, the surface and structural fea-
tures of pHLA complexes also exhibit encouraging potential 
(Riley et al. 2019, Custodio et al. 2023). The calculation of 
these features is based on the spatial structure of molecules. 
Nevertheless, the 3D structure of pHLA complexes is 

primarily solved by X-ray crystallography, nuclear magnetic 
resonance, or electron microscopy, which are not feasible for 
high-throughput analysis. Additionally, existing protein 
structure prediction frameworks, such as AlphaFold2, 
OpenFold, and RoseTAAFold (Baek et al. 2021, Jumper 

Figure 1. Architecture of NeoaPred. The rectangles represent different components. The arrows indicate the information flow among the components. 
(A) Overview of the NeoaPred workflow. PepConf: peptide conformation prediction model; PepFore: peptide foreignness score prediction model. (B) 
Model architecture of PepConf. h is the length of HLA-I sequence; p is the length of peptide sequence; d is the number of channels; dashed arrows are 
the algorithm workflow of LpHLA and Lpep. (C) Model architecture of PepFore. CNN, convolutional neural network; FCNN, fully connected neural network.
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et al. 2021, Ahdritz et al. 2024), are primarily designed for 
single-chain proteins and struggle to predict the structures of 
pHLA complexes (Marzella et al. 2022). Recently, 
AlphaFold2 has been optimized and upgraded to AlphaFold3 
(Abramson et al. 2024), introducing a diffusion-based archi-
tecture that can directly predict the structure of protein com-
plexes with high precision. Due to the extensive use of pHLA 
complexes during training, AlphaFold3 has the potential to 
accurately predict the structures of these complexes. 
However, its closed-source nature and limited task quotas 
pose challenges for use. In this study, our framework 
NeoaPred incorporates a deep-learning model, PepConf 
(Peptide Conformation), to construct the structure of pHLA-I 
complexes (Fig. 1B). Based on the predicted structure, 
NeoaPred can generate multi-dimensional molecular features 
and feed them into another deep-learning model, PepFore 
(Peptide Foreignness) (Fig. 1C). PepFore integrates the differ-
ences in surface features, spatial structure features, and atom 
group features between mutant (Mut) and wild-type (WT) 
peptides to predict a foreignness score. This foreignness score 
has proved to be a highly effective factor for neoanti-
gen prediction.

Overall, we present NeoaPred, a deep-learning framework 
for predicting immunogenic neoantigens. NeoaPred com-
prises two proof-of-concept applications: (1) PepConf for 
predicting the conformation of peptide binding to HLA-I and 
(2) PepFore for predicting the foreignness score of peptide. 
Our results demonstrate that NeoaPred significantly 
improves the accuracy of neoantigen prediction.

2 Materials and methods
2.1 Collection of data for PepConf
A total of 1018 experimental structures of MHC-I complexes 
were collected from the Protein Data Bank (PDB) (Berman 
et al. 2000) (Supplementary Table S1A and B). The structures 
were parsed using the ‘PDB’ function from the Biopython 
package (Cock et al. 2009) to extract the peptide and MHC 
chains. Ninety percent of the PDB data were used for training 
and validation to develop an initial model (Supplementary 
Fig. S1A), while the remaining 10% were reserved as the in-
dependent test set (Supplementary Fig. S1B). The peptide 
lengths of PDB data range from 7 to 14, with the majority of 
them being 8, 9, or 10 (Supplementary Fig. S2A). 
Additionally, we also collected 3000 pHLA-I ligand elution 
data from the Immune Epitope Database (IEDB) (Vita et al. 
2019) (Supplementary Fig. S1B, Table S1C) to evaluate 
model performance. These peptides have been confirmed to 
bind to HLA-I by specific antibody elution assay.

Due to the requirement of HLA-I structure as input for 
the model, we collected 200 HLA-I allele templates from 
PDB and AlphafoldDB (Varadi et al. 2022), or obtained 
them through homology modeling using SWISS-MODEL 
(Waterhouse et al. 2018) (Supplementary Fig. S2B, Table 
S2). The cumulative frequency of these alleles exceeds 0.94, 
ensuring the coverage of high-frequency alleles across most 
populations (Supplementary Fig. S2C). To simplify the 
model and focus on the HLA-I binding groove domain, we 
only retained residues 1–180 of the HLA-I molecules. The 
peptide sequence was padded to a maximum length of 
16 residues.

2.2 Self-distillation data for PepConf
Self-distillation with unlabeled data has been proven to im-
prove the accuracy of the protein structure prediction model 
(Xie et al. 2020, Jumper et al. 2021). We applied a similar ap-
proach in training PepConf, following these steps: (1) initial 
model training. We used PDB data for training and validation 
to develop an initial model. (2) Unlabeled data prediction. 
Using the initial model, we predicted structures for 48 930 
unlabeled pHLA-I complexes with high binding affinity 
(IC50<300 nM) from the IEDB. (3) Defining filter criteria 
and filtering data. We introduced the predicted local-distance 
difference test (pLDDT) score (Jumper et al. 2021) to filter 
the unlabeled data. As a self-estimated accuracy parameter, 
pLDDT shows a strong correlation with LDDT-Cα (Mariani 
et al. 2013), TM-score (Zhang and Skolnick 2004), and 
RMSD, with Pearson’s r of 0.72, 0.64, and 0.66, respectively 
(Supplementary Fig. S3). We removed samples with pLDDT 
scores <92, corresponding to LDDT-Cα<96.35, TM-score 
< 0.84, and RMSD > 0.32 Å (Supplementary Fig. S3). This 
criterion ensured that retained samples’ predicted structures 
closely matched true structures. (4) Final self-distillation 
data. After filtering, 7860 IEDB data points were retained as 
the self-distillation dataset (Supplementary Table S1D). The 
distribution of their binding affinities and pLDDT scores is 
shown in Supplementary Fig. S2D and E. (5) Final model 
training. We trained the final model using a mixture of this 
self-distillation data and the PDB data.

2.3 Architecture of PepConf
The architecture for PepConf is illustrated in Fig. 1B. 
PepConf is an AlphaFold2-like framework that introduces 
the self-attention mechanism (Vaswani et al. 2017). 
Compared to AlphaFold2, PepConf has two unique aspects. 
(1) pHLA spatial distance matrix. After the embedding block, 
PepConf computes a two-dimensional matrix to describe the 
interaction between the peptide and the HLA-I molecule. 
This matrix is further used in encoder and decoder blocks for 
peptide conformation construction. (2) Loss function. We ex-
ploit intermolecular loss to enforce constraints on the spatial 
distance between the peptide and the HLA-I molecule. The 
loss function is defined in Equations (1–3): 

L ¼ LpepþLHLA; (1) 
Lpep ¼ LFAPEþ0:3LdistþLangleþLviol; (2) 
LpHLA ¼ 9:5LpHLA-FAPEþ0:5LpHLA-dist; (3) 

where L represents the total per-example loss, Lpep denotes 
the loss of the peptide itself, and LpHLA represents the loss be-
tween the peptide and HLA-I molecule. Lpep is composed of 
four auxiliary losses, as shown in Equation (2): LFAPE is the 
frame aligned point error (FAPE) loss that assesses peptide 
atom coordinates relative to peptide rigid groups; Ldist is the 
cross-entropy loss for the distribution over inter-residue dis-
tances within peptide; Langle represents the side chain and 
backbone torsion angle loss; and Lviol is the structural viola-
tion loss. These auxiliary losses were previously defined in 
AlphaFold2 and OpenFold. LpHLA is composed of two auxil-
iary losses, as shown in Equation (3): LpHLA-FAPE is the FAPE 
loss that assesses peptide atom coordinates relative to HLA 
rigid groups; and LpHLA-dist is the cross-entropy loss for the 
distribution over inter-residue distances between peptide and 
HLA. The purpose of the LpHLA is to attach an individual 
loss to the subcomponent of the model, thereby guiding the 
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model to accurately constrain the spatial distance between 
the peptide and HLA-I molecule.

2.4 Collection of immunogenic and non- 
immunogenic data for PepFore
We hypothesized that peptides with a high foreignness score, 
compared to their WT counterparts, would be less subject to 
self-tolerance and therefore more immunogenic. To evaluate 
the foreignness score, we gathered functional data that mea-
sured interferon-γ (IFN-γ) secretion upon T-cell activation by 
given pHLA complexes or pathogen peptide epitopes. In to-
tal, 5986 immunogenic and 26,976 non-immunogenic 
pHLA-I complexes data were collected from recent studies, 
IEDB, and IMMA2 (Tung et al. 2011) (Supplementary 
Tables S3 and S4). These peptides encompassed both cancer 
epitopes and pathogen epitopes, and only peptides with 
reported HLA-I restriction were considered. Each data point 
also includes a WT counterpart peptide, which was obtained 
by aligning the mutant or pathogenic peptide with the human 

genome or proteome using BLAST (Altschul et al. 1990). 
Both the blastp program (protein vs. protein) and the tblastn 
program (protein vs. nucleotide) were used to find the opti-
mal match. Of the collected data points, 90% (29 665) were 
used for cross-validation and ablation experiments, while 
10% (3297) were used as the test set (Fig. 2A, Supplementary 
Fig. S1C and D).

2.5 Precomputation of peptide surface features
The processing methods for protein surfaces have been de-
scribed in references (Gainza et al. 2020, Gainza et al. 2023). 
In this study, we used the same methods to analyze the pep-
tide. The peptide surfaces were initially processed into trian-
gle meshes using the MSMS program (Sanner et al. 1996). 
Subsequently, the meshes were regularized to a resolution of 
1.0 Å using pymesh (Zhou 2019). The regularized meshes 
were then decomposed into overlapping radial patches (Yin 
et al. 2009, Gainza et al. 2020). Each patch had a radius of 
6.0 Å, covering a region around a central point on the peptide 

Figure 2. Description of the dataset for PepFore and the process of peptide surface. (A) PepFore is evaluated using standard 10-fold cross-validation with 
90% of the data points (29 665). The validation set 1 is a precise data set in which WT/Mut pairs only contain one mismatch. The validation set 2 is a 
rough data set in which WT/Mut pairs contain one or two mismatches. Ten percent of the data points (3297) were used as the test set. (B) Schematic 
representation of TCR docking on pHLA-I (PDB: 1bd2). The TCR α chain and TCR β chain sit on top of the pHLA-I complex. (C) A virtual plane is 
determined by the three Cα atom coordinates of HLA-I (Gln72, Thr143, and Tyr159). The peptide-HLA distance is measured from the mesh on the 
peptide surface to the plane of the HLA-I. (D) Six outer surface features were selected as the input for the PepFore model.
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surface. For each patch, several different surface features 
were computed. (1) Shape-Index. The Shape Index describes 
the local curvature around each vertices of the meshes. It is 
defined as 2=π tan−1((κ1þ κ2)=(κ1 − κ2))), where κ1 and κ2 

represent the principal curvatures (Gainza et al. 2020). (2) 
Distance-dependent curvature. This feature describes the 
relationship between any vertex vj in the patch and the center 
vertex vi. It is calculated as θ(jrj þ nj − ri − nij − dij)jnj − 
nij=dij, where θ is a step function; dij ¼ j rj − ri j is the distance 
between vi and vj; and ni, nj, ri, and rj are the normals and 
coordinates of vi and vj, respectively (Yin et al. 2009, Gainza 
et al. 2020). (3) Chemical features. Three chemical features 
were considered, including hydropathy, electrostatics, and 
hydrogen bond. These features were computed using the 
scripts from MaSIF (Gainza et al. 2020, Gainza et al. 2023). 
(4) Peptide–HLA distance. Numerous solved TCR–pHLA-I 
complexes have shown that αβ TCRs commonly contact the 
peptide–HLA-I complex in an ‘on-the-top’ binding mode 
(Szeto et al. 2020) (Fig. 2B). This conserved localization 
ensures that the outer surface of peptides is exposed to TCR 
for recognition. To quantify this exposure, we define the pep-
tide–HLA distance as the spatial separation between the pep-
tide’s surface and the plane of the HLA groove. This distance 
was computed using the method illustrated in Fig. 2C and D. 
Empirically, we determined that patches with a peptide–HLA 
distance > 4.0 Å were likely exposed to TCR. Consequently, 
these patches were selected to represent the outer surface of 
the peptide in our analysis.

2.6 Immunogenic peptides for feature analysis
We investigated the molecular features of six immunogenic 
peptides, as shown in Table 1. KDM5C E656K and TENM3 
A2490V are associated with ovarian cancer (Bobisse et al. 
2018, Tanyi et al. 2018), HERC1 P3278S and OXSM 
K109T with lung non-small cell carcinoma (Rizvi et al. 2015, 
Bulik-Sullivan et al. 2019), and SNX24 P132L and PGM5 
H469Y with melanoma (Stronen et al. 2016). We predicted 
the conformation of these peptides using PepConf and com-
puted their surface and structural features for comparison 
with their WT counterparts.

2.7 Architecture of PepFore
The architecture for PepFore is illustrated in Fig. 1C. The 
WT/Mut difference information is modeled through three 
feature processing blocks. (1) Outer surface feature compari-
son block. We introduce the geometric deep-learning (Yin 
et al. 2009, Gainza et al. 2020) method to compute angular 
and radial coordinates that enable the block to map peptide 
surface features in a 2D Euclidean tensor. Once the mapping 
is performed, a convolutional neural network (CNN) is used 

to generate a numerical vector descriptor. Then, we use a 
qualinear difference function to compute the difference of 
descriptors between Mut and WT. The qualinear difference 
function is defined as 

QuaLinearDifference ¼ wðx; y; ðx� yÞ− 1
; jx − yjÞÞ; (4) 

where x and y are tensor objects for comparison, w is a train-
able weight matrix, and � represents element-wise multipli-
cation. Lastly, we use a fully connected neural network 
(FCNN) to extract the surface feature difference. (2) Spatial 
structure comparison block. We compute a spatial distance 
matrix between the 3D structure of WT and Mut. This ma-
trix enables the comparison of the spatial arrangements of 
the atom groups, facilitating the understanding of the effects 
of mutations on the peptide's conformation. After that, we 
use CNN and FCNN to extract structural features from the 
matrix. (3) Atom group comparison block. We use a charac-
ter embedding block to create a unique embedding for WT 
and Mut atom groups. Then, the embedding results (ew, em) 
are modeled by an atom comparison block to capture the 
atomic difference. The block computes a broadcast matrix 
as follows: 

Matrix ¼ Concat ðBðew � emÞ; jBðew − emÞjÞ; (5) 

where � represents element-wise multiplication, and B repre-
sents NumPy’s broadcasting operation. Subsequently, the 
matrix is fed to CNN and FCNN to extract the atom group 
difference. At the end of the PepFore model, we apply a pro-
jection block to combine the outputs from different blocks 
and return a predicted foreignness score, from which we cal-
culate the L2 loss and optimize the gradient.

2.8 Comparison to existing tools
Current neoantigen prediction tools can be categorized into four 
main approaches: (1) Affinity-based prediction. The capability of 
a mutant peptide to bind to MHC molecule is a fundamental re-
quirement for T-cell recognition. We used four predictors of 
MHC molecule binding for comparison: MixMHCpred 
(Bassani-Sternberg et al. 2017), NetMHCpanEL, NetMH 
CpanBA (Reynisson et al. 2020), and MHCflurry (O’Donnell 
et al. 2020). These tools are machine-learning-based model or 
motif-based neural networks trained on pMHC data from affin-
ity measurement experiments. The logarithm of percentile rank 
values (−log10%rank) is used for their results. (2) Differential 
Agretopicity Index (DAI)-based prediction, which compares the 
binding affinities between mutant and WT peptides (Ghorani 
et al. 2018). A mutant peptide with higher affinity than its WT 

Table 1. Characteristics of neoepitopes and their WT counterparts.

Mutant peptide HLA-I Sequencea Affinity (nM) 
(WT/Mut)b

RMSD (Å)c TM-scorec

KDM5C E656K A0211 KMAACP[E!K]KL 40.09/251.67 0.13 0.94
HERC1 P3278S A1101 ASNA[P!S]SAAK 21.93/21.11 0.70 0.43
SNX24 P132L A0201 KLSHQ[P!L]VLL 85.09/25.78 0.18 0.91
PGM5 H469Y A0201 AVGS[H!Y]VYSV 91.49/29.29 0.15 0.93
OXSM K109T C0304 FVS[K!T]SDIKSM 929.87/565.01 0.52 0.67
TENM3 A2490V A0211 GAQSWLWF[A!V] 109.77/5.66 1.23 0.41

a Peptide sequence, with the mutation in the neoepitope in brackets.
b Predicted affinity in nanomolar for peptide binding via Netmhcpan-4.1.
c Measured RMSD and TM-score between the neoepitope and WT counterpart when all common atoms of the peptides are superimposed.
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counterpart is more likely to be an effective neoantigen (Wells 
et al. 2020). We calculated the affinity ratio based on 
NetMHCpanBA (NetMHCpanBA_AR) and MHCflurry 
(MHCflurry_AR) for comparison. (3) Immunogenic epitope pre-
diction model. We used two predictors of immunogenic epitopes 
for comparison: PRIME (Schmidt et al. 2021) and BigMHC 
(Albert et al. 2023). PRIME uses a logistic regression model to 
predict the immunogenicity of epitopes. The model incorporates 
two key factors: The predicted HLA binding affinity and the fre-
quency of each amino acid at positions with minimal impact on 
HLA binding (MIA positions). BigMHC predicts immunogenic 
neoepitopes using a deep neural network model that is initially 
trained on pMHC eluted ligand data and further fine-tuned 
through transfer learning on immunogenicity data. (4) 
Foreignness-based prediction. Two sequence-based predictors of 
foreignness were used for comparison: SimToIEDB (Similarity- 
to-IEDB) (Łuksza et al. 2017) and DisToSelf (Dissimilarity-to- 
Self-Proteome) (Richman et al. 2019), both available at https:// 
github.com/immune-health/antigen.garnish. SimToIEDB evalu-
ates the sequence similarity between neoantigen epitopes and 
pathogen-associated epitopes in IEDB. Higher similarity indicates 
an increased likelihood of cross-reactivity with preexisting T cells 
directed against common pathogens (Lang et al. 2022). 
DisToSelf calculates the sequence dissimilarity between neoanti-
gen epitopes and the self-proteome. Higher dissimilarity may sug-
gest a reduced likelihood of immune tolerance.

3 Results
3.1 Peptide conformation prediction using PepConf
To validate the accuracy of PepConf, we first generated con-
formations for 104 test samples collected from PDB. In this 
test set, 82.37% of peptides had an RMSD value of <1 Å and 
78.85% had a TM-score of >0.5 (Fig. 3A and B), indicating 
that PepConf can produce highly accurate peptide conforma-
tions. Next, we generated conformations for 3000 unlabeled 
samples screened from IEDB. We evaluated the accuracy of 
their conformations using pLDDT, which has a strong corre-
lation with LDDT-Cα, TM-score, and RMSD, with Pearson's 
correlation coefficients (r) of 0.72, 0.64, and 0.66, respec-
tively (Supplementary Fig. S3). In the IEDB test set, 81.40% 
of peptides had a pLDDT > 92 (Fig. 3C), confirming the reli-
ability of the prediction results.

The performance of PepConf on different lengths of pepti-
des was also evaluated. PepConf exhibits the best perfor-
mance on 8-mer and 9-mer peptides, achieving median 
RMSDs of 0.32 and 0.34 Å, along with median TM-scores of 
0.76 and 0.73, respectively. This performance is slightly bet-
ter than that for 10-mer peptides, which have a median 
RMSD of 0.52 Å and a median TM-score of 0.61 
(Supplementary Fig. S4A). Additionally, we evaluated the 
predictive performance of PepConf for the HLA-A, HLA-B, 
and HLA-C alleles. Despite the relative scarcity of training 
data for HLA-C compared to HLA-A and HLA-B 
(Supplementary Fig. S1A), no significant differences were ob-
served among them (Supplementary Fig. S4B). However, the 
absence of alleles does affect the predictive performance of 
PepConf. When we removed some alleles from the training 
set, we observed a slight decrease in the prediction accuracy 
for these missing alleles (Supplementary Fig. S4C). The im-
pact of HLA-I template sources on prediction accuracy was 
also evaluated using 3000 IEDB ligand elution data. For 
HLA-I alleles sourced from AlphaFold DB, PDB, and SWISS- 

MODEL, there were no significant differences in predictive 
accuracy among them (Supplementary Fig. S4D).

Furthermore, we assessed the importance of some compo-
nents designed in PepConf. The ablation study shows that the 
spatial distance matrix and intermolecular loss between the 
peptide and HLA-I molecule were crucial to enhancing 
PepConf's performance (Fig. 3D and E). Conversely, the im-
pact of self-distillation data was relatively small. Adding self- 
distillation data to the training set did not lead to a significant 
decrease in evaluation loss (Supplementary Fig. S5).

Overall, NeoaPred-PepConf is able to generate highly ac-
curate peptide conformations for subsequent analysis.

3.2 Performance comparison between PepConf 
and PANDORA
We also compared PepConf to PANDORA, a homology model-
ling framework for pHLA complexes, using the PDB test set. 
The RMSD and TM-score of peptides obtained by the two 
methods are shown in Fig. 4A and B. PepConf demonstrated su-
perior performance with a mean RMSD of 0.53 Å, significantly 
lower than PANDORA’s 1.01 Å. Moreover, PepConf achieves 
a mean TM-score of 0.67, outperforming PANDORA’s 0.52. 
For a more detailed comparison, we illustrated the modeling 
structure in Fig. 4C–E. For the peptide ASLNLPAVSW bound 
to HLA-B�57:03 (PDB: 6v2p), the PepConf model exhibited ex-
cellent agreement with true structure, achieving an RMSD of 
0.20 Å. In contrast, PANDORA performed less favorably, mis- 
modeling the torsion angles of the side chain at positions 4–6. 
For the peptide GTSGSPIINR bound to HLA-A�11:01 (PDB: 
5wkh), PepConf slightly misplaced the isoleucine residues at 
positions 7 and 8, with an RMSD of 0.53 Å. PANDORA only 
correctly modeled the N-terminus of the peptide, resulting in an 
RMSD of 1.64 Å. For the peptide KMDSFLDMQL bound to 
HLA-A�02:01 (PDB: 3bhb), both PepConf and PANDORA 
mis-modeled the peptide’s central bulge from positions 5 to 8.

3.3 Conformational characteristic of peptide binding 
to the HLA-I
The amino acids at the C- and N-terminus of peptides are gener-
ated by proteasomes and aminopeptidases (Guillaume et al. 
2010, Admon 2019) and serve as primary anchors for HLA 
binding (Alvarez et al. 2019, Kotsias et al. 2019). This anchor-
ing role implies that these terminal regions are in close spatial 
proximity to HLA molecules. Our observations reveal an ‘arch’ 
conformation adopted by peptides when binding to the HLA-I 
grooves, further supporting this concept. To demonstrate this, 
we examined the conformation of three pHLA-I complexes 
from PDB: 5hga (8-mer), 6uk2 (9-mer), and 4gfp (10-mer) 
(Supplementary Fig. S6A). Notably, the C- and N-terminal resi-
dues of peptides bend downward, while the middle residues 
bulge upward. To better understand the conformational charac-
teristics of peptides, we measured the interaction strengths of 
the residues between the peptide and HLA. The strength is de-
fined as the inverse square of the minimum atom distance. In 
the experimental data from the PDB, the residues at the termini 
exhibited much higher strengths than those in the middle 
(Supplementary Fig. S6B). The IEDB data predicted by PepConf 
also showed a similar pattern (Supplementary Fig. S6C).

This conformational characteristic indicates that the cen-
tral bulge of the peptide may more easily contact with TCR. 
Therefore, to enhance our prediction of immunogenic neoan-
tigens, we focus on these bulging regions by imposing restric-
tions on the peptide–HLA distance (see Methods).
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Figure 3. Accuracy and ablation results of PepConf. Error bars show a 95% confidence interval. (A, B) Histograms of TM-score and RMSD for PDB test 
data (n¼104). (C) Histogram of pLDDT for IEDB test data (n¼ 3000). (D, E) Ablation results of PepConf. TM-score and RMSD are selected as structure 
accuracy metrics. Each ablation group is replicated three times, with different colors indicating each repetition. The ablations are reported as a difference 
compared with the average of the three baseline seeds. Baseline: full model with self-distillation dataset training. No self-distillation dataset: full model 
without self-distillation dataset training. No pHLA distance matrix: we set the part of the representation matrix that describes the spatial distance 
between the peptide and HLA-I molecule to zero. No pHLA intermolecular loss: we remove the pHLA intermolecular loss.

Figure 4. Modeling results of PepConf and PANDORA. (A, B) Comparison of peptide TM-score and RMSD between PepConf and PANDORA on the PDB 
test set (n¼104). For each data point, PANDORA generated 20 pHLA complex structures, and the modeling structure with the best molpdf score is 
selected as the final result. The P-value is computed using the Wilcoxon signed-rank test. (C, E) Comparison of the modeled structure between PepConf 
and PANDORA. For (C), the peptide sequence is ASLNLPAVSW, and the HLA allele is B�57:03 (PDB: 6v2p). For (D), the peptide sequence is 
GTSGSPIINR, and the HLA allele is A�11:01 (PDB: 5wkh). For (E), the peptide sequence is KMDSFLDMQL, and the HLA allele is A�02:01 (PDB: 3bhb).
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3.4 Surface and structural features from WT to 
immunogenic peptide
Foreignness scores, calculated based on sequence difference, 
have been demonstrated to aid in neoantigen prediction 
(Łuksza et al. 2017, Richman et al. 2019, Wells et al. 2020). 
We propose that features sampled from molecular surfaces 
and conformation also contain valuable information for deci-
phering the foreignness of mutant peptides, potentially pro-
viding insights into their immunogenicity. To verify this 
concept, we investigated the molecular features of six immu-
nogenic peptides and their WT counterparts (Table 1). These 
peptides are tumor DNA mutation-derived neoantigens and 
have been experimentally confirmed to stimulate T cells to 
elicit an anti-tumor response.

Differences in surface features were indeed observed in im-
munogenic peptides. For the epitope of KDM5C E656K, the 
mutation of negatively charged glutamic acid to positively 
charged lysine alters the local electrostatic property of the 
peptide surface (Fig. 5A). For HERC1 P3278S, the mutation 
of proline to serine enhances the formation of hydrogen 
bonds (Fig. 5B). This can be attributed to the fact that proline 
has a pyrrolidine loop in its side chain, while serine has a hy-
droxyl group, which is considered potential donor or accep-
tor. For SNX24 P132L, the mutation of proline to leucine, 
which has a long non-polar hydrocarbon chain, increases the 
hydrophobic surface area of the peptide (Fig. 5C). For PGM5 
H469Y and OXSM K109T, the mutations alter the geometric 
features of the peptide surface. Visualization of the shape- 
index and distance-dependent curvature revealed different 
protrusions on the WT and Mut peptide surfaces (Fig. 5D 

and E). The RMSD of these five peptides relative to their WT 
counterparts ranges from 0.13 to 0.70 Å (average 0.33 Å,  
Table 1), indicating relatively minor structural changes 
caused by these mutations.

In another peptide, structural features difference may be re-
lated to immunogenicity. For the epitope of TENM3 
A2490V, the C-terminal alanine to valine mutation introdu-
ces a large structural change, reflected in the diagonal asym-
metry of the spatial distance matrix (Fig. 5F). With this 
change, the RMSD reaches �1.23 Å (Table 1).

Among the six cases examined, significant differences in 
surface or structural features were observed between the mu-
tant peptides and their WT counterparts. These differences 
are likely to contribute to their foreignness. Therefore, we 
propose a comprehensive model, PepFore, to predict the for-
eignness score by considering sequence, surface, and struc-
tural features.

3.5 Neoantigen prediction using PepFore
We trained and evaluated the PepFore model using standard 
10-fold cross-validation on two validation sets with different 
precision levels (Fig. 2A). For comparison, we considered two 
additional foreignness scores based on sequence difference: 
SimToIEDB and DisToSelf. In validation set 1, NoeaPred 
performed the best, with average AUROC (Area Under the 
Receiver Operating Characteristic Curve) and AUPRC (Area 
Under the Precision-Recall Curve) scores of 0.73 and 0.43, 
respectively. SimToIEDB followed with 0.59 and 0.39, while 
DisToSelf showed lower performance with 0.55 and 0.19 
(Fig. 6A; Supplementary Table S5). The results in validation 

Figure 5. Comparison of the surface and structural features between Mut and WT counterparts. (A) Electrostatic features between KDM5C E656K 
(positive charge) and WT (negative charge). (B) Hydrogen bond features between HERC1 P3278S (hydrogen bond donors) and WT. (C) Hydropathy 
features between SNX24 P132L (hydrophobic) and WT. (D) Shape-index features between PGM5 H469Y and WT. (E) Distance-dependent curvature 
features between OXSM K109T and WT. (F) Spatial structure and atom spatial distance matrix of TENM3 A2490V and WT.
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set 2 were similar. Our results indicated that integrating sur-
face and structural features can enhance prediction accuracy 
compared to methods that solely depend on sequence 
information.

However, PepFore’s predictive capacity for alleles absent 
from the training set is diminished. When certain alleles were 
completely removed from the training set, PepFore exhibited 
AUROC and AUPRC values of 0.62 and 0.61, respectively, 
for these missing alleles. In contrast, for the alleles present in 
the training set, PepFore achieved AUROC and AUPRC of 
0.73 and 0.71, respectively (Supplementary Fig. S7A). The 
edit distance between WT and Mut also shows a strong cor-
relation with PepFore's predictive capability. As the edit 

distance increases, the predictive sensitivity improves, while 
the specificity slightly decreases. Nevertheless, the overall 
AUROC and AUPRC are not affected by the edit distance 
(Supplementary Fig. S7B).

Furthermore, we assessed the influence of different feature 
processing blocks in PepFore. Firstly, we trained PepFore us-
ing the full model, obtaining an AUROC of 0.77 and an 
AUPRC of 0.45 in validation set 1. Then we removed the 
blocks of surface features difference, spatial structure differ-
ence, and atom group difference, which reduced the AUROC 
to 0.72, 0.74, and 0.72, and reduced the AUPRC to 0.40, 
0.42, and 0.38, respectively (Fig. 6B). Similar ablation results 
were observed in validation set 2. These results demonstrated 

Figure 6. Performance comparison and ablation results of PepFore. (A) Measurement of PepFore performance by AUROC and AUPRC values of the 10- 
fold cross-validation in validation sets 1 and 2. The results of two other foreignness scores, SimToIEDB and DisToSelf, are also shown. (B) Sub-block 
ablation results for validation sets 1 and 2. Baseline: full model. No surface feature difference: we set the dissimilarity of WT/Mut surface features to 
zero. No spatial structure difference: we remove the WT/Mut spatial distance matrix. No atom group difference: we remove the WT/Mut atom group 
comparison block. (C, D) Performance comparison between PepFore and 10 common neoantigen prediction methods. We compared the performance of 
PepFore with 10 other methods using two metrics, AUROC and AUPRC, in the PepFore test set. The complete test set consisted of 625 positive 
samples and 2672 negative samples. Additionally, we evaluated the predictive performance separately for the HLA-A, HLA-B, and HLA-C alleles. The 
number of samples for each allele is indicated in the figure.
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that all three feature processing blocks contributed to the per-
formance of PepFore.

3.6 Performance comparison between PepFore and 
common methods
To further examine the effectiveness of PepFore’s foreignness 
score in neoantigen prediction, we compared it with several 
common methods, including MixMHCpred, NetMHCpan, 
MHCflurry, NetMHCpanBA_AR, MHCflurry_AR, PRIME, 
BigMHC, SimToIEDB, and DisToSelf, on a test set of 625 
immunogenic and 2,672 non-immunogenic peptides. The 
results, illustrated in Fig. 6C and D, indicate that PepFore 
achieved the highest performance with an AUROC of 0.81 
and an AUPRC of 0.54. The best prior method was 
BigMHC, achieving an AUROC of 0.70 and an AUPRC of 
0.30, while SimToIEDB followed closely with an AUROC of 
0.64 and an AUPRC of 0.40. We further assessed the predic-
tion accuracy across different HLA alleles. Our analysis 
revealed that PepFore demonstrated superior accuracy in pre-
dicting neoantigens for HLA-A and HLA-B alleles. However, 
its performance was significantly lower for HLA-C alleles 
(Fig. 6C and D, Supplementary Table S6), potentially due to 
the scarcity of HLA-C instances within the training dataset 
(Supplementary Fig. S1C).

Overall, by considering both surface and structural fea-
tures, PepFore offers a more comprehensive assessment of 
peptide foreignness, enhancing the accuracy of neoantigen 
identification.

4 Discussion
The successful prediction of neoantigens is dependent on under-
standing the parameters that govern immunogenicity (Wells 
et al. 2020). Previous methods have been mostly restricted to 
predicting the binding of pHLA complexes or analyzing the se-
quence of mutant peptides, which is necessary but not sufficient 
(Bassani-Sternberg et al. 2017, Łuksza et al. 2017, Richman 
et al. 2019, O’Donnell et al. 2020, Reynisson et al. 2020, Kim 
et al. 2023). Recently, the importance of structural features has 
been recognized (Custodio et al. 2023). However, the structures 
of pHLA complexes are mainly solved through electron crystal-
lography methods, which are not suitable for high-throughput 
prediction of neoantigens. Our general framework (NeoaPred) 
provides a new method that may overcome these barriers and 
enable a more complete understanding of neoantigens. The 
NeoaPred-PepConf model is specifically designed for predicting 
the conformation of peptides binding to HLA-I. Despite its 
early-stage development, PepConf can be useful in understand-
ing the structural relationship between peptides and HLA-I mol-
ecules. The NeoaPred-PepFore model showcases the potential 
of surface and structural features for immunogenic neoantigen 
identification. By comparing these features between neoantigen 
and its WT counterpart, we can achieve a rationalized foreign-
ness score. We anticipate that NeoaPred will be especially 
important for neoantigen prediction.

However, there are several limitations to this study. Firstly, 
predicting the conformation of peptide binding to HLA-II 
remains an unsolved challenge. HLA-II-restricted neoantigens 
have been proven crucial for some antitumor responses 
(Kreiter et al. 2015, Khodadoust et al. 2017). However, the 
performance of relevant bioinformatic tools remains poor 
due to the paucity of training data (Boegel et al. 2019). In the 
future, a transfer learning network-based approach (Lin et al. 

2023) may be suitable to address this task. Secondly, the 
training data of the PepConf model are limited and unevenly 
distributed across different alleles, with a notable scarcity of 
HLA-C data. Despite efforts to mitigate this issue by intro-
ducing self-distillation data, the resultant enhancement in 
model performance was modest. Similarly, the PepFore 
model encounters this data limitation, leading to significantly 
lower predictive performance for HLA-C compared to HLA- 
A and HLA-B. Consequently, predictions for HLA-C warrant 
particular caution in interpretation. Another limitation is 
that the foreignness score is not the only factor affecting the 
efficacy of neoantigens (Wells et al. 2020). Other factors, 
such as antigen processing and antigen presentation, also 
need to be considered when identifying neoantigens.

In conclusion, we present a novel method to predict the 
conformation of the pHLA complex and decipher the neoan-
tigen foreignness by comparing the representation of peptide 
surfaces and structures, along with atom groups. Compared 
to previous studies, our framework provides a unique per-
spective on the immunogenicity of neoantigens and proposes 
an important method for enhancing computational neoanti-
gen prediction.
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