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The Alzheimer’s disease risk gene BIN1 regulates activity-
dependent gene expression in human-induced glutamatergic
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Bridging Integrator 1 (BIN1) is the second most important Alzheimer’s disease (AD) risk gene, but its physiological roles in neurons
and its contribution to brain pathology remain largely elusive. In this work, we show that BIN1 plays a critical role in the regulation
of calcium homeostasis, electrical activity, and gene expression of glutamatergic neurons. Using single-cell RNA-sequencing on
cerebral organoids generated from isogenic BIN1 wild type (WT), heterozygous (HET) and homozygous knockout (KO) human-
induced pluripotent stem cells (hiPSCs), we show that BIN1 is mainly expressed by oligodendrocytes and glutamatergic neurons,
like in the human brain. Both BIN1 HET and KO cerebral organoids show specific transcriptional alterations, mainly associated with
ion transport and synapses in glutamatergic neurons. We then demonstrate that BIN1 cell-autonomously regulates gene expression
in glutamatergic neurons by using a novel protocol to generate pure culture of hiPSC-derived induced neurons (hiNs). Using this
system, we also show that BIN1 plays a key role in the regulation of neuronal calcium transients and electrical activity via its
interaction with the L-type voltage-gated calcium channel Cav1.2. BIN1 KO hiNs show reduced activity-dependent internalization
and higher Cav1.2 expression compared to WT hiNs. Pharmacological blocking of this channel with clinically relevant doses of
nifedipine, a calcium channel blocker, partly rescues electrical and gene expression alterations in BIN1 KO glutamatergic neurons.
Further, we show that transcriptional alterations in BIN1 KO hiNs that affect biological processes related to calcium homeostasis are
also present in glutamatergic neurons of the human brain at late stages of AD pathology. Together, these findings suggest that
BIN1-dependent alterations in neuronal properties could contribute to AD pathophysiology and that treatment with low doses of
clinically approved calcium blockers should be considered as an option to slow disease-onset and progression.

Molecular Psychiatry (2024) 29:2634–2646; https://doi.org/10.1038/s41380-024-02502-y

INTRODUCTION
The Bridging Integrator 1 (BIN1) is the second most important
risk locus associated with late-onset Alzheimer’s disease (LOAD),
after the Apolipoprotein E (APOE) gene [1–4]. In the adult human
brain, BIN1 is mainly expressed by oligodendrocytes, microglial
cells and glutamatergic neurons [5–7] and its expression is
reduced in AD patients compared to healthy individuals [7, 8].
The consequences of this reduced BIN1 expression to neuronal
and glial cells, as well as the mechanisms by which it contributes
to AD pathogenesis remain poorly understood.
BIN1 has disputably been associated with amyloidopathy and

tauopathy, two pathological hallmarks of AD [9]. Reduced BIN1
expression results in a higher amyloid precursor protein (APP)
processing towards the production of amyloid-beta (Aβ) peptides
in Neuroblastoma Neuro2a cells [10, 11]. However, we previously

showed that BIN1 knockout (KO) does not increase the
concentrations of Aβ peptides in hiPSC-derived neurons
(human-induced neurons or hiNs) despite impairing endocytic
trafficking [12]. Likewise, reduced Bin1 expression in the mouse
brain does not affect the production of endogenous Aβ peptides
[13]. Regarding Tau pathology, decreased expression of the BIN1
ortholog Amph suppresses Tau-mediated neurotoxicity in Droso-
phila Melanogaster [14]. In contrast, reduced Bin1 expression
results in higher Tau aggregation and propagation in primary rat
hippocampal neurons [15]. In humans, higher concentrations of
phosphorylated Tau are observed in the cerebrospinal fluid of
patients with AD and are significantly correlated with genetic
variants within the BIN1 locus [16].
More recently, BIN1 has also been associated with the regulation

of synaptic transmission and neuronal electrical activity in animal
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models [6, 17, 18]. Conditional deletion of Bin1 in neurons of the
adult mice hippocampus leads to altered frequency of mini
excitatory post-synaptic currents (mEPSC), likely due to an impaired
presynaptic release probability and slower depletion of neuro-
transmitters [6]. Knockdown of Bin1 in embryonic rat primary
cortical neurons also affects the glutamate AMPA receptor
trafficking in the post-synaptic compartment, leading to alterations
in the amplitude of mEPSC [18]. Lastly, overexpression of a
Bin1-mKate2 fusion protein increases the frequency of sponta-
neous excitatory postsynaptic currents (sEPSCs) in embryonic rat
hippocampal cultures, seemingly by affecting the localization of
L-type voltage gated calcium channels (LVGCC) in the membrane
through a Tau-dependent interaction [17].
Despite these advances, no consensus has been reached on the

roles of BIN1 in AD pathogenesis and even its physiological
functions in human brain cells remain mostly unknown. In this
work, we tackled this important question by generating and
characterizing human neural cells derived from isogenic BIN1 wild
type (WT), heterozygous (HET) and homozygous knockout (KO)
hiPSC lines. We first characterized the transcriptional profile of
human neural cells grown in three-dimensional cerebral organoids
for more than 6 months and show that reduced BIN1 expression
affects mainly glutamatergic neurons. Next, we generated pure
BIN1 WT and KO hiNs cultures and show that BIN1 cell-
autonomously regulates electrical activity and gene expression
of glutamatergic neurons via the interaction with the LVGCC
Cav1.2. Pharmacological blockage of this channel with nifedipine
partly rescues electrical and gene expression alterations in BIN1
KO hiNs. Our findings suggest that BIN1 is a key regulator of
calcium homeostasis in glutamatergic neurons and that repurpos-
ing the use of clinically approved calcium channel blockers could
be a promising strategy to treat AD.

METHODS
hiPSC lines and neural differentiation
Isogenic hiPSCs (ASE 9109, Applied StemCell Inc. CA, USA) modified for
BIN1 in exon 3 were generated by CRISPR/Cas9. Homozygous null mutants
for BIN1 had a 5 bp deletion on one allele and an 8 bp deletion on the
other allele. Heterozygous for BIN1 had a 1 bp insertion on one allele.
Whole genome sequencing of the 3 cell lines used in this study confirmed
normal ploidy, edits on the BIN1 locus of HET and KO clones, and absence
of other potential CRISPR/Cas9 off-target effects (Supplementary Fig. 1). All
hiPSCs, and all subsequent human induced neural progenitor cells
(hiNPCs), hiNs, human induced astrocytes (hiAs), and cerebral organoids
derived thereof, were maintained in media from Stemcell Technologies. To
generate pure neuronal hiNs culture, we expressed Ascl1 in hiNPCs.
Maintenance of cell cultures and cerebral organoids are detailed in the
supplementary material.

Electrophysiological recordings and analyses
ASCL1-hiNs were cultured in microfluidic devices bound to multi-electrode
arrays (256MEA100/30iR-ITO, Multi-Channel Systems, Germany) and
extracellular action potentials were recorded in 5 different cultures for
both genotypes at 2, 3, 4 and 6 weeks of differentiation using the
MEA2100-256-System (Multi-Channel Systems). For rescue experiments,
ASCL1-hiNs were cultured on MEA 96-well plates (CytoView MEA 96, Axion
Biosystems, USA) and extracellular action potentials were recorded in 3
independent cultures for either genotype in the presence of 50 nM
nifedipine (Tocris Bioscience) or vehicle using the MaestroPro (Axion
Biosystems, Inc, USA). Channels containing detected waveforms were
processed offline for spike waveform separation and classification using
Offline Sorter v3 (Plexon, USA).

Single-nucleus RNA-sequencing (snRNAseq)
Nuclei isolation and Hash Tag Oligonucleotide (HTO) libraries preparation
were performed as previously described [12]. Bioinformatics analyses were
performed using Seurat (https://cran.r-project.org/web/packages/Seurat/
index.html), Harmony (https://github.com/immunogenomics/harmony), Cel-
lID (https://bioconductor.org/packages/release/bioc/html/CelliD.html) and

FGSEA (https://bioconductor.org/packages/release/bioc/html/fgsea.html)
R packages.

Statistical analyses
Statistical analyses were performed using GraphPad Prism version 8.0.0
(GraphPad Software, San Diego, California USA, www.graphpad.com) and R
4.2.0 (R Core Team, 2022, https://cran.r-project.org/bin/windows/base/old/
4.2.0/). Non-parametric distribution of data was verified using the
Kolmogorov-Smirnov test, and dot plots with individual values and
median were used to represent these data. For large sample sizes, box
plots show 1-99 percentile, outliers and median. Sample sizes, statistical
tests and p values are indicated in Figure legends.

RESULTS
BIN1 HET and KO cerebral organoids show transcriptional
alterations associated with neuronal functional properties
Cerebral organoids (COs) faithfully recapitulate fundamental
aspects of the three-dimensional organization of the human
brain, including the molecular specification of different neural cell
types/subtypes and the generation of complex electrical activity
patterns [19, 20]. To investigate the potential role of BIN1 in
human neural cells, we generated and characterized COs using
isogenic BIN1 wild type (WT), heterozygous (HET) and KO hiPSCs
(Fig. 1A, Supplementary Fig. 1, Supplementary Table 1). After
6.5 months of culture, COs were composed of all the major neural
cell types identified by the expression of MAP2, GFAP and NESTIN
and we did not observe any gross difference in size or
morphology of COs among the three genotypes (Supplementary
Fig. 2A). Western blot analyses confirmed the reduction and
absence of BIN1 protein in BIN1 HET and KO COs, respectively
(Supplementary Fig. 2B). We then employed single-nucleus RNA
sequencing (snRNA-seq) to further characterize individual cell
types/subtypes and investigate possible gene expression altera-
tions associated with reduced BIN1 expression. COs (n= 4 from
each genotype) were divided into two halves that were
independently processed for western blotting or snRNA-seq. We
observed similar expression of general neuronal and glial proteins
in these COs (Supplementary Fig. 2C), suggesting a low degree of
heterogeneity in these samples. Nevertheless, to further reduce
potential batch effects, we pooled COs into a single multiplexed
library using Cell Hashing [21]. After sequencing, quality control
and demultiplexing, we recovered 4398 singlets that could be
grouped into 7 major cell clusters based on the expression of cell
type markers SLC1A3 (GLAST), GFAP and TNC (astrocyte); SNAP25,
DCX and MAPT (pan-neuronal); SLC17A7 and SLC17A6 (glutama-
tergic neurons); DLX1, GAD1 and GAD2 (GABAergic neurons); HES6,
CCND2 and CDK6 (NPCs); ITGA8 (choroid plexus); and CLIC6
(pigmented epithelium) (Fig. 1B, C). BIN1 expression in COs was
mainly detected in glutamatergic neurons and oligodendrocytes
(Fig. 1C), similar to the profile described for the human brain [7]—
except for brain microglial cells that are not present in COs. We
also observed a reduction and enlargement, respectively, in the
proportions of glutamatergic neurons and astrocytes in BIN1 KO
compared to WT (Fig. 1D; ****p < 0.0001; Chi-square test).
To identify possible differentially expressed genes (DEGs) in

BIN1 KO or HET compared to WT cells, we performed a Wilcoxon
test for each major cell type/subtype identified in COs. Consistent
with the predominant expression of BIN1 in glutamatergic
neurons (Fig. 1D), we identified a high number of DEGs in this
cell type both in BIN1 HET (76 genes) and KO (124 genes)
compared to WT genotype (Figure1E; Supplementary Fig. 3A).
Furthermore, we found that BIN1 HET and KO glutamatergic
neurons shared a significant proportion of DEGs and that
correlation between gene expression changes in these two
independent clones was highly significant (Supplementary
Fig. 3B–D). In astrocytes, we also detected 75 DEGs in BIN1 KO,
but only 6 DEGs in HET compared to WT (Fig. 1E; Supplementary
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Fig. 3A). For all other cell types, we observed a maximum of 1–4
DEGs in the comparison between BIN1 KO vs WT or HET vs WT
(Supplementary Table 2). These observations suggest that both
BIN1 null (KO) and partial deletion (HET) affect similar biological
processes in glutamatergic neurons in a dose-dependent manner.
Accordingly, similar GO terms were enriched for DEGs identified in
BIN1 KO or HET glutamatergic neurons, including several terms
associated with synaptic transmission (Fig. 1F). For BIN1 KO
glutamatergic neurons, we also identified GO terms associated
with ion channel complex and calcium ion binding (Supplemen-
tary Fig. 3E; Supplementary Table 3), further suggesting that

reduced BIN1 expression leads to specific transcriptional changes
associated with functional properties of this neuronal subtype.
DEGs identified in astrocytes of BIN1 KO compared to WT COs
significantly enriched for terms associated with nervous system
development and cell migration (Supplementary Table 3).

Altered expression of activity-related genes in BIN1 KO and
HET COs
Neuronal firing patterns (such as tonic and burst firing) play a key
role in the transcriptional regulation of a particular set of genes
designated activity-related genes (ARGs) [22]. While neurons
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stimulated with brief patterns of electrical activity transcribe rapid
primary response genes (rPRGs) or early response genes (ERGs),
those stimulated with sustained patterns of electrical activity
express delayed primary response genes (dPRGs), secondary
response genes (SRGs) or late response genes (LRGs) (Fig. 2A)
[23, 24]. Using Cell-ID [25], we quantified the enrichment for ARGs
signatures (Supplementary Table 4) in COs at single-cell resolution
as an indirect readout of neuronal electrical activity patterns in this
model. We first confirmed that ARG signatures were predomi-
nantly enriched in neurons (Fig. 2B). Then, we quantified the
proportion of glutamatergic or GABAergic neurons significantly
enriched for such specific responses in gene signatures
(padj < 0.05; hypergeometric test). We observed a significantly
higher proportion of glutamatergic neurons enriched for dPRGs
and LRGs both in BIN1 HET and KO, as well as SRGs in BIN1 KO
compared to WT glutamatergic neurons, whereas the proportion

of glutamatergic neurons enriched for rPRGs and ERGs was
reduced in BIN1 HET and KO (Fig. 2C). In sharp contrast, the only
difference observed in GABAergic neurons was a reduction in the
proportion of cells enriched for SRGs (Supplementary Fig. 4). These
results suggest that reduced BIN1 expression in glutamatergic
neurons triggers neuronal firing patterns towards sustained
activity leading to a higher expression of late-response ARGs.

Lower numbers of synaptic puncta in BIN1 HET and KO COs
compared to WT
Transcriptional alterations in BIN1 HET and KO glutamatergic
neurons are also suggestive of synaptic dysfunction, which is an
early hallmark of AD pathology [26]. We thus sought to determine
whether reduced BIN1 expression could affect synaptic connec-
tivity in COs. Using immunohistochemistry to detect the expres-
sion of the pre-synaptic protein Synaptohysin-1 (SYP) and
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post-synaptic protein HOMER1, we were able to quantify the
frequency of putative synaptic contacts (% SYP assigned) in COs
(see methods). We observed a significant reduction in the
percentage of SYP assigned both in BIN1 HET and KO compared
to WT, mainly due to a reduction in the number of post-synaptic
spots expressing HOMER1 (Fig. 2D–G).
Next, we investigated whether APP processing and Tau

phosphorylation, which have been previously associated with
BIN1 and are known to modulate neuronal electrical activity [10,
15, 27], could also be altered in BIN1 HET and KO COs. To this end,
we measured the intracellular levels of full-length APP and APP
β-CTF (as a readout of amyloidogenic APP processing), total and
phosphorylated TAU proteins by western blotting. Besides a trend
for reduced TAU expression, likely explained by the reduced
proportion of neurons (Fig. 1), we did not detect any significant
differences in the intracellular levels of APP, APP β-CTF, TAU or
phospho-TAU (Ser202, Thr205) in BIN1 HET and KO compared to WT
COs (Supplementary Fig. 5). Altogether, these results suggest that
reduced BIN1 expression could alter neuronal functional properties
without significantly affecting APP or Tau metabolism in COs.

Cell-autonomous role of BIN1 in the regulation of neuronal
gene expression
Our results in COs suggest that reduced BIN1 expression affects
mainly glutamatergic neurons. However, at least in BIN1 KO COs, we
cannot completely rule out an effect of BIN1 deletion in astrocytes
that could indirectly impact glutamatergic neurons. Therefore, to
unambiguously probe the cell-autonomous effect of BIN1 deletion
on the electrical activity and gene expression of human glutama-
tergic neurons, we generated BIN1WT or KO pure neuronal cultures
by direct lineage-reprogramming of hiPSC-derived neural progeni-
tor cells NPCs (hiNPCs) using doxycycline-inducible expression of
ASCL1 (Fig. 3A; see Supplementary Methods). After validation of the
efficient lineage-reprogramming of hiNPCs into highly pure neurons
(hereafter ASCL1-hiNs) (Fig. 3B), we added exogenous human
cerebral cortex astrocytes to trophically support functional neuronal
maturation and synaptic connectivity [28]. Using snRNA-seq after
4 weeks of differentiation we identified 5583 cells (n= 3
independent culture batches) clustered into two main glutamater-
gic neuron (GluNeu-I and II), one GABAergic neuron (GABANeu), one
immature/unspecified neuron (UnspNeu), two astrocytes (Astro-I
and II) and one proliferative NPC groups (Fig. 3C, D). Sample-level
differential gene expression analysis using DESeq2 [29], revealed 99
DEGs ( | log2FC | >0.25 and FDR < 0.05) in BIN1 KO GluNeu-II
compared to WT, but only two in GluNeu-I and one in immature
neurons (Fig. 3E; Supplementary Table 5, Supplementary Fig. 6). As
observed in COs (Fig. 1H–I), GO term enrichment analysis revealed a
significant enrichment for terms associated with synaptic transmis-
sion, ion channel activity and calcium signaling pathways (Fig. 3F;
Supplementary Fig. 6; Supplementary Table 6). The percentage of
GluNeu-II enriched for late-response ARGs was slightly greater in
BIN1 KO compared to WT, but without statistical differences
(Fig. 3G, H). Exogenously added human astrocytes co-cultured with
BIN1 WT and KO hiNs also showed a low number of DEGs (11 in
Astro-I; Supplementary Table 5), likely reflecting an astrocyte
reaction to primary changes in hiNs in response to BIN1 deletion.

BIN1 KO leads to alteration in the electrical activity pattern of
ASCL1-hiNs
The transcriptional changes observed in our 2D and 3D models
could suggest a role of BIN1 in regulating functional properties of
glutamatergic neurons. To directly address this possibility, we
used multi-electrode arrays (MEA) to record and quantify multi-
unit activity (MUA) in ASCL1-hiNs. As previously described in
spontaneously differentiated hiPSC-derived neuronal cultures [30],
ASCL1-hiNs cells exhibited a diverse range of spontaneous activity
patterns, including regular discharges, population bursts and
period activity (Supplementary Fig. 7A). In this respect, we found a

conspicuous change in the temporal organization of MUA after
BIN1 deletion (Supplementary Fig. 7A), mainly characterized by a
greater number of spike bursts at 4 weeks (Supplementary
Fig. 7D). These alterations may result from changes at the single
cell or the population level (different number of neurons
contributing to each electrode, for example). To disentangle these
possibilities, we used waveform-based spike sorting to examine
the functional consequences of BIN1 deletion at the single
neuronal level (Fig. 4A). We identified a similar number of single
units per recording electrode between genotypes (WT: 4.92 ± 2.34;
KO: 5.27 ± 2.45), indicating that BIN1 deletion does not affect the
density of active neurons within culture. However, we observed
reduced single-unit activity (SUA) frequency (Fig. 4B) and higher
SUA amplitude (Fig. 4C) in BIN1 KO compared to WT ASCL1-hiNs.
Interestingly, we could not detect significant changes in the
number of bursts per neuron (WT: 11.01 ± 6.71; KO: 10.36 ± 8.59),
although both the burst duration and the number of spikes within
a burst were significantly lower in BIN1 KO compared to WT
ASCL1-hiNs (Fig. 4D, E). We also observed a prominent temporal
disorganization of BIN1 KO hiNs activity by computing the array-
wide spike detection rate (ASDR, Fig. 4G), which reveals the
strength of the synchronized population activity, and the
autocorrelograms of SUAs (Fig. 4H, I), which allows the apprehen-
sion of synchronized periodicity. These analyses revealed that
most spikes of BIN1 WT neurons were organized in bursts
occurring at periodic intervals of about 8-10 s, whereas the spikes
of BIN1 KO neurons were randomly distributed, leading to a higher
percentage of spikes occurring outside of bursts compared to WT
neurons (Fig. 4J).

Altered electrical activity of BIN1 KO ASCL1-hiNs is associated
with normal synapse numbers and altered TAU
phosphorylation
The changes in neural network activity observed in BIN1 KO hiNs
could be explained by, among other things, a reduced synaptic
connectivity, as observed in our long-term COs cultures (Fig. 2). To
test this possibility, we first quantified the number of synaptic
contacts in BIN1 WT and KO ASCL1-hiNs cultures. In contrast with
COs, we did not detect any significant differences in the number
of putative synaptic contacts (% SYP assigned) in BIN1 KO
compared to WT ASCL1-hiNs, neither after 4 nor 6 weeks of
differentiation (Fig. 5A–D). Next, we quantified the number and
activity of glutamatergic synapses by using real-time imaging of
ASCL1-hiNs expressing the glutamate sensor iGLUSnFr [31]. In
accordance with our observations based on immunocytochem-
istry, we did not detect differences neither in the number of
glutamatergic synapses (active spots) nor in the frequency of
events (change in fluorescence levels in active spots) in BIN1 KO
compared to WT ASCL1-hiNs (Supplementary Fig. 8; Supplemen-
tary Movies 1 and 2), indicating that changes in neuronal activity
observed in our cultures are not related to changes in synaptic
transmission.
Taking advantage of this culture system comprising enriched

neuronal populations, we also sought to confirm whether BIN1
deletion could be associated with changes in APP processing or
Tau phosphorylation. To this end, we measured the extracellular
levels of amyloid-beta (Aβ) peptides, as well as the intracellular
levels of full-length APP and APP β-CTF, total and phosphorylated
TAU proteins in ASCL1-hiNs cultures. Like COs, we did not detect
any significant differences neither in the extracellular levels of
Aβ1-x or Aβ1-42, nor in the intracellular levels of APP or APP β-CTF
in BIN1 KO compared to WT ASCL1-hiNs (Supplementary Fig. 9).
However, in contrast with our observations in COs, we observed
significantly higher levels of phospho-TAU (Ser202, Thr205)
relative to β-ACTIN and total TAU in in BIN1 KO compared to WT
ASCL1-hiNs (Fig. 5E, F). Together, these observations may suggest
that BIN1 deletion primarily impairs neuronal intrinsic properties
regulating electrical activity and Tau phosphorylation prior to
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detectable changes in synaptic numbers (observed only in long-
term cultures – Fig. 2) and independently of alterations in APP
processing.

BIN1 regulates neuronal Ca2+ dynamics through Cav1.2
In neurons, electrical activity is always accompanied by an influx of
Ca2+ ions, which play a fundamental role in the regulation of
neuronal firing and activity-dependent gene transcription [32]. We

therefore postulated that reduced BIN1 expression in human
glutamatergic neurons could primarily affect Ca2+ dynamics, as
previously suggested for cardiomyocytes [33]. To directly test this
possibility, we first studied Ca2+ dynamics in BIN1 WT and KO
ASCL1-hiNs using real-time calcium imaging experiments. We
observed spontaneous, synchronous calcium transients among
adjacent cells both in BIN1 WT and KO ASCL1-hiNs cultures
(Supplementary Movies 3 and 4). By quantifying calcium spike
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transients (>2 standard deviations above the noise level), we
showed a significantly higher frequency of Ca2+ transients in BIN1
KO compared to WT ASCL1-hiNs (Fig. 6A, B, D). Moreover, the
dynamics of individual Ca2+ transients in BIN1 KO were
qualitatively different from WT ASCL1-hiNs (Fig. 6C). These
differences could be quantitatively measured by a longer time
to reach the maximum intracellular Ca2+ levels and to recover
baseline levels (Fig. 6E, F).
In human heart failure, BIN1 expression is reduced, leading to

an impairment in Cav1.2 trafficking, calcium transients, and
contractility [33]. Thus, we sought to determine if BIN1 could
also interact and regulate LVGCC expression in human neurons.

To this end, we performed proximity ligation assay (PLA) to probe
a possible interaction between BIN1 and Cav1.2 or Cav1.3, the two
LVGCCs expressed in ASCL1-hiNs (Supplementary Fig. 10). We
observed a widespread BIN1-Cav1.2 PLA signal (Fig. 6G) and, to a
lesser extent, a BIN1-Cav1.3 PLA signal in neurons (Supplementary
Fig. 10). Next, we quantified neuronal LVGCC protein by western
blotting and observed higher total Cav1.2 expression in BIN1 KO
compared to WT ASCL1-hiNs (Fig. 6H–I). Protein expression of
neither Cav1.3, nor the members of the Cav2 family (Cav2.1, Cav2.2
and Cav2.3) were altered in the same cultures (Supplementary
Fig. 10), suggesting a specific regulation of Cav1.2 expression by
BIN1.
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Notably, LVGCCs are key regulators of neuronal firing [30] and
activity-dependent internalization of these channels is a key
mechanism in firing homeostasis [34]. We thus set out to
investigate whether BIN1 deletion could impair this mechanism
in human neurons. We stimulated ASCL1-hiNs with KCl 65 nM for
30min to induce neuronal depolarization and collected total and
endosomal proteins for analysis. We confirmed a higher global
level of Cav1.2 in BIN1 KO compared to WT ASCL1-hiNs that was
independent of KCl treatment (Fig. 6J). We also confirmed that the
treatment with KCl 65 nM for 30min was sufficient to increase the
endosomal fraction expressing the early endosome antigen 1
(EEA1) and the internalization of Cav1.3 in both BIN1 WT and KO
ASCL1-hiNs (Fig. 6K–L). However, while Cav1.2 expression in the
endosomal fraction was 50% higher after KCl treatment in BIN1
WT, this rise was only 10% in BIN1 KO ASCL1-hiNs (Fig. 6K–L).
These results indicate that BIN1 interacts and regulates the
activity-dependent internalization of Cav1.2 in human neurons.

Treatment with the calcium channel blocker nifedipine partly
rescues electrical and gene expression alterations in BIN1 KO
ASCL1-hiNs
To investigate whether the network dysfunctions observed in BIN1
KO ASCL1-hiNs could be related to the altered expression of
Cav1.2 in these cells, we treated cultures with a physiologically
relevant concentration (50 nM) of the Cav1.2 blocker nifedipine [35]

for 2 weeks and recorded neuronal activity using MEA electro-
physiology. We observed a partial recovery of the oscillatory
pattern of neuronal electrical activity observed in WT cells (Fig. 6M).
Interestingly, the percentage of spikes outside bursts was not
affected by nifedipine treatment in BIN1 WT but was significantly
lower in BIN1 KO ASCL1-hiNs (Fig. 6N), indicating a partial recovery
of burst organization. To note, no difference in firing rates was
observed whatever the models and conditions (Fig. 6O). After
2 weeks of nifedipine treatment (4 weeks of differentiation), we
also performed snRNA-seq experiments and recovered a total of
1537 cells (n= 2 independent culture batches), which were
mapped into the 7 clusters described earlier (Fig. 3; Supplementary
Fig. 11). Using the Wilcoxon test, we found that nifedipine
treatment down-regulated several genes in BIN1 KO ASCL1-hiNs,
especially in the GluNeu-II population (Supplementary Table 7). The
downregulated genes after nifedipine treatment were enriched for
LRGs of excitatory neurons, suggesting rescue of the altered
activity-related gene expression (Supplementary Fig. 11D). Further-
more, several GO terms associated with ion channel activity and
synapse transmission, which are found enriched in BIN1 KO vs WT
GluNeu-II population, show consistently reduced enrichment in
nifedipine treated KO cells (Fig. 6P; Supplementary Table 8).
Altogether, these data support the view that BIN1 contributes to
the regulation of electrical activity and gene expression through
the regulation of Cav1.2 expression/localization in human neurons.
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Molecular alterations in BIN1 KO organoids and ASCL1-hiNs
are also present in glutamatergic neurons of AD patients
We finally sought to evaluate whether molecular alterations in our
neural models may recapitulate some of those observed in the
brains of AD cases. For this purpose, we used a publicly available
snRNA-seq dataset generated from the entorhinal cortex (EC) and
superior frontal gyrus (SFG) of AD patients at different Braak
stages [36]. We first observed a progressive and significant

decrease in BIN1 mRNA levels in glutamatergic neurons of both
brain regions (Fig. 7A), suggesting that reduced BIN1 expression in
this cell type may be a common feature occurring in the AD
pathology progression. We then compared DEGs identified in BIN1
KO glutamatergic neurons (either from COs or ASCL1-hiNs) with
those identified in the same cell subtype of AD brains
(Supplementary Table 9). Remarkably, DEGs identified in BIN1 KO
glutamatergic neurons (either from COs or ASCL1-hiNs) showed a
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statistically significant overlap with DEGs detected in this cell
population of AD brains at different Braak stages (Fig. 7B). In
astrocytes, however, a similar significant overlap could only be
observed between COs and AD brains. GO analysis based on DEG
overlap between BIN1 KO ASCL1-hiNs and AD brain glutamatergic
neurons indicated significant enrichment for pathways associated
with glutamate receptor activity and gated channel activity
(Fig. 7C; Supplementary Table 8). Similarly, DEG overlap between
BIN1 KO COs and AD brain glutamatergic neurons was significantly
enriched for genes associated with glutamate receptor activity,
gated channel activity and calcium ion binding (Fig. 7D;
Supplementary Table 8). No significant enrichment was observed
for DEG overlap between BIN1 KO COs and AD brain astrocytes
(data not shown). Therefore, gene expression alterations in BIN1
KO hiNs and glutamatergic neurons of AD patients overlap and
converge to biological processes associated with calcium
homeostasis.

DISCUSSION
In this work, we show that the AD genetic risk factor BIN1, plays a
critical role in the regulation of neuronal firing homeostasis and
gene expression in glutamatergic neurons. Complete deletion of
BIN1 is sufficient to alter the expression of the LVGCC Cav1.2,
leading to altered calcium homeostasis and neural network
dysfunctions in human neurons in vitro. These functional changes
are correlated with changes in the expression of genes involved in
synaptic transmission and ion transport across the membrane, as
well as elevated Tau phosphorylation. In long-term neuronal
cultures using COs, we show that reduced BIN1 expression is
associated with fewer synapses and specific gene expression
alterations in glutamatergic neurons associated with activity-
dependent transcription. Notably, reduced BIN1 expression in
human-induced glutamatergic neurons is sufficient to elicit gene
expression alterations that are also present in AD and converge to
biological processes related with calcium homeostasis and
synaptic transmission. Together, our findings support the view
that altered BIN1 expression in glutamatergic neurons may
contribute to AD pathophysiology by dysregulating neuronal
firing homeostasis via LVGCCs.
We also show using our new protocol to generate pure ASCL1-

hiNs cultures that deletion of BIN1 expression only in neurons is
sufficient to increase the phosphorylation of TAU but does not
increase amyloidogenic APP processing, as previously shown in
other hiPSC-derived neuronal cultures [12]. In addition, in 6.5
months-old cerebral organoids, we observe a 40% higher ratio of
p-Tau/Tau in BIN1 KO compared to WT genotype. These results
further support the notion that BIN1 expression, at least in

neurons, contributes to regulate Tau phosphorylation/propagation
[15, 37] and are in agreement with several lines of evidence
showing a significant association between the BIN1 locus with
elevated total Tau/p-Tau in the brain and cerebrospinal fluid of AD
patients [16, 38]. It would be interesting to investigate in the
future whether the altered electrical activity observed in hiNs
expressing reduced levels of BIN1 are a cause or a consequence of
the higher levels of phosphorylated Tau in these cells [17, 39].
Neuronal network dysfunctions are observed in AD patients at

early stages of the disease and precede or coincide with cognitive
decline [40–42]. Under physiological conditions, neuronal net-
works can maintain optimal output through regulation of synaptic
plasticity and firing rate [43]. Our results suggest that normal
levels of BIN1 expression in glutamatergic neurons are funda-
mental in regulating neuronal firing rate homeostasis. Accord-
ingly, BIN1 KO in hiNs is sufficient to dysregulate network
oscillations even without impacting the number of functional
synaptic contacts, suggesting that the desynchronization
observed in BIN1 KO hiNs circuits are a consequence of disordered
homeostatic controls of neuronal activity. In long-term hiNs
cultures (COs), glutamatergic neurons show both gene expression
alterations indicative of altered electrical activity and reduced
synaptic densities, which could indicate a synaptic down-scaling in
response to earlier augmented electrical activity [44].
One key mechanism controlling neuronal spiking activity is the

regulation of Ca2+ homeostasis [30, 32, 45]. Boosted neuronal
electrical activity induces the turnover of LVGCCs from the plasma
membrane through endocytosis [34] and regulates the transcrip-
tion of genes encoding for calcium-binding proteins and calcium-
mediated signaling [44], mechanisms aiming to restore local Ca2+

signaling cascades and protect cells against aberrant Ca2+ influx.
We show that BIN1 interacts with Cav1.2 in hiNs, similar to previous
findings in cardiac T tubules [33] and provide evidence supporting
a novel role for BIN1 in the regulation of activity-dependent
internalization of Cav1.2 in human neurons, thus linking the known
role of BIN1 in endocytosis [12] to firing homeostasis in human
neurons via the LVGCC. These results confirm in human neurons
the interaction between endogenous neuronal BIN1 and Cav1.2 as
previously suggested in mouse hippocampal neurons overexpres-
sing a Bin1-mKate fused protein [17].
Loss of Ca2+ homeostasis is an important feature of many

neurological diseases and has been extensively described in AD
[46, 47]. Interestingly, DEGs identified in BIN1 KO glutamatergic
neurons in our different cell culture models are enriched for
calcium-related biological processes. This is also observed for
DEGs detected in glutamatergic neurons of the AD brain at late
stages of pathology when the expression levels of BIN1 in those
cells is also decreased. Thus, it is plausible to speculate that

Fig. 6 Altered frequency of calcium transients in BIN1 KO ASCL1-hiNs. A Snapshot of a 4-week-old ASCL1-hiNs culture labeled with Oregon
green BAPTA. B Representative plot of fluorescence changes over time in 1000 frames. C Representative traces showing the fluorescence
changes in BIN1 WT and KO ASCL1-hiNs. Red dashed lines indicate the time to reach the fluorescence maximal intensity (raising time - t1) and
to return to baseline (recovery time - t2). D Quantification of calcium transients in BIN1 WT and KO ASCL1-hiNs (****p < 0.0001; Mann–Whitney
test; n= 3 independent cultures for each genotype; number of active cells per condition: 754 (WT), 1006 (KO)). E, F Quantification of rising
time (t1) and recovery time (t2) for calcium transients (**p= 0.0022; ****p < 0.0001; Mann–Whitney test). G Images showing PLA spots using
anti-BIN1 and anti-Cav1.2 antibodies in 4-week-old BIN1 WT and KO hiNs. Cells were also immunolabeled for the neuronal marker MAP2
(green), the astrocyte marker GFAP (white), and stained with DAPI (blue). H Western blot for Cav1.2 (without and with blocking peptide) and β-
ACTIN in 4-week-old ASCL1-hiNs cultures. I Quantification of Cav1.2/β-ACTIN levels in BIN1 WT and KO ASCL1-hiNs cultures (*p= 0.0286;
Mann–Whitney test; n= 4 independent culture batches). J Western blot for Cav1.2 and β-ACTIN in the total protein extracts from 4-week-old
ASCL1-hiNs treated with KCl (+) or vehicle (–). Plot shows the quantification of Cav1.2 normalized by β-ACTIN. K Western blot for Cav1.2, Cav1.3
and EEA1 in the endosomal protein extracts from 4-week-old ASCL1-hiNs treated with KCl (+) or vehicle (–). L Plot shows the optical density of
these proteins (****p < 0.0001; Chi-square test; n= 6 independent cultures for each genotype/treatment pooled). Uncropped plots are shown
in Supplementary Figs. 13, 14.M Auto-correlograms of 4-week-old BIN1WT and KO hiNs treated or not with 50 nM Nifedipine (NIF) for 2 weeks.
N Percentage of spikes outside of bursts (WT or WT+NIF vs KO or KO + NIF: ****padj < 0.0001; KO vs KO + NIF: *padj= 0.0124; Dunn’s multiple
comparison test; n= 3 independent culture batches). O Average firing rates. P Comparison of the enrichment for GO terms in genes
upregulated in KO vs WT and KO + nifedipine (NIF) vs WT GluNeu-II using fast gene set enrichment analysis (FGSEA). The FGSEA results are
shown for the top15 GO terms with reduced enrichment in BIN1 KO ASCL1-hiNs treated with nifedipine (NIF) or vehicle (Control) compared to
WT cells.
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reduced expression of BIN1 in glutamatergic neurons may
contribute to the breakdown of Ca2+ homeostasis in the AD
brain, potentially contributing to neuronal circuit dysfunctions.
Consistent with this hypothesis, we have previously shown a
significant reduction in the expression of the transcript encoding
for the neuron-specific BIN1 isoform 1 in bulk RNA-sequencing
data from a large number of AD patients [7] and we show in this
work that BIN1 expression is reduced in glutamatergic neurons of
AD brains at late Braak stages. Moreover, it has been recently
shown that Bin1 conditional KO in neurons and glial cells of the
mouse forebrain is sufficient to elicit gene expression changes
associated with calcium-dependent mechanisms [48], further
supporting the interpretation that BIN1 plays an important role
in cellular processes involved in Ca2+ homeostasis in the brain.
Lastly, we show that treatment with the clinically approved

calcium channel blocker nifedipine for only 2 weeks is sufficient to
partly recover electrical and gene expression alterations in BIN1
KO hiNs. These findings further support our interpretation that
changes in gene expression and electrical activity observed in
BIN1 HET and KO hiNs are a direct consequence of reduced BIN1
expression in glutamatergic neurons and not a possible artifact of
CRISPR/Cas9 gene-editing in our hiPSC lines. Moreover, together
with our observations of reduced BIN1 expression and transcrip-
tional alterations affecting biological processes related to calcium
homeostasis in human-induced glutamatergic neurons of the
human brain at late stages of AD pathology, our data strongly
support a link between BIN1 and calcium homeostasis.
Thus, it is plausible to speculate that reduced BIN1 expression in

glutamatergic neurons primarily undermines Ca2+ homeostasis,
leading to changes in neuronal electrical activity. At a later stage,

gene expression and circuit-level alterations such as synapse loss
would occur, likely because of altered neuronal electrical activity.
A corollary to this model would be that early treatments aiming to
restore Ca2+ homeostasis and neuronal electrical activity may
have a beneficial impact in AD onset and progression. Supporting
this notion, both a Mendelian randomization and a retrospective
population-based cohort study found evidence suggesting that
treatment with Ca2+ channel blockers in human patients are
associated with a reduced risk of AD [49, 50]. In the future, it
would be interesting to study the impact of these drugs for AD
onset/progress as a function of genetic variants in the BIN1 locus.
An important limitation of our work is the absence of microglial

cells in our models, hampering the study of BIN1 roles in this cell
type of high relevance to AD pathology [51]. However, our
findings provide fundamental information about the molecular
and cellular processes impacted by reduced BIN1 expression in
human neurons, which will require further confirmation in the
brain of patients carrying AD-related BIN1 genetic variants.
Moreover, we studied the impact of BIN1 HET and KO mutations,
which do not necessarily represent the consequences of AD-
related BIN1 genetic variants in gene expression. Nevertheless, it is
tempting to speculate that slight changes in BIN1 expression
provoked by those variants could progressively deteriorate
neuronal functions in the human brain, contributing to AD
pathogenesis in the elderly brain.

DATA AVAILABILITY
Single-cell transcriptomic data is available at Mendeley Data doi: 10.17632/
b3rf6fbjys.2. Supplementary information is available at MP’s website.
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