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Genes with multiple copies are likely to be maintained by stabilizing selection, which puts a bound to unlimited expansion of copy
number. We designed a model in which copy number variation is generated by unequal recombination, which fits well with several
genes surveyed in three human populations. Based on this theoretical model and computer simulations, we were interested in
determining whether the gene copy number distribution in the derived European and Asian populations can be explained by a
purely demographic scenario or whether shifts in the distribution are signatures of adaptation. Although the copy number
distribution in most of the analyzed gene clusters can be explained by a bottleneck, such as in the out-of-Africa expansion of Homo
sapiens 60–10 kyrs ago, we identified several candidate genes, such as AMY1A and PGA3, whose copy numbers are likely to differ
among African, Asian, and European populations.
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INTRODUCTION
Gene copy number variation (CNV) refers to the presence of
multiple copies of a gene family within a genome resulting from
duplications, deletions, or rearrangements.
Combined with their high mutation rate, CNVs constitute a

significant driver of genomic variability that allows for rapid
adaptive evolution in response to environmental changes1–5.
A well-studied example of CNV within the human population is

the salivary amylase gene, whose variation in the number of copies
is hypothesized to correlate with the extent of dietary starch
consumption not only in humans but also in other species6–11.
In general, CNV may result from different evolutionary forces

acting upon them. Demographic events, such as population
migrations and expansions, can lead to changes in gene
frequencies and distributions over time. Simultaneously, natural
selection acts on genetic variations, favoring advantageous alleles
and promoting their proliferation within populations.
Both demographic effects and selection may produce similar

patterns in single nucleotides as well as in structural variants,
making it difficult to disentangle these forces12,13. For SNP or allele
frequency data, there have been well-developed statistics14,15 that
are standardized so that a genomic baseline can be established,
from which loci under selection may be detected. However, such a
genomic baseline is not available for gene CNV data. Therefore,
we resort to a more basic approach involving modeling and
computer simulations.
We have recently examined the evolutionary dynamics of

multicopy gene families with respect to selective pressure and
unequal recombination16. This study focused on analyzing the
impact of stabilizing selection on gene copy numbers while
considering the role of recombination as a randomizing mechan-
ism that introduces variability within the population.

By expanding this model, we aimed to assess whether gene
copy number alterations observed within human populations
could be solely attributed to demographic events or whether
selective pressures play a role in shaping these variations.
In this study, we conducted extensive simulations under various

scenarios of human demography and selective changes. By
disentangling the effects of these two forces, we sought to gain
a deeper understanding of the evolutionary processes driving
gene CNV in human populations. Based on empirical data of
human gene copy numbers, we identified several candidate genes
whose copy numbers are likely to be selected differently among
African, Asian, and European populations.

MATERIALS AND METHODS
Gene CNV in humans
We started with the dataset provided by Brahmachary et al.1. Using
NanoString technology, they estimated the gene copy numbers of 180
gene families in 165 individuals of three populations (60 African Yoruba –
YRI, 60 Central Europe – CEU, and 45 Asia – CHB) based on data collected
in the framework of the 1000 Genomes Project17.
While some of these loci presented copy numbers of >100 copies (DUX4

even up to 600), we focused on intermediate copy numbers and removed
all satellite loci, genes on sex chromosomes, genes with minimum copy
numbers less than 2, and genes with mean copy numbers (in YRI) <5 or
>60. For genes that have two primer sets, only one is used.
The filtering procedure is described in the supplementary material,

which resulted in 49 gene families. For these analyses, we used t tests
and F tests to select gene families with significant differences in means
or standard deviations between the YRI–CHB or YRI–CEU comparisons
and removed those that showed no statistical evidence (α= 5%) in any
of these comparisons. The remaining 42 gene families are shown in
Table 1, and the copy number distributions of four of them are shown
in Fig. 1.
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Unequal recombination model
In a recently developed model, we considered unequal recombination and
selection to describe the evolution of tandem gene arrays16.
We briefly summarize the main findings. Consider two chromosomes

with gene arrays of size y1 and y2. A recombination event occurs at rate r
and may produce a gamete of gene array size according to the trapezoidal

distribution, such that

Prob yjy1; y2ð Þ ¼ 1
y1y2

0; y < 1

y; 1 � y < minðy1; y2Þ
minðy1; y2Þ; minðy1; y2Þ � y < maxðy1; y2Þ
y1 þ y2 � y; maxðy1; y2Þ � y < y1 þ y2 � 1

0; y � y1 þ y2

8>>>>>><
>>>>>>:

Table 1. Differences in means and variances between populations.

Gene YRI mean CEU mean CHB mean YRI sd CEU sd CHB sd

AMY1A 8.628 0 9.151 + 11.128 1.907 + 2.713 + 3.35

ANKRD20A3 26.414 + 29.148 + 29.904 1.804 0 1.718 0 1.698

BOLA2B 7.235 - 6.679 - 6.49 1.012 0 0.914 0 0.839

CBWD3 12.146 0 12.374 + 13.068 0.995 0 0.949 + 1.81

CDC37P1 14.941 + 19.977 0 16.582 4.11 + 5.619 + 5.579

CLEC18A 7.799 + 8.362 0 7.932 1.331 0 1.216 0 1.392

CSH 6.738 + 7.182 + 7.474 0.497 0 0.555 0 0.575

DEFA1 7.442 0 7.891 0 7.056 2.643 - 1.671 - 1.604

DEFB130 5.081 + 5.315 0 5.243 0.562 0 0.532 0 0.462

FAM72A 6.914 + 7.573 + 7.561 0.617 + 0.86 0 0.651

FAM75A1 11.859 0 11.972 + 13.362 1.473 0 1.391 + 2.019

FAM75A5 11.693 0 11.522 + 12.533 1.115 0 1.197 + 1.751

FCGBP 5.282 + 5.693 + 5.79 1.291 - 0.678 0 1.046

FOXD4L2 13.013 + 13.694 + 14.55 1.015 0 0.994 + 1.877

GOLGA6L9 27.683 0 28.586 + 29.181 2.615 0 2.532 0 2.59

GOLGA8G 29.209 + 31.641 + 30.37 3.065 0 2.783 0 2.35

GUSBP1 12.95 + 15.886 + 13.987 2.249 0 2.585 0 2.213

HIST2 8.436 + 8.709 + 8.894 0.528 0 0.673 0 0.644

LIMS3 5.829 - 5.408 - 5.661 0.346 0 0.354 0 0.39

LOC23117 50.194 0 50.304 - 48.639 3.685 0 2.963 0 2.789

LOC653606 6.56 0 6.403 - 5.999 0.486 0 0.621 + 0.917

MUC12 11.845 + 14.098 0 12.123 2.586 0 2.01 - 1.803

NBPF11 49.963 - 48.002 0 48.68 4.203 - 3.114 0 3.311

NBPF16 45.25 0 46.436 + 47.006 4.706 0 5.023 0 3.988

NPIP 51.171 - 49.488 - 48.938 2.16 0 2.327 0 2.224

PGA3 7.044 - 6.181 + 8.473 1.205 + 1.565 0 1.353

PPIAP21 43.141 + 48.632 + 49.493 3.765 0 4.315 0 3.881

PRAMEF14 10.516 + 11.835 + 11.888 1.295 + 2.246 + 1.937

PRAMEF20 7.253 0 7.415 + 7.576 0.566 0 0.723 + 0.924

PRAMEF5 17.844 - 16.475 - 15.804 1.721 + 2.386 + 2.578

PRAMEF8 5.919 0 5.787 0 5.842 0.652 + 1.281 0 0.819

PRR11 6.868 + 8.298 + 8.305 0.923 0 0.965 0 0.708

PRR20A 20.639 - 17.284 - 14.85 6.903 - 5.288 0 5.584

PSG3 14.943 + 15.624 0 15.087 1.314 0 1.238 + 1.843

RGPD1 13.959 0 14.037 0 14.151 0.791 + 1.309 + 1.266

SPDYE3 34.611 - 31.656 - 32.828 2.836 - 2.105 0 2.617

SULT1A3 7.627 0 7.406 - 7.017 1.197 0 1.087 0 0.904

TBC1D3 45.515 - 33.191 - 39.306 6.337 0 6.888 + 8.381

TCEB3C 33.02 - 28.574 - 25.895 7 0 7.383 0 6.299

TP53TG3 9.172 0 8.904 - 6.735 1.825 0 2.08 0 1.666

TRIM49L1 12.353 + 14.078 + 14.112 1.664 0 2.06 0 1.874

ZNF658B 5.544 + 6.273 + 6.647 0.727 0 0.827 + 1.01

Zero indicates no significant change, ‘+’ indicates a significant increase, and ‘−’ indicates a significant decrease (t test for the mean and F test for the standard
deviation; α= 0.05). The four candidate genes shown in Fig. 1 are highlighted with a light gray background.
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See Fig. 2A for an illustration. We apply a fitness function, where each
newly arising copy has a positive yet decreasing benefit sx. This is
motivated by the assumption of a beneficial effect, yet with diminishing
returns, either of increased gene dosage or of increased allelic diversity
within an individual16. At the same time, we assume that additional copies
are selected with increasing selective disadvantage sy. This is motivated by
the increasing cost of replication, gene processing and maintaining
genome integrity. Both effects are cast in a double-epistatic fitness
function with two selection coefficients (sx, sy), governed by a single
epistasis parameter (ε). To avoid trivial long-term evolution equilibrium of
one copy, we assume that sx > sy. Furthermore, we assume that ε= 0.05 is
constant. In summary, the fitness of a diploid individual with total gene
copy number y is given by

ω yð Þ ¼ exp
1
ε

sx þ sy
� �� sx � e�εy � sy � eε y�2ð Þ

� �� �
(1)

This leads to an optimal copy number yopt of

yopt ¼ 1þ log sx=sy
� �
2 � ε

(2)

which is determined by the ratio sx/sy when ε is fixed. See Fig. 2B for an
example. The population is then simulated according to a Wright‒Fisher
model with nonoverlapping generations and with selection and recombi-
nation described above. In the deterministic model, the equilibrium copy
number distribution is centered on yopt and is well approximated by a

gamma distribution16. Furthermore, the coefficient of variation CV= σ/y is
correlated with the logarithm of the recombination-selection ratio log(r/sx).
With strong selection and low recombination, the distribution is tightly
distributed around the optimal value, whereas higher r and lower sx lead to a
widespread distribution. For convenience, we introduce two new parameters:

● qS = sx/sy, the ‘selection ratio’, which determines the optimal copy
number such that for ε= 0.05, we find

yopt ¼ yopt qSð Þ ¼ 1þ 10 � log qSð Þ

● qR= r/sx, the ‘recombination/selection ratio’, which measures the
impact of unequal recombination compared with the selective
pressure of the fitness function and therefore determines the
coefficient of variation CV= σ/y of the equilibrium distribution.

Note that this selection model affects solely the copy number of a gene
family, not its sequence. We calculated Tajima’s D in a 1Mb interval around
each copy of the 42 gene families in sliding windows of 10 kb via data from
the 1000 Genomes Project [http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/]18 to test whether selective sweeps may also affect the copy
number distribution. Furthermore, we also tested whether these regions are
affected by the introgression of archaic hominins. With the data of Browning
et al.19, we counted the number of introgressed SNPs of Neanderthals or
Denisovans in an interval of 10Mb around the candidate genes to test
whether admixture affected the copy number distribution in humans.

Fig. 1 Gene copy number distribution in four exemplary gene families in three human populations: CEU, CHB, and YRI. The data were
adapted from Brahmachary et al.1. The y axis indicates the frequency of individuals carrying the number of copies shown on the x axis.

Fig. 2 Recombination process and fitness function. A Sketch of the unequal recombination process. Starting with two chromosomes with
y1= 5 and y2= 4 gene copies, two break points are chosen. One of the recombinants is then propagated. Its copy number (here y= 6) is
trapezoidal, as shown in ref. 16. B Example of the fitness function w(y) (Eq. (1)) with ε= 0.05, sx= 0.05, and sy= 0.0025, which leads to an
optimal copy number, yopt, of ~8 copies.
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Regression
We aim to quantify the effect of (r, sx, sy) on the resulting equilibrium copy
number distribution and, vice versa, to estimate the underlying parameter
triple for given empirical data. We simulated the population evolution
under different parameter settings to analyze the equilibrium distribution
of the unequal recombination process under drift. The codes for all the
following simulations are available on GitHub https://github.com/y-zheng/
gCNV-human. The population size is kept at N= 5000 and assumed to be
at an initial state of 5 copies on each chromosome. The different input
parameters are given in Table 2.
Together, they define 324 triples r, sx, sy. Additionally, we generated

160 random pairs such that qR is between 0.01 and 5 and yopt is between
4 and 60 and combined them with the four recombination rates, leading
to a total parameter set of 964 combinations, where we disregarded
those triples with selective strengths sx > 0.1 to maintain a realistic
parameter range.
For each of these parameter combinations, we evolve the population

under the given selection scheme for 5 million generations. The first
200,000 generations were discarded as burn-in, and the population
statistics (mean copy number y and standard deviation σ) were recorded
every 20,000 generations. Note that in contrast to the deterministic model
with an infinitely large population size, the population does not reach a
stationary distribution but rather fluctuates around the equilibrium
distribution. However, since we included an extensive burn-in phase, we
are confident that the population is close to equilibrium.
In total, this results in ≈185,000 data points, which we used to determine

the relationships between the input parameters (r, sx, sy) and the output
population statistics (y, σ).
As indicated in Otto et al.16, we suggest a mean copy number y close to

its optimal value yopt and a correlation of the CV to log(qR). Indeed, with
coefficients of determination (r2) of 0.9842 and 0.9088, we find

y ¼ 0:0379þ 0:983 � yopt
CV ¼ σ

y
¼ 0:323þ 0:0566 � log qRð Þ � 0:00152 � yopt � 0:000036 � log qRð Þ � yopt

(3)

We calculated the qS and qR ratios based on y and CV from gene copy
numbers (see Table 1) via regression Formula (3), with four recombination
rates, r= 0.001, 0.002, 0.005, and 0.01.
The results for the four candidate genes shown in Fig. 1 are given in Table 3.

Demography simulations
To determine whether significant changes in the mean and variance of the
copy number distribution (Table 1) can be explained by the demographic
history of human populations, we examined a total of 6 different scenarios
(enumerated as I–VI), as shown in Fig. 3.
Simulation of the bottleneck model First, we ran a simple bottleneck

model of three different population reductions. Each is divided into three
phases:

(1) Burn-in phase. For each gene, we used the estimated (r, sx, sy)-triple
based on the dataset from YRI. These parameters were chosen as
inputs to produce an equilibrium population of N= 10,000 via a
burn-in process of 200,000 generations. Independent equilibrium
populations are produced by recording the population state every
20,000 generations.

(2) Bottleneck. From equilibrium, we reduced the population size to
N= 100, 500, or 1000, denoted scenarios I, II, and III, and maintained
it for 5000 generations.

(3) Recovery phase. At the end of the bottleneck, the population is reset
to N= 10,000, and the copy number distribution is recorded every
50 generations until generation 1000 after the bottleneck.

We ran the bottleneck simulations I–III on all gene families given in
Table 1, with recombination rates r= 0.001, 0.002, 0.005 and 0.01, and
discarded parameter combinations with sx outside the interval [0.001, 0.1]
in YRI. This resulted in a total of 42 gene families and 95 gene-r
combinations. For each gene, recombination rate and bottleneck
population size combination, 10,000 replicates are produced (from 100
‘independent’ starting equilibria). We then traced the means and CV along
the recovery phase and compared them with the empirical data from the
CHB and CEU populations.
Simulation of human population history A more realistic population

history of humans is given by the genetic algorithm for demographic
model analysis (GADMA)20, which also includes migration between
subpopulations. We ran simulations on four candidate genes (AMY1A,
PGA3, SULT1A3, DEFA1) with the following modification of the GADMA-
demography: As an ancestral population (N= 9900 in GADMA), we used
the equilibrium populations (N= 10,000) from the previous section.
Therefore, we started the simulation 5992 generations before the present,
roughly corresponding to the onset of the out-of-Africa expansion, when
the Eurasian population split from the ancestral population and
experienced a sharp bottleneck. To reduce computation time, we did
not simulate the continued evolution of the African (YRI) population, since
we assumed it to be in equilibrium; for migration from YRI to Eurasian
populations, we drew samples from the ancestral population. At 896
generations before present, CEU and CHB split from each other and started
to evolve, including reciprocal migration and an exponentially increasing
population size. In the following, we refer to this simulation as scenario IV.

Table 2. Parameters for regression simulations.

4 recombination rates r 0.1%, 0.2%, 0.5%, and 1%

9 recombination/selection ratios
qR= r/sx

0.01, 0.02, 0.05, 0.1, 0.5, 1.0,
2.0, 5.0

9 optimal copy number values yopt 10, 15, 20, 25, 30, 35, 40, 45, 50

Table 3. Estimates of selection coefficients sx, sy under four recombination rates r= 0.001…,0.01 based on regression Eq. (3).

r = 0.001 r = 0.002 r = 0.005 r = 0.01

Gene Pop Mean SD yopt sx sy sx sy sx sy sx sy
AMY1A CEU 9.1511 2.7133 9.2708 0.0012 0.0005 0.0025 0.0011 0.0062 0.0027 0.0125 0.0055

CHB 11.128 3.3503 11.282 0.0011 0.0004 0.0022 0.0008 0.0054 0.0019 0.0109 0.0039

YRI 8.6279 1.9074 8.7386 0.0048 0.0022 0.0097 0.0045 0.0242 0.0111 0.0483 0.0223

PGA3 CEU 6.1808 1.5646 6.2491 0.0029 0.0017 0.0058 0.0035 0.0146 0.0086 (0.0292) (0.0173)

CHB 8.4731 1.3526 8.5811 0.0144 0.0068 0.0289 0.0135 0.0722 0.0338 (0.1445) (0.0677)

YRI 7.0444 1.2053 7.1277 0.0122 0.0066 0.0245 0.0133 0.0611 0.0331 (0.1223) (0.0663)

SULT1A3 CEU 7.4058 1.0872 7.4953 0.0186 0.0097 0.0373 0.0195 0.0932 0.0487 (0.1865) (0.0974)

CHB 7.0165 0.9041 7.0993 0.0259 0.0141 0.0518 0.0282 0.1295 0.0704 (0.2591) (0.1408)

YRI 7.6269 1.1971 7.7202 0.0155 0.0079 0.0311 0.0158 0.0774 0.0395 (0.1548) (0.0791)

DEFA1 CEU 7.8911 1.6708 7.9889 (0.0058) (0.0029) (0.0116) (0.0058) 0.0291 0.0145 0.0581 0.0289

CHB 7.0561 1.6041 7.1396 (0.0045) (0.0024) (0.0091) (0.0049) 0.0225 0.0122 0.0451 0.0244

YRI 7.4421 2.6428 7.5321 (0.0005) (0.0002) (0.0009) (0.0005) 0.0023 0.0012 0.0046 0.0024

The displayed gene families are the ones in Fig. 1 for all three populations. The values in parentheses are outside the range of 0.001 < sx < 0.1 in YRI and hence
are not used in simulations.
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At present, copy number distributions (mean and variance) were recorded.
For each gene and recombination rate combination, 10,000 replicates were
produced.
We also ran the same population model with a change in the selection

parameter either at 500 generations or 896 generations before present
(the latter being the CEU/CHB split time). The new selection parameters sx
and sy) are different for the CEU and CHB populations and are estimated
from the present CEU/CHB distributions (see Table 3). These simulations
are hereafter called scenario V (896 generations of selection change before
present) and VI (500 gpb).

Rejecting a purely demographic model
By observing the copy number distribution for a gene family in the
ancestral (YRI) population, we seek to answer the question of whether the
observed distribution in the derived population (CEU or CHB) can be
explained by a purely demographic model (various bottlenecks but
keeping selection pressure constant as modeled in scenarios I to IV) or not
(demography plus change in selection pressure as modeled in scenarios V
or VI). We use the following strategy to decide this.
For each scenario I–VI and each parameter triple estimated from the YRI

population, 10,000 replicates were produced. From each resulting
equilibrium distribution, we record the mean y and standard deviation σ.
This results in a parameter distribution for each scenario. If a chosen
empirical dataset has a mean y or standard deviation σ, which are not in
the 95% quantile of the 10,000 simulated values, we conclude that this
scenario is rejected as a possible explanation of the data. We reject a
purely demographic explanation if scenarios I–IV are rejected.

RESULTS AND DISCUSSION
In this study, we conducted an analysis of multicopy gene family
evolution via a model that incorporates unequal recombination
and selection. Our investigation aimed to examine the copy
number changes observed in subpopulations of Europe, Asia, and
Africa and to determine whether these changes could be

attributed to either constant selective pressure and demographic
factors or an adaptive change in selection together with
demography. Our findings reveal that the observed CNVs in
several genes cannot adequately be explained by demographic
processes alone, suggesting a possibly adaptive change in
selective pressure in the derived populations.
Based on the data of Brahmachary et al.1, we chose 42 gene

families with intermediate copy numbers that presented significant
differences in distribution among different populations (Table 1).
Although the raw data rely on phase I of the 1000 Genomes

project, they proved to be most suitable for our analyses. More
recent data, for example, from the human pangenome project21,
still lack sufficient coverage of the different subpopulations.
When we compared the copy number distributions of the 42

candidate genes in the Asian and European populations with those
in the African population (assumed to be in equilibrium), we
observed 61 significant changes in the mean copy number and
29 significant changes in the variance (Table 1), of which only seven
showed a decrease in variance (one example was DEFA1). Within
our model, assuming a constant recombination rate among
subpopulations and no demographic changes, a decreased variance
(or standard deviation) can be achieved only by an increase in
positive selection (sx), since the CV is determined by qR= r/sx; see Eq.
(3). However, the most common case is that of a consistent
significant shift in the mean in both derived populations without
affecting the variance, i.e., either (++| 0 0) or (−−| 0 0), which
occurs in 12 of the 42 analyzed genes. Only one gene (PGA3)
showed opposite significant changes in the mean (increasing in
Asia but decreasing in Europe).
In this model from Otto et al.16, selection does not act on allele

sequences, but it acts on the number of gene copies such that an
individual with yopt (2) many copies has the highest fitness. Several
methods exist to detect sequence traces of recent selective
sweeps, ranging from classical statistics, such as Tajima’s D15 or Fu
and Way’s H22, to recent machine learning methods—see, for
example, Lauterbur et al.23. It is conceivable that selective sweeps
in regions close to CNV loci may, by hitchhiking, also affect the
gene copy number distribution. A prominent example is the
selective sweep in the Asian population in the EDAR gene24,
which is located at ~300 kb to LIMS1 and ~500 kb to the LIMS3
gene family from our set. To determine how generally this
phenomenon might be and whether selection on allele sequences
may correlate, or coincide, with selection on gene copy number,
we calculated Tajima’s D in an area of 1 Mb approximately 33
MANE-selected genes25. Our results suggest that these two forces
are independent of each other. For example, AMY1A shows a
negative Tajima’s D in CHB, positive in CEU and approximately
zero in YRI (see Supplementary material), but the estimated
selection coefficients sx for a recombination rate of r= 0.005 (see
Table 3) are 0.6% in CHB, 0.5% in CEU and 2.4% in YRI. LIMS3
showed only small differences in estimates of sx (8.3% in CEU,
7.7% in CHB and 9.1% in YRI for r= 0.001), and the strong selective
sweep of EDAR in CHB seems to have no effect.
However, sequence-based summary statistics (such as Tajima’s

D) calculated across CNV loci need to be interpreted with caution:
correct alignment and correct variant calling remain challenging
problems, especially when gene copies are highly similar. Biased
test statistics are imminently dangerous in such cases26.
Another force that may affect the copy number distribution is

introgression. Derived populations are known to have interbred
with archaic hominins (i.e., Neanderthals and Denisovans). If the
archaic hominins had a greater copy number than did Homo
sapiens, this might have had a significant effect on the distribution
of the derived population. Hence, we counted the introgressed
SNPs of Neanderthals and Denisovans19 in an area of 10 Mb
around the candidate gene families. We find the analyzed genes
to seem to be in introgression deserts27, i.e., regions that lack
introgression (see Supplementary). However, as a Markovian

Fig. 3 Illustration of the six different scenarios investigated.
Scenarios I–III: simple bottleneck lasting 5000 generations. Reduc-
tion to 1% (scenario I), 5% (II), and 10% (III) of its original size
(N= 10,000). Scenarios IV–VI: GADMA model of human demo-
graphic history. There was no change in selection intensity (scenario
IV), with a change in selection intensity (represented by the red star)
896 generations ago (scenario V) and 500 generations ago (VI). The
black arrows indicate the direction and frequency of migration
between subpopulations.
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process, the equilibrium distribution of gene copy number is
independent of its initial distribution and hence robust against
outliers. Therefore, even if an archaic hominins would have
introduced a higher (or lower) copy number, the effect would
vanish over time as the distribution would return to its derived
equilibrium. In addition, the same note of caution toward
technical shortcomings, as mentioned above, applies here as well:
marker allele mapping to a gene family may be counted only once
rather than multiple times, thereby leading to an underestimation
of the amount of introgression.
To test whether a change in population size is sufficient to

explain these significant differences in copy number statistics
(shown in Table 1), we ran simple bottleneck scenarios I–III with
95 parameter combinations (r, sx, sy) on the basis of the ancestral
copy number distribution of YRI and the regression Eq. (3). As an
example, for PGA3 and r= 0.001, we ran simulations with
selection coefficients of sx= 0.0122 and sy= 0.0066; see Table 3.
Fig. 4 shows the mean gene copy number of 10,000 simulated
bottleneck populations over time for each recombination
strength (r= 0.001, 0.002, and 0.005). Note that for this gene,
the value of r= 0.01 was neglected since the selection strength
sx would exceed the threshold of 0.1. The gray boxes indicate
the centered 50% quantile, the white boxes indicate the 95%
quantile, and the whiskers indicate the 99% quantile. With a
strong bottleneck (reduction to N= 100 for 5000 generations)
and under low recombination and hence weak selection
(r= 0.001, and qR= r/sx, qS= sx/sy constant), we find the widest
variation among the 10,000 replicates. A higher r and stronger
selection result in a mean value close to that of the YRI

population, i.e., the value we would expect from the initial
parameter estimation.
In this example, the empirical data show a significantly greater

mean copy number of PGA3 in CHB (red line) and a lower mean
value in CEU (blue line) than in YRI (black horizontal line). It is the
only gene in our set that shows significant shifts in the mean copy
number in opposite directions. These changes could be explained
only under a strong bottleneck and with low recombination
without invoking a change in selection intensity.
The results for all 95 parameter combinations obtained for

scenario I (strong bottleneck) are summarized in Table 4. To test
whether the observed means or standard deviations can be
explained by scenario I, we considered the time point after 1000
generations of recovery (first row of Fig. 4, last boxplot in each
panel). If the mean or CV lies within the 95% quantile, we indicate
nonsignificant differences with a value of 0. Significant changes
are marked with a single * (α= 5%) or double asterisk ** (α= 1%).
Taking again PGA3 as an example, we find a mean value that is
significantly smaller in CEU than in YRI (marked with –). When
r= 0.001, this might be explained by a bottleneck (denoted by 0),
whereas when r= 0.002 and r= 0.005, we find a significant
difference (**) and that the bottleneck explanation is highly
unlikely. Higher recombination (r= 0.01) led to sx values >0.1 in
CHB and YRI (see Table 3) and hence were omitted.
If we consider a significant difference in the mean of CEU

compared with YRI (28 genes; the first column in Table 4 is nonzero),
we find that only 17 out of 65 simulated parameter combinations in
scenario I can explain these differences. For significant mean
changes in CHB (33 genes; Table 4), 22 out of 72 parameter

Fig. 4 Mean copy number over time. After population reduction to N= 100, 500, or 1000 (top to bottom), we traced the mean value (y axis)
of 10,000 replicates over time (x axis in generations). The input parameters sx and sy were estimated for r= 0.001, 0.002, and 0.005 (from left to
right) from the YRI dataset for the candidate gene PGA3 (see Table 3) and kept constant over time to determine the effects of the bottleneck
and recovery. Whiskers indicate the 99% quantile, and white boxes indicate the 95% quantile. The horizontal lines mark the values from the
original dataset of Brahmachary et al.1 (black: YRI; red: CHB; blue: CEU).
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combinations are compatible with the observations, whereas the
remaining 50 cannot explain the significant difference. For other
examples, AMY1A and PGA3 both presented increased mean
values in CHB. In neither case nor for either parameter combination
is scenario I sufficient to explain the observation.

From the candidates with a significant difference in mean or
variance, we selected well-studied genes with known functions
and annotations and chose three genes coding for digestive
enzymes, AMY1A, SULT1A3, PGA3, and the defense gene
DEFA1, for a more detailed analysis and tested the GADMA

Table 4. Results of bottleneck simulations.

CEU mean CEU sd CHB mean CHB sd

Gene t-test r1 r2 r5 r10 F-test r1 r2 r5 r10 t-test r1 r2 r5 r10 F-test r1 r2 r5 r10

AMY1A 0 0 0 0 * + 0 * * ** + * ** ** ** + * ** ** **

ANKRD20A3 + ** ** . . 0 0 0 . . + ** ** . . 0 0 0 . .

BOLA2B – 0 ** . . 0 * ** . . – 0 ** . . 0 * ** . .

CBWD3 0 0 . . . 0 0 . . . + 0 . . . + * . . .

CDC37P1 + ** ** ** ** + * ** ** ** 0 0 0 * ** + * ** ** **

CLEC18A + 0 0 * . 0 0 * * . 0 0 0 0 . 0 0 0 0 .

CSH + 0 . . . 0 ** . . . + ** . . . 0 ** 0 0 0

DEFA1 0 . . 0 0 – . . 0 ** 0 . . 0 0 – . . 0 **

DEFB130 + 0 * . . 0 ** ** . . 0 0 0 . . 0 ** ** . .

FAM72A + 0 . . . + 0 . . . + 0 . . . 0 ** . . .

FAM75A1 0 0 0 . . 0 0 0 . . + * ** . . + 0 ** . .

FAM75A5 0 0 0 . . 0 0 0 . . + 0 ** . . + 0 ** . .

FCGBP + 0 0 0 0 – * ** ** ** + 0 0 0 0 0 0 0 ** **

FOXD4L2 + 0 . . . 0 0 . . . + ** . . . + * . . .

GOLGA6L9 0 0 0 . . 0 0 0 . . + 0 * . . 0 0 0 . .

GOLGA8G + * ** . . 0 0 0 . . + 0 0 . . 0 0 0 . .

GSUBP1 + ** ** ** . 0 0 0 0 . + 0 0 ** . 0 0 0 0 .

HIST2 + 0 . . . 0 0 . . . + * . . . 0 0 . . .

LIMS3 – * . . . 0 ** . . . – 0 . . . 0 ** . . .

LOC23117 0 0 0 . . 0 * * . . – * ** . . 0 * ** . .

LOC653606 0 0 . . . 0 0 . . . – ** . . . + 0 . . .

MUC12 + * ** ** ** 0 0 * ** ** 0 0 0 0 0 – 0 ** ** **

NBPF11 – * ** ** . – * ** ** . 0 0 ** ** . 0 * * * .

NBPF16 0 0 0 0 . 0 0 0 0 . + 0 0 0 . 0 0 0 0 .

NPIP – ** ** . . 0 * * . . – ** ** . . 0 * * . .

PGA3 – 0 ** ** . + 0 0 0 . + * ** ** . 0 0 0 0 .

PPIAP21 + ** ** . . 0 0 0 . . + ** ** . . 0 0 0 . .

PRAMEF14 + * ** . . + ** ** . . + ** ** . . + 0 ** . .

PRAMEF20 0 0 . . . 0 0 . . . + 0 . . . + 0 . . .

PRAMEF5 – ** ** . . + * * . . – ** ** . . + * ** . .

PRAMEF8 0 0 0 . . + 0 ** . . 0 0 0 . . 0 0 0 . .

PRR11 + ** ** . . 0 0 * . . + ** ** . . 0 ** ** . .

PRR20A – . . 0 ** – . . 0 * – . . 0 ** 0 . . 0 0

PSG3 + 0 * . . 0 0 0 . . 0 0 0 . . + 0 * . .

RGPD1 0 0 . . . + 0 . . . 0 0 . . . + 0 . . .

SPYDE3 – ** ** . . – 0 0 . . – ** ** . . 0 0 0 . .

SULT1A3 0 0 0 0 . 0 0 * * . – 0 ** ** . 0 ** ** ** .

TBC1D3 – ** ** ** ** 0 0 0 0 0 – ** ** ** ** + 0 * ** **

TCEB3C – 0 ** ** ** 0 0 0 0 0 – 0 ** ** ** 0 0 0 0 0

TP53TG3 0 0 0 0 0 0 0 0 0 0 – 0 ** ** ** 0 0 0 * *

TRIM49L1 + ** ** . . 0 0 0 . . + ** ** . . 0 0 0 . .

ZNF658B + 0 ** . . 0 0 0 . . + ** ** . . + 0 0 . .

We ran simulations of scenario I (the strongest bottleneck with a reduction to N= 100) with parameters (r, sx, sy) estimated from the YRI data and tested
whether, after 1000 generations of recovery, the mean and standard deviation σ of the CEU and CHB data could be explained by a bottleneck. The blank space
indicates that this parameter combination led to an sx value out of the range of 0.001–0.1; hence, no simulation was run. The columns with 0, + and – indicate
whether there is a significant difference from the empirical dataset (see Table 1). The column names r1–r10 indicate recombination rates ranging from 0.001 to
0.01, and a value of 0 in that column indicates that the data can be explained by a bottleneck. * and ** represent significant differences (5% and 1%,
respectively) between the simulated and empirical data. The four candidate genes that were used for further simulations are highlighted with a light gray
background.
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model20 without and with selection changes according to the
estimates from regression (scenarios IV–VI).
Figure 5 shows the mean copy number and coefficient of

variation (CV) at present, which are simulated according to
scenarios IV and VI for 10,000 replicates each.
As in scenarios I–III, the terminal values generated in scenario IV

are close to the initial values of the ancestral YRI dataset (black
line). Therefore, even the more realistic GADMA migration model
often fails to explain the data found in CEU and CHB when
constant selection parameters derived from the ancestral YRI
population are considered.
However, when selection strength is allowed to change, as in

scenario VI, a different picture emerges: Consider a change in sx and
sy at 500 generations before being present with respect to the
values estimated from Eq. (3), given in Table 3. Then, the simulations
return the mean and CV, which are closer to the values found in the
CEU and CHB data. Indeed, the empirical data often lie within the
95%- or 99%-quantiles of the simulated data distributions. We
observe no strong difference between the results of scenarios V and
VI, suggesting that even 500 generations represents a sufficiently
large time span to reach a new equilibrium.
Hence, one possible explanation for the shift in the copy

number distribution of the four candidate genes is a change in
selection pressure and adaptation.
The AMY1A gene, which encodes amylase, an enzyme that

breaks down starch, has strongly increased mean and σ values in
the Asian population, which is likely linked to adaptations to high

grain intake. In the European population, while the variation
increased, the change in the mean copy number was small.
These findings agree with the results of several studies that

indicate that individuals from populations with high-starch diets
have more gene copies on average than those with traditional low-
starch diets6,9,10. Our model selection strength is relaxed in CEU and
CHB with a factor of 4, such that a higher copy number is not
selected, and a more widespread distribution of CNVs can evolve. A
recent study28 suggested a more complicated model of Amylase
evolution involving two steps: expansion from one to several copies
after the human–Neanderthal split but before the separation of
modern human populations and a subsequent shift in the optimal
gene copy number, independently in different populations. This
study also suggested that the increase in AMY1 copy number
occurred in South America even more dramatically than in East Asia,
a hypothesis that should be tested in the framework of our model
as soon as suitable data become available.
SULT1A3 is a gene in the SULT (sulfotransferase) family that

catalyzes the sulfation of a variety of substrates, especially
catecholamines, including dopamine and epinephrine29,30. Poly-
morphisms in SULT1A3 and SULT1A4 have been shown to affect
the metabolism of therapeutic drugs31,32, and these genes have
therefore been studied extensively in the framework of medico- and
pharmacogenetics33,34. In the dataset analyzed, there was a reduced
mean copy number in Asia but not in Europe. The reduced mean
(from 7.6 in YRI to 7.0 in CHB) is a significant difference, which cannot
be explained by a simple bottleneck scenario with a recombination

Fig. 5 Mean copy number y and coefficient of variation CV= σ/y for four candidate genes (AMY1A, SULT1A3, PGA3, and DEFA1). Boxplots:
simulation results for the GADMA demographic model without (scenario IV) and with (scenario VI) a change in the selection and for two
settings of the recombination rate (low and high; see Table 3). Horizontal lines: means and CV of the experimental data in YRI (black), CEU
(blue), and CHB (red).
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rate higher than 0.002 (see Table 4). If one considers a change in
selection, as in scenarios V and VI, we expect a stronger selective
pressure (rising from sx= 0.03 to sx= 0.05 for r= 0.002) in CHB.
There have been few studies on the copy numbers of SULT1A3/4
genes. Hildebrandt et al.33 first noted possible duplication of
SULT1A3 and identified a duplicated copy in all four different
human populations. More recently, a study of 172 human individuals
revealed variable SULT1A3/4 copy numbers ranging from 1 to 10
and associated its copy number with the risk and onset of
neurodegenerative disease35. Note that SULT1A3 and SULT1A4
are closely related paralogs that are often difficult to distinguish, and
studies on copy numbers usually combine them.
PGA3 (Pepsinogen, a precursor for pepsin, an enzyme that breaks

down protein into smaller peptides) is associated with prostate-
specific antigen production. It is the only gene in our list that has
opposite changes in two derived populations: its mean copy number
increases in Asia and decreases in Europe. As Asian and European
humans share most of the same bottleneck period, the diverging
copy number distribution is highly unlikely to be a demographic
effect, and complex selection patterns are needed to explain the
data. Indeed, the bottleneck simulations shown in Table 4 and
simulations V and VI with a change in selection parameters, as
shown in Fig. 5, support this hypothesis. When considering the
estimates of Table 3, we observe a small increase in sx in Asia
compared with Africa but a strong decrease in both sx and sy in
Europe to cope with the increased variance in copy number in CEU.
CNV in the pepsinogen (PGA) locus was originally discovered via

electrophoresis, and three individual genes (PGA 3, 4, 5) were
initially identified36. Pepsinogen genes have been shown to
duplicate and become recurrently lost in vertebrates37. The
pepsinogen genes were also shown to have variable expression
levels in tumor cells, particularly a reduction in PGA expression in
specific stomach and thyroid cancers38. This could be an additional
source of selective pressure in addition to protein metabolism.
While the simplest explanation is that dietary differences between
Asian and European populations during the spread of agriculture (in
the last 5000–10,000 years) are the drivers of PGA copy number
changes, alternative hypotheses involving tumor suppression or
interaction with other enzymes must be considered.
Finally, we analyzed the immune gene alpha-defensin DEFA1. It

codes for defensins, proteins that are involved in innate (non-
learned) immunity, specifically in antimicrobial defense against a
broad spectrum of microorganisms, including bacteria, fungi, and
viruses. DEFA1 shows a decrease in variance in both Asia and
Europe, indicating stronger selective pressures. More precisely,
when considering the distribution in Fig. 1, one observes four
individuals in the YRI population with high copy numbers, which
indicates relaxed selective pressure in Africa. With Eq. (3), we find
selection coefficients 10-fold smaller in Africa than in Europe and
Asia (see Table 3). Alpha defensins are expressed in neutrophil
cells and intestinal epithelial cells and act as microbiocidal
agents39–41. The genes DEFA1 and DEFA3 encode some of the
alpha-defensins (HNP1/2/3) and appear to be “interchangeable
variant cassettes” within a tandem array of 19 kb42. CNV of DEFA1
is present in all apes, including gibbons, but the version identified
as DEFA3 is human-specific; the copy number has also been
demonstrated to affect the expression level42. A low copy number
of DEFA1/3 has been shown to be associated with hospital-
acquired infection43 as well as kidney diseases44. On the other
hand, and counterintuitively, a high copy number of DEFA1/3
may lead to more severe cases of sepsis45,46 and is associated with
Crohn’s disease47; thus, this gene was selected against. The trade-
off between infective and autoimmune diseases could lead to a
selection toward an intermediate copy number of alpha-defensins.
Therefore, our results suggest that out-of-Africa expansion may be
accompanied by a change in environmental pathogen diversity
such that a delicately tuned dosage of defensin is needed. This
can be corroborated by the fact that YRI has a few individuals with

very high (outliers) copy numbers of DEFA1, which cannot be
found in CHB or CEU.
In conclusion, while both demographic effects and shifts in

selection schemes can result in changes in copy number
distributions, in some of our candidate genes, the former is not
sufficient to explain the observation. Adaptive processes can
induce new relationships between copy number and fitness and
impact the resulting copy number distribution. Importantly,
changes in the strength or direction of selection may manifest
not only in the mean copy number but also in the variance or
compound statistics, such as the coefficient of variation.
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