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ABSTRACT

Background: Achieving a definitive genetic diagnosis of unexplained multiple congenital 
anomalies (MCAs) in neonatal intensive care units (NICUs) infants is challenging 
because of the limited diagnostic capabilities of conventional genetic tests. Although the 
implementation of whole genome sequencing (WGS) has commenced for diagnosing MCAs, 
due to constraints in resources and faculty, many NICUs continue to utilize chromosomal 
microarray (CMA) and/or karyotyping as the initial diagnostic approach. We aimed to 
evaluate the diagnostic efficacy of WGS in infants with MCAs who have received negative 
results from karyotyping and/or CMA.
Methods: In this prospective study, we enrolled 80 infants with MCAs who were admitted to 
a NICU at a single center and had received negative results from CMA and/or karyotyping. 
The phenotypic characteristics were classified according to the International Classification 
of Diseases and the Human Phenotype Ontology. We assessed the diagnostic yield of trio-
WGS in infants with normal chromosomal result and explored the process of diagnosing 
by analyzing both phenotype and genotype. Also, we compared the phenotype and clinical 
outcomes between the groups diagnosed with WGS and the undiagnosed group.
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Results: The diagnostic yield of WGS was 26% (21/80), of which 76% were novel variants. 
There was a higher diagnostic yield in cases of craniofacial abnormalities, including those 
of the eye and ear, and a lower diagnostic yield in cases of gastrointestinal and genitourinary 
abnormalities. In addition, higher rates of rehabilitation therapy and gastrostomy were 
observed in WGS-diagnosed infants than in undiagnosed infants.
Conclusion: This prospective cohort study assessed the usefulness of trio-WGS following 
chromosomal analysis for diagnosing MCAs in the NICU and revealed improvements in the 
diagnostic yield and clinical utility of WGS.

Keywords: Congenital Abnormalities; Whole Genome Sequencing; Microarray Analysis; 
Karyotyping; Infants; Intensive Care Units, Neonatal

INTRODUCTION

Multiple congenital anomalies (MCAs) consist of two or more birth defects, and are found 
in 20–30% of infants with birth defects, which are the fourth leading cause of neonatal 
mortality worldwide.1,2 Chromosomal study including chromosomal microarray (CMA), 
although recommended as a first-tier test for unexplained MCA, has a diagnostic yield of 
only 10–20% and often necessitates further genetic testing due to its limitations.3-5 Recently, 
whole genome sequencing (WGS) has shown promising results as a first-line diagnostic 
utility of MCA in neonatal intensive care units (NICUs), with diagnostic yield of 33%.6 
Furthermore, rapid sequencing pipeline enhances both precision diagnosis and changes in 
clinical management, leading to an increase in research aiming to implement this system 
within NICUs.6-8 Nevertheless, transition of these methods to clinic or hospital settings 
requires high-throughput sequencers, complex and costly infrastructure, and bioinformatics 
expertise; most of the NICUs still lack the necessary conditions and resources to adopt such 
systems.9 Therefore, some neonatologists still prefer chromosomal testing as the first-tier 
diagnostic tool for MCA due to practical reasons.10 Under these conditions, there are few 
studies that evaluated the pure diagnostic utility of WGS for the genetic diagnosis after 
karyotyping or CMA in patients with MCAs.

Therefore, the present study investigated the genetic diagnostic utility of trio-WGS 
prospectively performed on patients with MCAs who were not diagnosed through karyotyping 
and/or CMA as a first-tier test, in the NICU or in those with prior NICU admission.

METHODS

Study design and participants
This prospective study was conducted using standardized protocols with specifically 
designed methods.11 From December 2019 to December 2022, we recruited infants in NICU 
or NICU discharger at Samsung Medical Center within the first year of life who presented 
with two or more major anomalies corresponding to code of congenital malformations and 
deformations (Q00-Q99) in International Classification of Diseases, 10th revision, Clinical 
Modification (ICD-10-CM) diagnosis codes. The inclusion criteria were infants with negative 
results from karyotyping and/or CMA (Supplementary Method). The exclusion criteria 
were as follows: patients who had identification of disorders through a neonatal screening 
program; congenital viral studies; and chromosomal studies before enrollment.
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WGS tests were directly ordered by attending neonatologists and approved by the laboratory-
based physician. Pre-test counseling was performed by physicians, and appropriate informed 
consent was obtained from both parents of the patients. The criteria for genetic testing were 
approved by the ethics committee of the Institutional Review Board of Samsung Medical 
Center (2019-10-138, 2021-04-189, and 2022-04-054). Patient and follow-up information were 
extracted from questionnaires and medical records. We documented the Human Phenotype 
Ontology (HPO) term used in Phenomizer. We formed a panel of multidisciplinary experts, 
comprising neonatologists, geneticists, and genetic laboratory staff, to discuss the trio WGS 
results. Geneticists curated patient-specific candidate gene lists based on the phenotype. 
Subsequently, we assessed the necessity for further genetic investigations, such as Sanger 
sequencing, RNA analysis, or functional studies. We established an official reporting system 
to communicate genetic diagnoses. Genetic counseling sessions involved discussions on the 
genetic testing results, the progression and prognosis of the genetic disorder, and the risk of 
recurrence in subsequent pregnancies. This information was shared with the neonatologists, 
who utilized it to evaluate prognosis and establish treatment strategies.

WGS
Genomic DNA from peripheral blood was sequenced using NovaSeq6000 platform (Illumina, 
San Diego, CA, USA) at a mean depth of 30×, with more than 97% showing coverage of ≥ 10×. 
Burrows–Wheeler alignment was used for alignment to a human reference genome (hg19). 
Subsequent variant calling and structural variants (SVs)/copy number variations (CNVs) calling 
were performed using Genome Analysis Toolkit, version 4.1.2 and Parliament2, respectively. 
Variants were annotated using ANNOVAR and AnnotSV. For prioritization of variants, both 
genotype-driven and phenotype-driven approaches were performed.12 In phenotype-driven 
approach, patient-specific candidate gene lists were made using panelAPP database (https://
panelapp.genomicsengland.co.uk/panels) and HPO database (https://hpo.jax.org/app) 
(Supplementary Table 1). In cases where appropriate gene sets were not found in these 
databases, gene lists were made from resources such as gene reviews (https://www.ncbi.nlm.
nih.gov/books/NBK1116/) and gene test registry (https://www.ncbi.nlm.nih.gov/gtr/genes/). 
Variants from candidate gene lists were classified according to the 2015 American College 
of Medical Genetics (ACMG)/Association for Molecular Pathology variant interpretation 
guidelines and the ClinGen Sequence Variant Interpretation Recommendations.13,14 Identified 
CNVs less than 1.5 Mb were prioritized variants containing coding regions with Online 
Mendelian Inheritance in Man morbid genes and were classified according to the ACMG/
ClinGen guideline for CMA interpretation.15

Confirmation of copy number variants
The breakpoints were checked from CNV calling data and gap-polymerase chain reaction (PCR) 
with Sanger sequencing was performed for confirmation of large deletions. The gap-PCR 
method uses specific primers that we designed to amplify the DNA region flanking a deletion. 
In this method, the normal allele is too long to be amplified; therefore, PCR products can be 
obtained only when the allele with a large deletion is present (Supplementary Table 2).

Confirmation of splicing aberrations
RNA was extracted from peripheral blood using the TRIzol method. One microgram of 
RNA was reverse transcribed into cDNA using Omniscript Reverse Transcriptase (QIAGEN, 
Hilden, Germany) and amplified using Platinum II Taq Hot-Start DNA Polymerase (Invitrogen, 
Carlsbad, CA, USA) with custom-designed primers (Supplementary Table 3). Abnormal band 
was extracted from the gel and Sanger sequencing was performed with purified templates.
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Statistical analysis
Continuous variables were expressed as median and interquartile ranges or mean and 
standard deviation and compared using the Mann–Whitney U test or independent t-test. 
Categorical variables were expressed as percentages and frequencies and compared using the 
χ2 or Fisher’s exact tests. SPSS version 26.0 (IBM Corp., Armonk, NY, USA) was used for all 
statistical analyses, and P < 0.05 was considered statistically significant.

Ethics statement
Informed consent for the present study was obtained from both parents of the patients.  
The criteria for genetic testing and the study protocol were reviewed and approved by the 
ethics committee of the Institutional Review Board of Samsung Medical Center (2019-10-138, 
2021-04-189, and 2022-04-054).

RESULTS

Demographics of clinical characteristics
A total of 82 infants with two or more malformations were enrolled in this study (Fig. 1). Two 
patients were excluded because their diagnoses were identified by additional CMA findings 
after a normal karyotype. One of the excluded infants had a cleft palate, double outlet right 
ventricle with ventricular septal defect, and a hypoplastic kidney, and was diagnosed with 
22q13.1 duplication syndrome through CMA. The other infant with small for gestational 
age had a single umbilical artery and congenital ichthyosis, and was diagnosed with Xp22.3 
microdeletion. We conducted WGS on 80 infants with an analysis of their families. Seventy-
two probands provided trio samples, six contributed quartet samples, one from a single-
parent family provided a biological specimen, and another one submitted a quintet sample.

Approximately 43% of infants were premature births, and 48% of infants were born with 
low birth weight (Table 1). All infants had records of prenatal ultrasound monitoring, and 
63% presented with abnormal prenatal ultrasound findings, including fetal malformation 
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Multidisciplinary patient selection
Major anomalies ≥ 2 with normal karyotyping

82 NICU infants, age < 12 months
with suspected genetic disorder

Exclusion:
Confirmed a genetic disease by CMA: 2 infants

80 family, 247 samples receiving WGS

Results discussed in a multidisciplinary board

21 (26%) genetic diagnosis 59 (74%) no genetic diagnosis

Fig. 1. Study population. 
NICU = neonatal intensive care unit, CMA = chromosomal microarray, WGS = whole genome sequencing.



and intrauterine growth restriction, and excluding any transient soft markers. Among the 
80 infants who underwent previous genetic workups, 99% had karyotyping performed, and 
68% had CMA performed. There were no significant differences in the demographic factors 
between the WGS-diagnosed and-undiagnosed groups.

Genetic diagnosis
Among the 80 infants enrolled in this study, 21 were diagnosed using WGS, with a diagnostic 
rate of 26%. Of the 21 diagnosed cases, 20 had confirmed diagnoses that could explain the 
cause of MCAs, and one is currently undergoing functional study as a novel candidate gene 
(Table 2). Among the 20 confirmed diagnoses, two had CNVs in the form of deletions with 
an autosomal dominant (AD) disease. One was de novo and the other was inherited from his 
father (case 9), who had undergone surgery for branchial cleft cysts on bilateral neck. Of the 
18 cases detected with pathogenic sequence variations, 14 were diagnosed as AD disorders. 
Of these, 13 genes had de novo variants, and one gene variant was inherited from the 
affected parent (case 6).16 The proband and her affected sibling had compound heterozygous 
variants in FLT4 gene NM_182925.4:c.[2534T>C];[4006T>C]. The mother and father, each 
carrying one mutation, were asymptomatic but had a family history on the maternal side. 
A family study revealed that the affected sister of the maternal grandfather was confirmed 
to have a c.2534T>C variant. Based on familial segregation and additional evidence, the 
c.2534T>C variant was classified as likely pathogenic with reduced penetrance. Four patients 
were diagnosed with autosomal recessive diseases from the carrier parents, with two 
homozygous and two compound heterozygous status. There was no consanguineous family 
history for homozygous patients and the WGS data did not show large stretches of absence 
of heterozygosity. Sixteen of the 23 variants from the 21 diagnosed patients were novel. 
One (case 17) was confirmed to be pathogenic by cDNA analysis. The infant’s phenotype 
corresponded to the classical Cornelia de Lange Syndrome, scoring 13 points on the clinical 
diagnostic criteria (Supplementary Table 4).17 Although WGS identified a de novo variant, 
the variant was presumed not to change the amino acid. However, the variant locates 3' of 
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Table 1. Clinical characteristics and genetic test of the participants in this study cohort
Characteristics Total  

(N = 80)
WGS P value

Diagnosed  
(n = 21)

Undiagnosed  
(n = 59)

Gestational age, wk+days 36+1 ± 3+3 36+4 ± 2+6 36+0 ± 3+4 0.461
Birth weight, g 2,412 ± 832 2,475 ± 798 2,390 ± 849 0.690
Male sex 43 (53.8) 8 (38.1) 35 (59.3) 0.127
Small for gestational agea 18 (22.5) 3 (14.3) 15 (25.4) 0.373
Congenital microcephalya 16 (20.0) 3 (14.3) 13 (22.0) 0.709
Concurrent anomaly in the family 7 (8.8) 3 (14.3) 4 (6.8) 0.371
Preterm infant (< 37 wk) 34 (42.5) 8 (38.1) 26 (44.1) 0.798
Low birth weight (< 2,500 g) 38 (47.5) 9 (42.9) 29 (49.2) 0.800
Advanced maternal age 44/79 (55.7) 9/21 (42.9) 35/58 (60.3) 0.204
Abnormal prenatal ultrasound findings 50 (62.5) 13 (61.9) 37 (62.7) 1.000
Need for initial resuscitation 42 (52.5) 13 (61.9) 29 (49.2) 0.446
Maternal diabetes mellitus 8 (10.0) 1 (4.8) 7 (11.9) 0.674
Non-Korean parent 3 (3.8) 1 (4.8) 2 (3.4) 1.000
Previous genetic work-up 80 (100.0) 21 (100.0) 59 (100.0) 1.000

Karyotype 79 (98.8) 21 (100.0) 58 (98.3) 1.000
Chromosomal microarray 54 (67.5) 17 (81.0) 37 (62.7) 0.177

Postnatal age of WGS, days 45 (23–92) 56 (22–110) 44 (24–91) 0.930
Turnaround time of WGS, mon 5.7 (3.3–9.1) 5.0 (2.7–7.1) 5.9 (3.4–9.4) 0.219
Values are presented as mean ± standard deviation, number (%), or median (interquartile rage).
WGS = whole genome sequencing.
aLess than third percentile for gestational age.
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exon 31, and in-silico analysis using SpliceAI predicted that the variant is likely to affect the 
splicing donor site (delta score of 0.86). Targeted Sanger sequencing of cDNA confirmed 
the splicing effect of this variant (Fig. 2). We also detected one novel CNV in another patient 
(case 12) and breakpoints were delineated by gap-PCR and direct sequencing (Fig. 3).

Suggestion of novel candidate gene for pontocerebellar hypoplasia
One patient (case 21) exhibited symptoms of pontocerebellar hypoplasia (Supplementary 
Table 4). CMA revealed a loss of heterozygosity across chromosome 6, suggesting 
isouniparental disomy (isoUPD) (Supplementary Fig. 1). WGS showed that all variants found 
in homozygous pattern on chromosome 6 were maternally originated, confirming maternal 
UPD(6). A frameshift variant, NM_175747.2:c.536_539dup, on OLIG3 was highly suspected to 
be a candidate gene, as recent reports have indicated its role in early cerebellar development 
by determining the differentiation of neurons.18-20 OLIG3 knock-out mice had reduced 
or inhibited development of precerebellar neurons originating from the caudal rhombic 
lip, which differentiate into various brainstem and cerebellar cell types, and exhibited 
dysregulation of respiratory system development and cyanosis.21 This case is currently 
undergoing functional testing to elucidate the precise etiology.
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Fig. 2. Genetic diagnosis using RT-PCR and cDNA analysis. (A) RT-PCR amplifications of the mRNA of case 17. The lower band (386 bp) represents the aberrant 
NIPBL gene transcript. (B) Diagram showing regions of the NIPBL where the splicing variant described was identified as NM_133433.3(NIPBL):c.5808G>A.  
The cDNA sequence shows skipping of exon 31. 
RT-PCR = reverse transcription polymerase chain reaction.
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Fig. 3. Genetic diagnosis using gap PCR and direct sequencing. (A) Electrophoresis of gap-PCR amplifications of Case 12. (B) Diagram showing a 59 kb deletion 
on chromosome 6p25.3 including the entire FOXC1 gene and part of the adjacent GMDS gene. The band was sequenced, and the breakpoint was delineated as 
NC_000006.11:g.1596640_1655705delinsGAG. 
PCR = polymerase chain reaction.



Comparative analysis of organ system involvement between WGS-diagnosed 
and undiagnosed groups
In the total patient group, the top three organ systems identified by Q-codes were the 
cardiovascular system (63%), followed by the nervous and digestive systems (45%) 
(Supplementary Fig. 2, Supplementary Table 5). The incidence of eye anomalies was 
significantly higher in the group diagnosed using WGS than in the undiagnosed group 
(29% vs. 5%), although the rate of digestive system involvement was significantly lower in 
the WGS-diagnosed group than in the undiagnosed group (14% vs. 55%). According to the 
HPO terms, the incidence rates of eye anomalies and defects in the ear and integument were 
significantly higher in the WGS-diagnosed group than in the undiagnosed group (Fig. 4, 
Table 3). The involvement of the digestive and genitourinary system significantly decreased 
the rate of diagnosis by WGS.

Clinical implementation
Although the rate of surgery during the NICU stay was lower in the WGS-diagnosed group 
compared to the undiagnosed group (48% vs. 70%), for infants diagnosed with WGS, it 
significantly increased during the follow-up period (Table 4). The rates of gastrostomy 
(33% vs. 9%), rehabilitation therapy (86% vs. 58%), and genetic counseling from clinical 
geneticists (79% vs. 7%) in the WGS-diagnosed group compared to the undiagnosed group.

In one infant, the initiation of targeted medication was facilitated through a WGS diagnosis, 
altering the family’s clinical management approach (case 16). The neonate underwent surgery 
for an intracardiac thrombus and was diagnosed with antithrombin III deficiency, and the 
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Fig. 4. Distribution of infants by organ system based on HPO term. 
HPO = Human Phenotype Ontology, WGS = whole genome sequencing.



patient’s parents were identified as heterozygous carriers for this variant through trio-WGS. 
She was initiated on warfarin treatment to prevent further thrombosis. Following family 
planning, the proband’s younger sister was born, and she received prophylactic antithrombin 
treatment until the genetic test results were proven to be normal. In another case diagnosed 
with Axenfeld-Rieger Syndrome Type 3, the early detection of increased intraocular pressure 
through regular ophthalmological examinations and parental education allowed for the delay 
of glaucoma, a complication of the disease (case 12).
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Table 3. Counts for top-level organ system HPO terms, based on the up-propagation of terms used in Phenomizer 
according to the ontology
HPO category Total  

(N = 80)
Whole genome sequencing P value

Diagnosed  
(n = 21)

Undiagnosed  
(n = 59)

Abnormality of the cardiovascular system 49 (61.3) 15 (71.4) 34 (57.6) 0.307
Abnormality of the abdomen 46 (57.5) 7 (33.3) 39 (66.1) 0.011*

Structural anomaly 38 (47.5) 3 (14.3) 35 (59.3) < 0.001*

Functional anomaly 18 (22.5) 5 (23.8) 13 (22.0) 1.000
Abnormality of head and neck 41 (51.3) 13 (61.9) 28 (47.5) 0.314
Abnormality of prenatal development or birth 39 (48.8) 10 (47.6) 29 (49.2) 1.000
Abnormality of the skeletal system 35 (43.8) 6 (28.6) 29 (49.2) 0.128
Growth abnormality 35 (43.8) 6 (28.6) 29 (49.2) 0.128
Abnormality of the nervous system 33 (41.3) 10 (47.6) 23 (39.0) 0.607
Abnormality of the genitourinary system 28 (35.0) 2 (9.5) 26 (44.1) 0.007*

Abnormality of the respiratory system 23 (28.8) 4 (19.0) 19 (32.2) 0.400
Abnormality of the ear 20 (25.0) 11 (52.4) 9 (15.3) 0.002*

Structural anomaly 11 (13.8) 6 (28.6) 5 (8.5) 0.032*

Functional anomaly 14 (17.5) 8 (38.1) 6 (10.2) 0.007*

Abnormality of the integument 11 (13.8) 6 (28.6) 5 (8.5) 0.032*

Abnormality of the limbs 11 (13.8) 5 (23.8) 6 (10.2) 0.146
Abnormality of the eye 10 (12.5) 7 (33.3) 3 (5.1) 0.006*

Abnormality of the musculature 9 (11.3) 3 (14.3) 6 (10.2) 0.691
Abnormal muscle tone (hypotonia) 7 (8.8) 2 (9.5) 5 (8.5) 1.000

Abnormality of connective tissue 8 (10.0) 1 (4.8) 7 (11.9) 0.674
Neoplasm 6 (7.5) 0 (0.0) 6 (10.2) 0.332
Abnormality of the endocrine system 5 (6.3) 2 (9.5) 3 (5.1) 0.602
Abnormality of metabolism/homeostasis 4 (5.0) 1 (4.8) 3 (5.1) 1.000
Abnormality of the immune system 3 (3.8) 1 (4.8) 2 (3.4) 1.000
Abnormality of blood and blood-forming tissues 2 (2.5) 2 (9.5) 0 (0.0) 0.066
Values are presented as number (%).
HPO = Human Phenotype Ontology.
*P < 0.05.

Table 4. Clinical implementation of whole genome sequencing
Clinical implementation Total  

(N = 80)
Whole genome sequencing P value

Diagnosed  
(n = 21)

Undiagnosed  
(n = 59)

Duration of NICU admission, days 46 (22–97) 47 (17–102) 41 (23–90) 0.933
Death 9 (11.3) 3 (14.3) 6 (10.2) 0.691
Start of target medication 1 (1.3) 1 (4.8) 0 (0.0) 0.262
Surgery 63 (78.8) 15 (71.4) 48 (81.4) 0.363

Before NICU discharge 51 (63.8) 10 (47.6) 41 (69.5) 0.107
Rehabilitation 52 (65.0) 18 (85.7) 34 (57.6) 0.032*

Tracheostomy 4 (5.0) 1 (4.8) 3 (5.1) 1.000
Gastrostomy 12 (15.0) 7 (33.3) 5 (8.5) 0.011*

Genetic counselling 19 (23.8) 15 (71.4) 4 (6.8) < 0.001*

Long term follow-up 65/75 (86.7) 17/19 (89.5) 48/56 (85.7) 1.000
Values are presented as number (%) or median (interquartile ranges).
NICU = neonatal intensive care unit.
*P < 0.05.



DISCUSSION

The diagnostic yield in this study was 26%, which aligns with the range observed in other 
studies reported a wide range of 20–50% for MCA through WGS.1,5,8,22-24 This result 
represents a 12% increase in the diagnostic rate compared with the period when traditional 
diagnostic methods were utilized in our NICU (Supplementary Fig. 3). These findings 
are consistent with previous studies showing that WGS can improve diagnostic rates by 
approximately 10–20% compared to conventional diagnostic testing including whole 
exome sequencing (WES) or clinical exome sequencing (ES).25,26 Contrary to many studies 
suggesting that CNVs are a major cause of congenital anomalies, in our study, they accounted 
for only 10%.4,27,28 In this study, not all patients performed CMA, and those who found 
abnormalities in CMA were excluded. Although CNV calling was performed in WGS, the 
accuracy is limited, and the fact that only CNVs of 1.5 Mb or less may be included in this study 
may affect the CNV detection rate.

Although many recent studies have demonstrated the advantages of genome sequencing (GS)/
ES in the initial tier of diagnosis for congenital anomalies, owing to a higher diagnostic yield,29 
CMA is still widely recommended as the first-tier test in many countries.4,23 Although WES/
WGS takes an advantage of detecting CNVs, it may not be as effective as CMA in detecting large 
genomic alterations or certain CNVs.30 Even if the CNVs are called in ES/GS, it is not easy to 
distinguish true CNVs among hundreds or thousands of CNVs. In the present study, we utilized 
WGS as a secondary test for MCA since South Korean government reimburses the cost for 
CMA, but not for ES/GS. Although targeted panel sequencing is reimbursed, it may have limited 
utility considering genetic heterogeneity of congenital anomalies.

The reason we adopted WGS instead of WES in the present study is that WGS gives a chance 
to identify causative variants in deep intronic or regulatory elements. Even in coding region 
analysis, it can be more useful by providing more uniform coverage, especially in GC-rich 
regions, with better variant detection performance. In addition, WGS is more suitable for 
CNV detection than WES due to its genome-wide coverage by providing information on 
sequences involving breakpoints located in non-coding regions. A previous study showed 
that WGS increased the diagnostic rate by 5.6% compared to WES due to the better coverage 
and detection of SVs and non-coding variants of WGS.31 In our investigation, although we 
could not find deep intronic or regulatory mutations, we could detect two CNV cases. Case 9 
revealed an approximately 5.5 kb deletion in EYA1 through WGS despite the previous negative 
CMA result. Case 12, where only karyotyping was performed without CMA, exhibited an 
approximately 60 kb deletion in FOXC1. Although the CNVs smaller than 400 kb may be 
detectable with CMA depending on the number of markers utilized, WGS could provide 
breakpoints at the base pair level, which is not possible with CMA. This information may 
offer valuable insights, especially in this case, as the size of the deletion and the specific 
genes involved can significantly influence the patient’s phenotype.32,33

Through genotype-phenotype analysis, we ascertained the high and low diagnostic yields 
of WGS in the phenotypes of specific organ systems. Consistent with previous studies, we 
observed a higher diagnostic yield in cases with craniofacial abnormalities, including the 
eye, ear, and integument. Conversely, a lower diagnostic yield was observed in cases with 
abdominal abnormalities.22,34,35 Based on these results, particularly in cases of abnormalities 
in the eyes, ears, and integument, it is suggested to consider genetic testing such as WGS is 
recommended.
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By confirming the variance in genetic diagnostic yields across different organ systems 
through the application of HPO terms and Q codes, the incorporation of these terminologies 
into clinical protocols has been validated.36 Q codes are a classification within the ICD system 
for categorizing congenital anomalies, deformations, and chromosomal abnormalities. The 
ICD system designations play a crucial role in the storage, search, and management of patient 
medical information within electronic medical records globally. Analyzing such databases 
enables easier communication and provides necessary support in handling insurance claims 
and compensation processes for genetic testing and treatments.37

Unlike other studies in which a high incidence of surgical intervention following a 
diagnosis through ES/GS has been reported,24 this study found no difference in the rates 
of surgeries between infants diagnosed with WGS and those not diagnosed. This outcome 
can be attributed to the fact that most surgeries in this cohort were related to cardiac or 
gastrointestinal anomalies, such as tracheoesophageal fistula and imperforate anus, with 
no genetic diseases identified in this group. Additional analysis is necessary to identify 
these specific gastrointestinal diseases separately and to search for variations. The increase 
in specific medical interventions such as rehabilitation therapy and gastrostomy in infants 
diagnosed with definitive diseases may be an indirect result of the ability to predict the 
prognosis and course of the disease. In the WGS-undiagnosed group, genetic counseling by 
geneticists was less frequent than in the diagnosed group, likely due to the limited availability 
of genetic counselors. Nonetheless, all patients received thorough explanations about their 
results from pediatricians, including the limitations of tests and risk of genetic diseases, even 
without a definitive genetic diagnosis.

WGS can facilitate early diagnosis during the neonatal period by identifying genetic variants 
where timely intervention can enhance long-term prognosis.38 For early diagnosed MCA 
infants, supportive treatments such as rehabilitation and gastrostomy can be implemented 
more proactively. For genetically undiagnosed infants, it may be helpful to reanalyze genomic 
data periodically and/or when new symptoms appear. Meanwhile, it is also important to 
shorten the time required for genetic diagnosis, but in this study, rapid diagnosis was not 
possible due to a lack of various resources. Nonetheless, applying advanced technologies 
such as rapid WGS integrated with the latest pipelines and artificial intelligence for analysis 
and interpretation can shorten the time to diagnosis, enabling timely intervention before 
irreversible outcomes occur.39,40

We utilized trio-based WGS analysis, an efficient approach given that most pathogenic 
variants in our study were de novo. This approach can shorten the time for selecting gene sets 
based on phenotypes and aid in classifying novel missense variants as pathogenic that would 
otherwise be mostly classified as variants of uncertain significance (VUS). However, the cost 
of WGS is a significant consideration for clinical implementation. Given that a substantial 
portion of diagnosed patients resulted from previously reported or high-impact variants, 
such as nonsense, frameshift, and splicing variants, which could be identified solely through 
proband analysis, singleton WGS could be an alternative approach. However, to make this 
feasible, a robust interpretation management system must be in place. This system would 
require continuous updating and curation of gene lists for relevant disease categories to 
ensure accurate and efficient diagnosis.

Since this study excluded infants diagnosed with CNV-related disease through CMA, it is 
impossible to compare the clinical information between MCA infants with CNV-related 
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diseases and those with non-CNV disease. Previous studies have indicated that infants 
diagnosed with non-CNV diseases have a greater number of involved organs than those 
diagnosed with CNV-related diseases, despite no differences in specific phenotype or clinical 
information between the two groups.22 Therefore, further study is needed to analyze the 
clinical characteristics that would determine whether WGS, rather than CMA, should be 
chosen as the first-tier test in MCA infants.

The strengths of this study are as follows. WGS was performed on at least three members 
from each family to improve the diagnostic yield. Utilizing trio sequencing in WGS in 
our study has led to success in identifying the genetic cause in many cases, providing 
critical information for accurate diagnosis. Furthermore, by adopting a multidisciplinary 
approach, we were able to perform both genotype-driven and phenotype-driven analyses, 
thereby enhancing the diagnostic yield of genetic diseases that might have been overlooked 
with conventional genetic testing. This integrative approach also allowed us to conduct 
subsequent functional studies, leading to the identification of novel genetic diseases. 
Continuous collaboration between multiple specialists may be necessary for elucidating the 
causes of rare diseases.

Our study had several limitations. Most of variants in non-coding regions, especially 
regulatory regions, found in this study were classified as variants of uncertain significance. 
Although extensive functional studies have demonstrated that variants in many non-coding 
regions are associated with genetic diseases,12 interpretation of variants found in deep 
intronic and regulatory regions was limited due to difficulties in determining their splicing 
effects and impact on gene expression. Further research will be needed to elucidate the 
functions of non-coding regions. In addition, we reviewed only 1.5 Mb or less of the CNVs 
called in WGS. There are yet no well-established bioinformatics pipeline, protocol, and 
quality-control standards for CNV analysis through WGS. Mappability issues of repeat 
regions, GC-content bias, sequence read quality, and difficulty in identifying duplications 
make accurate CNV analysis difficult in WGS.41

In conclusion, this is the first prospective cohort study to investigate the utility of trio-WGS after 
chromosomal analysis for diagnosing MCA in an NICU setting. This study presents evidence 
that early adoption of trio-WGS following karyotyping/CMA significantly increases the genetic 
diagnostic yield for MCAs and aids in identifying novel genetic etiologies of rare diseases.
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