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Abstract
Purpose  Receptor and subtype discordance between primary breast tumours and metastases is a frequently reported phe-
nomenon. The aim of this article is to review the current evidence on receptor discordance in metastatic breast cancer and 
to explore the benefit of performing a repeat biopsy in this context.
Methods  Searches were undertaken on PubMed and Clinicaltrials.gov for relevant publications and trials.
Conclusion  The current guidelines recommend offering to perform a biopsy of a metastatic lesion to evaluate receptor status. 
The choice of systemic therapy in metastatic disease is often based on the receptor status of the primary lesion. As therapeu-
tic decision making is guided by subtype, biopsy of the metastatic lesion to determine receptor status may alter treatment. 
This article discusses discordance rates, the mechanisms of receptor discordance, the effect of discordance on treatment and 
survival outcomes, as well as highlighting some ongoing clinical trials in patients with metastatic breast cancer.
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Abbreviations
cfDNA	� Cell free tumour DNA
CTCs	� Circulating tumour cells
ER	� Estrogen receptor
FFPE	� Formalin fixed paraffin embedded
HER2-E	� Human epidermal growth factor receptor 

2-enriched
HER2	� Human epidermal growth factor receptor 2
HR	� Hormone receptor
IHC	� Immunohistochemistry
NGS	� Next generation sequencing
OS	� Overall survival
PR	� Progesterone receptor

Introduction

Breast cancer is the most common cancer and the second 
leading cause of cancer-related mortality among women 
worldwide. Despite advances in treatment, approximately 
30% of patients diagnosed with early-stage breast cancer 
develop metastases during their lifetime [1]. Breast cancer 
is subtyped into different molecular groups based on immu-
nohistochemistry (IHC) testing for the expression of the two 
hormone receptors: estrogen receptor (ER) and progesterone 
receptor (PR) along with human epidermal growth factor 
receptor 2 (HER2) from formalin fixed paraffin embedded 
(FFPE) tissue samples taken from core biopsy of the pri-
mary breast tumour [2, 3]. The ER, PR and HER2 status of 
the tumour are used to individualise treatment strategies in 
breast cancer [4]. The choice of systemic therapy in meta-
static disease is often based on the receptor status of the 
primary lesion. However, discordances between the receptor 
status of the primary tumour and metastases occur [5–9]. As 
therapeutic decision making is guided by subtype, biopsy 
of the metastatic lesion to determine receptor status may 
alter treatment [10, 11]. Thus, current guidelines recommend 
offering biopsy of a metastatic lesion to evaluate receptor 
status [4, 12–14]. This review will discuss the rates of recep-
tor discordance and its clinical significance.
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Discordance rates

Receptor discordance in metastatic breast cancer describes 
the phenomena where the ER, PR or HER2 receptor status 
of the primary tumour subtype has changed when re-test-
ing is performed by immunohistochemistry on the biopsy 
of corresponding metastatic tumour tissue. Receptor dis-
cordance between primary breast cancer and metastases 
has been investigated in two independent meta-analyses 
[6, 15]. Aurilio et al. evaluated the discordance rates for 
ER, PR and HER2 receptors in a total of 9926 tumours 
across 48 studies. The pooled discordance proportions 
for ER, PR and HER2 receptors were 20%, 33% and 8%, 
respectively [6]. A similar meta-analysis performed by 
Schrijver et al. had comparable results, with discordance 
rates analysed in 6118 tumours across 39 studies. They 
reported the pooled discordances rates for ER, PR and 
HER2 receptors as 19.3%, 30.9% and 10.3%, respectively. 
This study also reported the direction of conversion, as 
well as location-specific differences between metasta-
ses. The positive-to-negative conversion rates for ER, PR 
and HER2 were 22.5%, 49.4% and 21.3%, respectively. 
The negative-to-positive conversion rates for ER, PR and 
HER2 were 21.5%, 15.9% and 9.5%, respectively. In addi-
tion, ER discordance rates were higher in bone (29.3%) 
and brain (20.8%) than in liver (14.3%) metastases. PR 
discordance rates were higher in liver (47%) and bone 
(42.7%) than in brain (23.3%) metastases. No statistically 
significant differences were observed in HER2 discordance 
rates between metastatic sites [15].

Intrinsic molecular subtype switching

In addition to receptor discordance by ER, PR and HER2 
IHC status, several next generation sequencing (NGS) 
studies have also reported frequent intrinsic molecular sub-
type switching in breast cancer [16–20]. Intrinsic molecu-
lar subtyping is typically assigned using the PAM50 gene 
expression based classifier on RNA sequencing data from 
breast tumours [21, 22]. The intrinsic molecular subtypes 
are Luminal A, Luminal B, HER2-enriched (HER2-E), 
basal-like and normal-like. Some studies have reported 
the clinical subtype by IHC does not completely overlap 
with the intrinsic molecular subtype by NGS indicating 
that subtype switching may be more frequent than if only 
reporting on receptor discordance by IHC [16, 20, 23].

Cejalvo et al. performed targeted gene expression profil-
ing of 123 paired primary and metastatic tumours enriched 
for skin, lymph node, liver and bone metastases [17]. The 
rate of intrinsic subtype switching identified was 55.3% in 

Luminal A, 30% in Luminal B, 23.1% in HER2-E and 0% 
in basal-like tumours. Similar to ER and PR IHC status 
discordance rates, subtype switching was more frequent in 
Luminal type tumours with 40.2% of Luminal A switched 
to Luminal B while 14.3% of Luminal A/B switched to 
HER2-E tumours. In a larger more recent NGS study of 
paired primary tumours and early-course (de novo) metas-
tases enriched for liver, lymph node, skin and soft tissue 
metastases, Afitmos et al. reported intrinsic subtyping 
switching occurred in 36% of cases with most Luminal 
A primary breast tumours changing subtype with meta-
static disease [16]. Comparable Luminal A to Luminal B 
or HER2-E subtype switching rates have been reported 
in gene expression studies of breast cancer site specific 
metastases including bone or brain metastases. Priedigkeit 
et al. had reported in ~ 36% (4/11) cases of ER+ breast 
cancer Luminal A to Luminal B intrinsic subtype switching 
in bone metastasis [24]. In breast cancer brain metastases, 
recurrent gene expression losses in ESR1 (ER) and gene 
expression gains in ERBB2 (HER2) have been attributed 
to Luminal (ER+) intrinsic subtype switching [18, 19]. 
Consistent with this, Cosgrove et al. reported intrinsic 
molecular subtype switching from primary breast to brain 
metastases for 27% (12/45) of cases, with 8 Luminal A 
patients switching to either Luminal B, HER2-E or basal-
like subtype; 2 patients switching from normal-like or 
Luminal B to HER2-E and 2 patients with HER2-E or 
Luminal A to basal-like subtype [20].

Effect of discordance on treatment 
and survival outcomes

There is conflicting data in the literature with regards to 
alterations in management and the survival benefit of per-
forming a repeat biopsy of metastases. The majority of stud-
ies examining this benefit are small retrospective analyses 
with variability in laboratory techniques and definitions of 
recurrence [11, 25–27]. To address these limitations, two 
independent prospective studies were carried out—the DES-
TINY study[28] and the BRITS study [29]. A pooled analy-
sis of these studies evaluated the clinical impact of perform-
ing biopsy of metastatic breast cancer, specifically assessing 
the proportion of patients who underwent a change in man-
agement based on the biopsy results [30]. Of the 289 patients 
who underwent biopsy of the metastasis, 14.2% had a change 
in management based on the results. However, these studies 
failed to definitively assess the effect altering treatment had 
on patient outcomes, and only the DESTINY trial collected 
data on overall survival (OS). Receptor discordance was 
not significantly associated with differences in OS, if treat-
ment was modified accordingly (median OS 27.7 months 
vs. 30.2 months in the concordant and discordant groups, 
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respectively). Retrospective studies have reported worse sur-
vival outcomes in patients with receptor discordance [9, 31, 
32], however this may be because of inappropriate targeted 
therapy in discordant cases. A recent meta-analysis inves-
tigating the prognostic significance of receptor discordance 
showed that a loss of either ER or PR in recurrent tumours 
was significantly associated with worsened OS [33]. Further 
large prospective studies with sufficient follow up on treat-
ment response and survival are necessary to determine the 
true clinical significance of repeat biopsy for patients with 
metastatic breast cancer.

Mechanisms of receptor discordance

There are many possible aetiologies for receptor discord-
ance between the primary tumour and metastasis. It has been 
debated whether this discordance is due to technical diag-
nostic issues or reflects a true biological phenomenon, and 
it is likely a combination of both. Firstly, technical causes 
must be considered, as variability occurs in the accuracy and 
duplicability of IHC staining [34]. Significant variations are 
more often described in bone metastases, at least to some 
degree due to the technical issues related to decalcification, 
which may impact on the reliability of the IHC assessment. 
In addition, different sampling methods, for example fine 
needle aspiration or core biopsy versus surgical resection 
of the tumour, may contribute to discordant receptor results 
[11, 26, 35]. Furthermore, studies based on next generation 
sequencing have revealed that both intra-tumour and inter-
tumour heterogeneity are of greater incidence than previ-
ously thought [36]. This supports the hypothesis that recep-
tor discordance may be evidence of clonal genome evolution 
[6, 37–39]. Tumour heterogeneity may also be attributable 
to selective pressure of therapy inducing clonal selection 
with the evolution of a novel tumour cell clone [40–42], 
or small undetected subclones in the primary tumour that 
only become apparent with metastatic progression [6, 39]. 
In a prospective study by Hilton et al., a substantial ER dis-
cordance rate was reported between the primary tumour 
and metastases, but there was complete concordance among 
metastases arising from numerous bone sites, hinting at the 
existence of a dominant clone dividing from the primary 
tumour [43]. Biological drift is another possible explanation, 
as newly acquired biological characteristics in the tumour 
microenvironment may facilitate metastatic dissemination 
by enabling tumour cells to travel via the circulatory and 
lymphatic systems [44, 45].

Studies investigating molecular determinants of intrinsic 
molecular subtype switching between matched primary breast 
and metastatic tumour samples have been severely limited 
[16, 46, 47]. Given that receptor discordance and intrinsic 
molecular subtyping occurs most significantly in Luminal 

type tumours, most of these studies have focused on molecu-
lar mechanisms of ER subtype switching. ER-HER2 receptor 
bidirectional molecular pathway cross-talk has been largely 
reported in the context of endocrine or anti-HER2 therapy 
resistance in hormone receptor (HR) and HER2-positive 
breast cancer [48]. It has been proposed that a change in sub-
type for Luminal type tumours may be as a consequence of 
this ER-HER2 receptor cross-talk, where ER expression can 
limit PI3K pathway activity affecting HER2 pathway activa-
tion, whilst HER2 overexpression, largely due to copy number 
amplification, can lead to loss of ER gene expression. Epig-
enomic, transcriptomic or genomic analysis of Luminal type 
primary breast tumours which metastasize have proposed 
loss of ESR1 (ER) gene expression due to either ESR1 (ER) 
hypermethylation [18], basal-like molecular features such as 
TP53 and/or PIK3CA mutations [16] or increased expression 
of FGFR4 [46] and activation of corresponding growth factor 
signalling pathways may be associated with Luminal A/B to 
HER2-enriched subtype switching.

Effect of treatment on discordance

Treatment exposure may induce receptor expression loss 
between the primary tumour and metastasis. This may be 
through a direct effect [49, 50] or as a result of clonal selec-
tion [40, 42]. For example, in line with the description of 
ER-HER2 receptor cross-talk above, ER and HER2 may 
alternate as the “dominant” pathway with either endocrine 
or anti-HER2 targeted therapy, where selective eradication 
of ER/PR positive cells by hormonal therapy could result in 
a population of ER/PR negative cells that could subsequently 
metastasise [51]. In addition to this, the impact of HER2-tar-
geted therapy on HER2 receptor conversion has been inves-
tigated. Niikura et al. found that HER2 discordance rates 
differed significantly based on whether patients received 
chemotherapy but not based on whether the patients received 
trastuzumab [52]. However, other authors have not found 
neoadjuvant chemotherapy or trastuzumab to be associated 
with significant changes of HER2 status between primary 
and metastatic breast cancer [29, 53, 54]. The ChangeHER 
trial included 491 metastatic HER2-positive breast cancer 
cases treated with pertuzumab and/or T-DM1. This study 
found a HER2-positivity gain in 20.7% of cases, with some 
evidence of longer median OS in these patients, although at 
a not fully statistically significant extent [55].

Future perspectives

Liquid biopsy

Repeat biopsies are often technically difficult, invasive, 
costly, and limited by the fact that they provide information 
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on mutations present only at a given time and site. A poten-
tial alternative for biopsy of metastatic lesions is the mini-
mally invasive “liquid biopsy”, with genomic alterations of 
the tumour characterised by parallel sequencing of circu-
lating cell-free tumour DNA (cfDNA) [56, 57] or circulat-
ing tumour cells (CTCs) [58]. These methods also attempt 
to tackle the heterogeneity of breast cancer as the cfDNA 
and CTCs stem from all malignant lesions within the body. 
While many studies have supported these methods [59–61], 
they are expensive and technically challenging. Additionally, 
CTCs may represent a different proportion of cells from the 
bulk metastatic tissue. Thus, serial blood samples provide 
an interesting alternative to repeat biopsies of metastatic 
lesions, however further research is needed to fully deter-
mine their potential.

Ongoing trials

In an attempt to improve our understanding of the genetic 
aberrations in metastatic breast cancer, the AURORA trial 
was established [62]. In this large global study, high cov-
erage targeted gene and RNA sequencing are performed 
on matched primary and metastatic samples to investigate 
tumour heterogeneity, clonal evolution, and transcriptional 
changes. Initial results of the trial found that over half of the 
patients had molecular changes that could be matched with 
existing targeted therapies, highlighting the potential ben-
efit of molecular screening in metastatic breast cancer [63]. 
Ongoing trials, such as SAFIR02 (NCT02299999) [64] and 
Alliance A071701 (NCT03994796)[65], are investigating 
the benefit of genetic testing to guide treatment in meta-
static breast cancer. The SAFIR02 Breast trial explores using 
genome analysis as a therapeutic decision tool, which aims 
at comparing a targeted treatment administered according to 
identified molecular abnormalities with maintenance chemo-
therapy [64]. The Alliance trial investigates the benefit of 
genetic testing in guiding treatment for patients with any 
solid tumours that have metastasised to the brain using tar-
geted therapies [65].

Conclusion

Receptor and subtype discordance between primary breast 
tumours and metastases is common. This article reviews the 
current evidence on the rate of clinical and intrinsic molecu-
lar subtype discordance, its clinical significance in terms of 
management and outcomes, and provides an insight into the 
future perspectives for patients with metastatic breast cancer.
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