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Abstract
Purpose of Review This review paper provides step-by-step instructions on the fundamental process, from handling fastq 
datasets to illustrating plots and drawing trajectories.
Recent Findings The number of studies using single-cell RNA-seq (scRNA-seq) is increasing. scRNA-seq revealed the 
heterogeneity or diversity of the cellular populations. scRNA-seq also provides insight into the interactions between differ-
ent cell types. User-friendly scRNA-seq packages for ligand-receptor interactions and trajectory analyses are available. In 
skeletal biology, osteoclast differentiation, fracture healing, ectopic ossification, human bone development, and the bone 
marrow niche have been examined using scRNA-seq. scRNA-seq data analysis tools are still being developed, even at the 
fundamental step of dataset integration. However, updating the latest information is difficult for many researchers. Investiga-
tors and reviewers must share their knowledge of in silico scRNA-seq for better biological interpretation.
Summary This review article aims to provide a useful guide for complex analytical processes in single-cell RNA-seq data analysis.

Keywords Single cell RNA-seq · Transcriptome · Dry analysis · Computational analysis · Practical compass

Introduction

The number of research articles using single-cell RNA-seq 
(scRNA-seq) is increasing. scRNA-seq has become a core 
technique in biology in the last 10 years [1]. scRNA-seq ena-
bled us to determine the quantity of each type of mRNA at a 
single-cell resolution. There are two major reasons why the 
use of scRNA-seq has spread worldwide. First, scRNA-seq 
clarifies the heterogeneity or diversity of cell populations from 
the perspective of gene expression patterns. Second, scRNA-
seq can predict the interactions and connectivity between 
cells, which cannot be easily specified in traditional ways.

scRNA-seq has been used in skeletal biology [2, 3]. For 
example, we can determine the cell differentiation stages of 
osteoclasts [4] and their interspecies differences [5•]. Ligand 
receptor analysis can predict drug repositioning candidates 
for fracture healing [6] and clarify the hidden mechanisms 
of ectopic ossification [7]. Gene regulatory analysis has also 
revealed epigenetic properties in a model of human bone 
development [8•] and the bone marrow niche [9]. Further-
more, a new subcellular sequencing tool to identify thera-
peutic targets has been proposed in the field of skeletal biol-
ogy [10•].

Currently, in silico analysis is necessary not only for 
computational biologists but also for wet-lab biologists and 
well-established reviewers [11, 12]. In this review, we have 
summarized the in silico scRNA-seq framework. Active 
learners can understand the standard workflow and pitfalls 
of in silico analysis. In addition, this review may be useful 
to busy reviewers. This article provides a list of points for 
reviewing of scRNA-seq studies.

The standard workflow of in silico scRNA-seq analysis is 
summarized in Fig. 1. The scRNA-seq packages and tools 
recommended by the authors are summarized in Table 1. 
These tools were selected primarily because of their usabil-
ity and widespread use.
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Step 1. Obtain FASTQ files from wet experiments 
and public database

There are two ways to obtain FASTQ files. One is to utilize 
public resources and the other is to perform wet experiments. 
The combinatorial approach has become more common with 
the increase in public datasets.

The first method for obtaining FASTQ files is to down-
load them from a public database. sequence read archive 
(SRA), European nucleotide archive (ENA), and DDBJ 
sequence read archive (DRA) are the three major archives 
of sequencing datasets. The DDBJ search website is useful 
for finding the SRR number of datasets related to the pro-
ject. The same project in one’s own experiments sometimes 

spares you from conducting expensive reproductive experi-
ments. Public datasets were also used to increase the scale 
of scRNA-seq experiments. Integrative analyses are rec-
ommended for the following two reasons. First, a greater 
variety of cells often makes cell annotation easier. Second, 
integrative analysis with datasets from other research groups 
reduces biases related to the procedures of the group and 
increases the external validity of the experiments.

It takes considerable time and computer resources to 
download heavy FASTQ files of tens of gigabytes. fasterq-
dump in the SRA toolkit [16], which is a fast version of 
fastq-dump, is commonly used to speed up downloading. 
parallel-fastq-dump [17] splits fastq files and downloads 
them by palletization of the process.

Fig. 1  Standard workflow of 
in silico scRNA-seq analysis. 
All figures were made from 
publicly available datasets 
(SRR8181408, SRR8181409, 
SRR8181410, SRR8181411, 
SRR11101718, SRR11101719, 
SRR11101720, SRR11101721, 
and SRR12266815) [13–15]
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Table 1  List of packages or tools recommended by the authors

Package or tool First author Year Language Title or explanation Ref

Step 1. Obtain FASTQ files from public database
fasterq-dump The SRA Toolkit 

Development 
Team

2023 C extracting data in FASTQ- or FASTA-format from SRA-accessions [16]

parallel-fastq-dump Valieris 2021 Python Speed up the process by dividing the work into multiple threads [17]
Step 2. Quality check and mapping to the reference genome
Cell Ranger Zheng 2017 Massively parallel digital transcriptional profiling of single cells [20]
STARsolo Kaminow 2021 C STARsolo: accurate, fast, and versatile mapping/quantification of 

single-cell and single-nucleus RNA-seq data
[21]

Step 3. Preparation environment for the in silico analysis
R R Core Team 2023 R: A Language and Environment for Statistical Computing [22]
Tidyverse Wickham 2019 R Welcome to the Tidyverse [23]
ggplot2 Wickham R Elegant Graphics for Data Analysis [24]
Python3 Van Rossum 2009 Python 3 Reference Manual [25]
Matplotlib Hunter 2007 Python Matplotlib: A 2D graphics environment [26]
seaborn Waskom 2021 Python seaborn: statistical data visualization [27]
Step 4. Preprocess of datasets
Seurat 4 Hao 2021 R Integrated analysis of multimodal single-cell data [28]
Seurat 5 Hao 2022 R Dictionary learning for integrative, multimodal, and scalable 

single-cell analysis
[29••]

sctransform Hafemeister 2019 R Normalization and variance stabilization of single-cell RNA-seq 
data using regularized negative binomial regression

[30]

Scanpy Wolf 2018 Python SCANPY: large-scale single-cell gene expression data analysis [31]
scverse Virshup 2023 Python The scverse project provides a computational ecosystem for single-

cell omics data analysis
[32]

Step 5. Dataset integration
Seurat 5 Hao 2022 R [29••]
scvi-tools Gayoso 2022 Python A Python library for probabilistic analysis of single-cell omics data [34•]
benchmark study Luecken 2022 Benchmarking atlas-level data integration in single-cell genomics [33•]
Step 6. Unbiased clustering
t-SNE van der Maaten 2008 Visualizing Data using t-SNE [35]
UMAP Leland McInnes 2020 UMAP: Uniform Manifold Approximation and Projection for 

Dimension Reduction
[36]

Step 7. Functional annotation
AUCell Aibar 2016 R, Python AUCell: Analysis of “gene set” activity in single-cell RNA-seq 

data
[38]

SCENIC Aibar 2017 R SCENIC: single-cell regulatory network inference and clustering [39]
pySCENIC Van de Sande 2020 Python A scalable SCENIC workflow for single-cell gene regulatory 

network analysis
[39, 40]

decoupleR Badia 2022 R, Python decoupleR: ensemble of computational methods to infer biological 
activities from omics data

[41•]

CellAssign Zhang 2019 Python Probabilistic cell-type assignment of single-cell RNA-seq for 
tumor microenvironment profiling

[42]

Nitchenet Browaeys 2020 R NicheNet: modeling intercellular communication by linking 
ligands to target genes

[44]

Omnipath Turei 2021 R, Python Integrated intra- and intercellular signaling knowledge for multi-
cellular omics analysis

[45]

scTensor Tsuyuzaki 2019 R Uncovering hypergraphs of cell–cell interaction from single cell 
RNA-sequencing data

[46]

Cellular interaction review Armingol 2021 Deciphering cell–cell interactions and communication from gene 
expression

[43]

Step 8. Trajectory analysis
Velocyto La Manno 2018 Python, R RNA velocity of single cells [47]
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The second method is to perform a scRNA-seq experi-
ment on one’s own. Although wet experiments are beyond 
the scope of this article, attention should be paid to the pro-
cess of preparing cell suspensions. This is because the selec-
tion bias in wet experiments affects the results of in silico 
scRNA-seq. Less bias between samples makes the integra-
tion of scRNA-seq datasets easier.

Cell suspension preparation is the first step of droplet-
based scRNA-seq. To smoothen the preparation step, we 
should repeatedly practice the entire preparation process and 
stabilize protocols.

When dissociating cells from solid tissue, a variety of 
healthy cells should be maintained and as many dead cells 
should be excluded as possible. Cell-sorting techniques 
using flow cytometry and magnetic devices are useful. After 
making a cell suspension, cell aggregation often occurs, 
which may cause problems in fluid-based sorting and should 
be loosened by pipetting.

After making cell suspensions, we performed highly elab-
orate library construction according to the manufacturer’s 
protocol like chromium (10 × genomics, Pleasanton, CA, 
U.S.). The number of living cells is important for the first 
chromium step. Instead of droplet-based sequencing, tradi-
tional plate-based sequencing after cell sorting, for example, 
SMART-seq® Single Cell Kit (Takara Bio, San Jose, CA, 
U.S.) [18], and RT-RamDA® cDNA Synthesis Kit (TOY-
OBO, Osaka, Japan) [19], are powerful tools for full-length 
total sequencing. After sequencing the constructed library, 
the FASTQ files are obtained.

Step 2. Quality check and mapping to the reference 
genome

Cell Ranger is a useful pipeline to align outputted fastq files 
by chromium, on the prebuilt reference genome and make 
the folder of ready-to-use matrix files for the downstream 
analysis [20]. The Cell Ranger version and the reference 
genome used should be included in the manuscript to help 
reproduce the analysis. Cell Ranger consumes substantial 
computer memory; therefore, enough memory and storage 
more than the required level should be prepared. When using 

a public computer, the impact of load on the common space 
should be considered.

The authors preferred STARsolo [21], which is a single-
cell version of the common aligner STAR. SMART-seq or 
Drop-seq datasets, other than chromium, can be processed 
using the same protocol. In addition, the same reference 
genome as that used in bulk RNA-seq can be used with sim-
ple arguments by STARsolo. Unlike Cell Ranger, the library 
construction protocol, including the chromium chemistry 
version, should be specified as a variable.

STARSolo offers three advantages. First, STARsolo can 
be adapted for other scRNA-seq datasets such as SMART-
seq. Second, the mapping time is shorter than that of Cell-
Ranger. Third, this is the most important reason, the same 
reference genome as the usual bulk RNA-seq can be used.

When performing integrative analysis with other experi-
ments of yours or public datasets by other groups, the same 
mapping protocol should be performed to avoid a mismatch 
of the reference genome. Repeat mapping on the reference 
genome is frequently performed. This is partially because 
Cell Ranger is frequently updated.

Step 3. Preparation environment for the in silico 
analysis

Some vendors have provided browser-based analytical tools. 
These readily available tools are useful for checking quickly 
whether wet experiments are successful. However, it is too 
difficult to perform advanced analysis, including cell interac-
tion, and to produce images with publication quality using 
only these tools. This is why researchers and reviewers 
should be familiar with in silico analysis.

R language [22] is commonly used in statistical science and 
bioinformatics analyses. Tidyverse project [23] provides sev-
eral powerful toolkits for handling datasets with simple syntax. 
In particular, ggplot2 [24] increases the visibility of graphs and 
ensures reproducibility, which is important in science.

Updating R and the packages sometimes yields different 
UMAP or clustering results. Major R updates require pack-
age reinstallation. Although we do not want to update these 

Table 1  (continued)

Package or tool First author Year Language Title or explanation Ref

scVelo Bergen 2020 Python Generalizing RNA velocity to transient cell states through dynami-
cal modeling

[48•]

Dynamo Qiu 2022 Python Mapping transcriptomic vector fields of single cells [49]
Monocle 3 Trapnell 2014 R The dynamics and regulators of cell fate decisions are revealed by 

pseudotemporal ordering of single cells
[50]

PAGA Wolf 2019 Python graph abstraction reconciles clustering with trajectory inference 
through a topology preserving map of single cells

[51]

benchmark study Saelens 2019 A comparison of single-cell trajectory inference methods [52•]
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versions, version conflicts between packages do not allow 
us to change only problematic packages, but enforce updat-
ing all packages. The results without big picture changes 
with different versions, in which minor detailed changes are 
allowed, should be stated in the manuscript.

Memory usage should be cared for when using R. Regard-
less of the PC setup, the memory consumption of R can 
cause sudden crashes. This is a good practice for saving files 
and images. It is also important to delete the unused vari-
ables and intermediate files.

Taking fashionable machine learning methods into the 
study, converting platform R to Python3 is considered 
because of the large memory requirement [25]. The main 
feature of Python is its numerous modules, including deep 
learning. Another feature is the creation of a virtual environ-
ment with modules required for each project to avoid version 
conflicts between the packages. Matplotlib [26] and Seaborn 
[27] support data visualization. Based on the author’s expe-
rience, switching from R to Python requires practice.

Step 4. Preprocess of datasets

Seurat [28] is a core package for processing and normal-
izing scRNA-seq datasets. Seurat has been developed to 
integrate multiple datasets. In the latest version 5 [29••], 
we can choose an integration method including sctransform 
[30]. In Python, Scanpy [31] in scverse project [32] is the 
core package for processing the datasets. It is not difficult to 
handle fundamental packages in both R and Python because 
tutorials are available online and many virtual workshops are 
available. Core preprocessing: Filtering and normalization 
are almost the same regardless of the package.

The total number of detected genes, percentage of counts 
on mitochondrial genes, and sometimes ribosomal genes 
are common indicators for cutting off dead cells or poorly 
sequenced cells. These cutoff values should be listed in the 
manuscript. Different technologies for library construction 
typically result in different levels of these indicators. Differ-
ent levels are often observed, even with the same technology. 
The same cutoff value is recommended for making posterior 
calculation easy; however, different cutoff values may be 
accepted for each dataset.

The selected cells are then normalized to compare RNA 
expression between cells. Additional normalization of the 
total number of reads should be performed because of the low 
sensitivity of single-cell sequencing from a low amount of 
RNA. Percentages of mitochondrial gene count and cell cycle 
scores are usually regressed out for normalization. Although 
cell cycle scoring and assignment of the cell cycle state for 
each cell are performed routinely by Seurat, cell cycles are 
predicted by comparing the mRNA expression of cell cycle 
genes. When analyzing datasets in which the cell cycle is 
highly activated, cell cycle regression may be unnecessary.

Step 5. Dataset integration

It is common to handle multiple datasets; however, it is diffi-
cult to integrate datasets with different expression levels. Var-
ious integration methods have been devised and are currently 
under development. The latest method should be considered 
at the time of submission because the choice of method leads 
to different results. Benchmark studies on integration are use-
ful for selecting packages [33•]. The latest version of Seurat 
allows the selection of various integration methods [29••]. 
Scverse projects provide scvi-tools to perform probabilis-
tic analysis, particularly when integrating datasets [34•]. 
Whether the results of the integration are correct should be 
examined from the perspective of wet scientists.

Step 6. Unbiased clustering

To understand the heterogeneous gene expression patterns 
at a glance, dimension reduction with tSNE [35] and UMAP 
[36] is performed. The distribution of datasets, mitochondrial 
percentage, and cell cycle are indicators of the successful 
integration of the datasets. Unbiased clustering after dimen-
sion reduction makes it possible to depict the cell popula-
tions. The resolution must be tuned by the authors to adapt 
the assumed cell types, although some tools for the automatic 
determination of cluster numbers have been proposed [37].

Maps derived from scRNA-seq datasets are built based on 
RNA expression patterns and do not always fit the standard 
biological view. Not only local structures but also the whole 
picture often change according to the method. For example, 
small islands and their connectivity to a main island can be 
easily transformed. The robustness of in silico results should 
be examined, especially when discussing minor cell popula-
tions. Insufficient batch-effect elimination often yields dis-
tinct clusters. In some cases, more cells are required to reach 
a conclusion. Public datasets are used as external references 
to reduce researcher bias.

Step 7. Regular visualization and functional 
annotation

In scRNA-seq, gene expression and cellular functions are 
explained at two levels: cell and cluster or group. Feature 
plots explain gene expression cell by cell on the same map. 
Continuous changes in the levels are easily depicted. Dot 
plots and violin plots are used to summarize the expres-
sion levels group by group. Dot plots are recommended for 
showing sets of genes within a limited space.

Cell types and their functions are determined by con-
sidering sets of gene expression, sometimes called gene 
set activities. AUCell is useful for calculating the gene set 
activity score [38], and with the same algorithm, we can 
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predict upstream transcription factor activity using SCE-
NIC or pySCENIC [39, 40]. decoupleR [41•] enables the 
use of multiple ensemble annotative methods including 
AUCell. Automatic cell annotation using the deep learning 
method is implemented using CellAssign [42].

Intercellular interactions can be predicted using paired 
gene expression in different groups of cells, including 
ligand receptor (LR) interactions. Several types of tools 
have been proposed [43]. Nitchenet [44] considers down-
stream pathways including receptors to transcriptional fac-
tors. The LR pair database directly affects the results of the 
LR analysis. Omnipath project provides large well-organ-
ized references [45]. With abundant computer memory, 
tensor-based cell communication analysis between more 
than two cell types provides further LR relationships [46].

Step 8. Trajectory analysis

RNA velocity is a well-known concept for predicting local 
changes in the cellular state from the spliced/unspliced 
ratio of sequenced reads and is implemented as Velocyto 
[47]. Streamline visualization can be illustrated by a gen-
eralized version of Velocyto called scVelo [48•]. Plots 
with arrows are attractive; however, RNA velocity tools 
are still under development [49]. Trajectory analysis pro-
vides just supportive evidence for cellular pathways.

Monocle2 or monocle3 in R [50], and PAGA in Python 
[51] are commonly used to draw global trajectory lines based 
on gene expression. To choose the appropriate tool for each 
analysis, rough topological characteristics, such as cycle, lin-
ear, branch, tree, and disconnection, should be presumed before 
trajectory analysis. Dynguidelines project provides a clue for 
selecting appropriate trajectory tools for each analysis [52•].

Conclusion

scRNA-seq provides insight into the diversity of cell popu-
lations. However, the preprocessing and integrative steps 
for multiple datasets remain controversial. The honest 

manifestation of the fundamental steps makes the study 
reproducible.

Reviewers of scRNA-seq research should first check 
these basic points (summarized in Table 2) and then dis-
cuss whether the biological interpretation is reasonable. 
There have been scRNA-seq studies with insufficient rep-
licates. However, in the era when there are plenty of public 
scRNA-seq fastq files, investigators’ procedures should be 
examined for propriety and external validity.

The use of scRNA-seq analysis has continued to evolve 
rapidly. Discussion between investigators and reviewers 
should be performed within the scope of the methods at 
the time of submission. Better use of this innovative tech-
nique will enhance our biological knowledge.
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Table 2  Key consideration 
when reviewing a scRNA-seq 
data analysis

Usage of published tools at the time of submission (not the time of review)

The number of cells was sequenced and analyzed in each experiment
Sufficient replication to support the claim
Cutoff values to eliminate dead or badly sequenced cells
Dataset integration method mainly considering the batch effect of each sample
Unbiased clustering examined by biological interpretation
Optional (Not mandatory) trajectory analyses
Cell type annotation referring to marker genes and gene ontology term
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