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Abstract: Fungal infections are considered a great threat to human life and are associated with
high mortality and morbidity, especially in immunocompromised individuals. Fungal pathogens
employ various defense mechanisms to evade the host immune system, which causes severe infec-
tions. The available repertoire of drugs for the treatment of fungal infections includes azoles, ally-
lamines, polyenes, echinocandins, and antimetabolites. However, the development of multidrug
and pandrug resistance to available antimycotic drugs increases the need to develop better treat-
ment approaches. In this new era of -omics, bioinformatics has expanded options for treating fun-
gal infections. This review emphasizes how bioinformatics complements the emerging strategies,
including advancements in drug delivery systems, combination therapies, drug repurposing, epi-
tope-based vaccine design, RNA-based therapeutics, and the role of gut-microbiome interactions
to combat anti-fungal resistance. In particular, we focused on computational methods that can be
useful to obtain potent hits, and that too in a short period.

Keywords: Antifungal resistance, drug repurposing, reverse vaccinology, pharmacomicrobiomics, multidrug resistance, pan-
drug resistance.

1. INTRODUCTION
About 3-5 million fungal species have been estimated to

exist on our planet, of which about 300 species are patho-
genic  to  humans  [1].  Aspergillus,  Cryptococcus,  Pneumo-
cystis,  and  Candida  are  the  four  major  genera  that  cause
lethal infections [2]. Additionally, Candida and Aspergillus
have  been  identified  to  interact  synergistically  with  the
COVID-19 virus [3]. Treatment for mycotic infections relies
on  five  major  classes  of  drugs:  echinocandins,  polyenes,
azoles, allylamines, and antimetabolites [4]. Although these
drugs are effective in many cases, their therapeutic efficacy
is limited because of their high toxicity and frequent develop-
ment of resistance to therapeutics [5]. Despite the advance-
ments in the mega science of mycology, the development of
novel  antifungal  therapeutics  remains  a  challenging,  time-
consuming, expensive, and inefficient process. This review
emphasizes how the integration of bioinformatics and multi-
-omics approaches complement the development of new ther-
apeutic products.

The  fungal  pathogens  develop  strategies  to  escape  the
host immune system and confer resistance to protective anti-
fungal  response.  One such strategy is  shielding the patho-
gen-associated  molecular  patterns  (PAMPs)  with  different
molecules, such as β-1,3-glucan, by the outer mannan layer,
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preventing its interaction with dectin-1. Dectin-1 is a pattern
recognition receptor (PRR) on host immune cells and medi-
ates  antifungal  cellular  responses  [6].  In  dimorphic  fungi,
β-1,3-glucans (more immunogenic) are converted into α -1,3
glucans (less immunogenic) during a change in morphology
from filamentous form to yeast form. Eng1 protein secreted
by Histoplasma caspulatum has glucanase activity, which re-
duces as β-1,3-glucan on yeast cell wall [7].

Numerous mechanisms related to the development of an-
tifungal resistance have been identified, including alteration
or overexpression of antifungal targets, reduction in the intra-
cellular drug concentration due to upregulation of multidrug
transporters, biofilm formation, and activation of stress re-
sponses [8]. These processes are influenced by multiple fac-
tors like drug misuse, lack of strong regulatory measures, im-
proper sewage disposal, and low-quality medicine and non-
specific medications, causing the emergence of drug-resis-
tant microbes [9]. The long-term use of antifungals can re-
sult in serious adverse drug effects (ADEs). The triazoles (i-
traconazole,  posaconazole,  voriconazole,  fluconazole,  and
isavuconazole) has recently gained attention for its ADEs.
The  use  of  posaconazole  causes  an  elevation  in  liver  en-
zymes  leading  to  hepatotoxicity,  while  voriconazole  and
isavuconazole  have  the  highest  risk  of  nervous  disorders.
The echinocandins consist of three approved drugs: micafun-
gin, caspofungin, and anidulafungin. Furthermore, all three
drugs  are  similar  in  their  chemical  structure,  but  it  was
found that micafungin and caspofungin have the highest inci-
dences of subcutaneous tissue and skin disorders [10]. Am-
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photericin B, belonging to class polyenes, was the first anti-
fungal drug approved by the FDA for the treatment of myco-
sis. The major drawback of Amphotericin B reported was its
toxicity, notably nephrotoxicity, which causes kidney dam-
age [11]. The other ADEs related to amphotericin B include
subcutaneous tissue and skin disorders, a decrease in potassi-
um  levels,  and  respiratory  and  gastrointestinal  disorders
[10].

Antifungal vaccines could be an alternative treatment to
eradicate  fungal  infections.  Conventional  methods  of
vaccine development rely on the growth of the pathogen in
laboratories  and  the  purification  of  antigenic  proteins  that
can serve as potential vaccine candidates. These traditional
approaches, besides being time-consuming and of low yield,
have failed in several instances, such as in the cases of non-
culturable/cultivatable pathogens [12]. Advances in bioinfor-
matics facilitate the birth of a rationalized strategy known as
reverse vaccinology (RV) [13].  The RV approach exploits
the whole genome of the pathogen and searches for putative
immunogenic targets.  The basic idea behind this approach
was B and T cell receptors recognize the predicted antigenic
determinants and evoke both humoral and cell-mediated im-
mune responses [14].

The  restricted  scope  of  currently  available  antifungals
calls for finding new therapeutic approaches. Integrated ge-
nomics, transcriptomics, proteomics, and bioinformatics aid
in the advancement of therapeutics for various infectious dis-
eases. Various computational strategies have been employed
to investigate how drug candidates interact with target pro-
teins and elicit a therapeutic response impacting biological
pathways and functions. The development of better diagnos-
tic tools and strategies that allow targeted use of antifungals
is essential to promote drug effectiveness. This article pro-
vides insight into the use of bioinformatics and computation-
al approaches for novel therapeutic discoveries.

2. BIOINFORMATICS IN THE IDENTIFICATION OF
POTENTIAL THERAPEUTIC TARGETS

2.1. Mechanistic Targets for Available Antifungals and
Resistance Mechanism

Based on the action mechanisms, the existing classes of
drugs  have  three  main  targets:  (i)  inhibition  of  ergosterol
biosynthesis, (ii) disruption of the fungal membrane, and (ii-
i) inhibition of macromolecule synthesis [15]. Azoles block
the activity of 14-sterol demethylase, an enzyme belonging
to the Cytochrome P-450 family, that plays a role in ergos-
terol production. This causes the depletion of ergosterol and
the  accumulation  of  toxic  sterol  intermediates  that  lead  to
the  loss  of  membrane  integrity,  as  ergosterol  is  the  main
component  of  the  fungal  cell  membrane,  which  results  in
cell death [16]. The prevalence of resistance to azoles hap-
pens due to mutations in the target gene ERG11 and overex-
pression of efflux transporters that cause azole molecules to
escape outside the cell [8]. Polyenes, another class of antifun-
gal drugs, interact with the fungal membrane and target a vi-

tal molecule-ergosterol [17]. The binding of polyenes to er-
gosterol facilitates the leakage of intracellular ions that dis-
rupt  the  membrane  potential  and  active  transport  mech-
anism. Amphotericin B belongs to the class polyenes, and it
was the first antifungal discovered. The major drawback of
Amphotericin B reported was its  toxicity,  notably nephro-
toxicity, which causes kidney damage [11]. Flucytosine (5-
fluorocytosine)  is  an  antimetabolite  that  targets  DNA  and
RNA synthesis in fungi. Once it enters the fungal cell, it is
metabolized  into  5-fluorouracil,  a  pyrimidine  analog  that
can be disincorporated into DNA and RNA. Two common
side effects attributed to flucytosine are hepatotoxicity and
hematological toxicity [18]. Another major antifungal cate-
gory is Echinocandins, which block the activity of 1,3- β-d-
glucan (BDG) synthase. BDG synthase is an enzyme respon-
sible for the synthesis of 1,3- β-d-glucan, which is one of the
main structural elements of the cell wall in most fungi but is
absent in mammalian cells, therefore making it a perfect tar-
get for antifungals [19]. However, mutations in the gene FK-
S1,  which  encodes  a  catalytic  subunit  of  glucan  synthase,
serve as the site of drug resistance [20].

2.2. Computer-aided Target Discovery
The currently available antifungals either target cell wall

synthesis, ergosterol synthesis, or ergosterol itself. However,
these targets constitute a minor fraction of potential therapeu-
tic targets encoded by the fungal genome [21]. To improve
therapeutic  success,  pharmacological  molecules  interact
with specific targets, therefore, identification of new targets
and target validation are of utmost importance for the devel-
opment of new therapeutic molecules. There are two basic
criteria for a gene to function as a therapeutic target. First,
pathogen  survival  and  growth  must  rely  on  that  gene.  Se-
cond, the homolog of the candidate gene must not be present
in mammals. Traditionally, target identification relies on wet
lab  experiments  and  is  cost-ineffective,  time-consuming,
and has low accuracy. In the multi-omics era, computer-aid-
ed target identification is overcoming the limitations of con-
ventional  methods.  Bioinformatics has created a paradigm
shift in the identification of novel drug targets and facilitates
the process of drug discovery. Novel targets can be uncov-
ered using two methods: A) Comparative genomics, which
includes a comparison of host and pathogen metabolic path-
ways. B) Network-based approach, is useful for constructing
the  endogenous  signaling,  regulatory,  and metabolic  path-
way with which the novel drug target can interact [22, 23].

2.2.1. Comparative Genomics Approach
The comparative genomics approach is based on the fact

that candidate drug targets are key components in metabolic
pathways and are crucial for pathogen survival. Moreover,
the  comparative  genomics  approach,  combined  with
metabolic pathways analysis, yields the proteins specified to
the pathogen and is followed by the subtractive proteomics
approach, which narrows the selection for target identifica-
tion.
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Fig. (1). The computational workflow for the identification of novel drug targets using comparative genomics. (A higher resolution / colour
version of this figure is available in the electronic copy of the article).

Firstly,  all  the  existing  metabolic  pathways  from  both
the  host  and  pathogen  are  collected  and  compared  using
databases  like  KEGG  or  MetaCyc.  In  addition,  common
metabolic pathways are removed, and genes as well as en-
zymes belonging to unique metabolic pathways are identi-
fied. In the second step, protein sequences for the enzymes
involved in pathogen-specific pathways are retrieved in FAS-
TA format from the UniProt database and subjected to ho-
mology searches using the BLAPSTp tool. Non-homologous
pathogen enzymes are identified using BLAST results that
have no hits with host enzymes [23]. Finally, resultant pro-
teins are prioritized using several parameters, including 1)
the selection of essential proteins, virulent proteins, and re-
sistance  proteins,  2)  Subcellular  localization  (cytoplasmic
proteins are more suitable as drug targets), 3) the removal of
proteins already existing as drug targets for novelty, and 4)
Drug ability and toxicity analysis. The novel/potential drug
targets  identified  using  the  above-mentioned  techniques
need to be further subjected to structure generation and vali-
dation,  which  the  present  article  does  not  factor  into  its
scope. Fig. (1) shows a workflow for in-silico identification
of novel targets using a Comparative Genomics approach.

2.2.2. Network-based Approach
The concept of network graph theory explores the biolog-

ical network by mapping all the relevant data through data

mining. This helps to identify the functional concept in the
network and identify the potential targets [24]. The integra-
tion of such huge biological datasets requires system biolo-
gy tools and computational algorithms together with the use
of functional genomic and network analysis databases. Cy-
toscape [25] and Gephi [26] are the two popularly used tools
for complex network analysis. GeneMANIA is a web-based
tool  for  analyzing gene lists  [27].  These tools  identify  the
sub-networks and regions of similarity and dissimilarity to
interpret the interactions within the network. Paolini et al.
first  developed  the  drug-target  network  based  on  200,000
compounds with more than 500,000 bioactivities by linking
proteins through chemical spaces [24].

The functional  component in the biological  network is
depicted as a node, and any connection between the nodes,
which can be physical or functional interactions is termed as
edge. Different types of networks include gene interaction
networks, protein-protein interaction networks, mi-RNA-m-
RNA  interaction  networks,  signal  transduction  networks,
metabolic  networks,  and  genetics  interaction  networks.
Table 1  tabulates the parameters for analyzing the general
structure  of  biological  networks  [28,  29].  In  general,  net-
work-based  approaches  require  an  in-depth  knowledge  of
the interaction network and, therefore, require pathway en-
richment analysis to identify the potential drug target. Fig.
(2) describes the workflow of the network-based approach.
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Table 1. Description of the parameters used in biological network analysis.

Parameters Description
Network density Maximum number of edges connecting each node to each other.

Degree The property of the node to interact with other neighboring nodes.
Betweenness The frequency with which the distance between any pair of nodes passes through that node.

Distance The shortest path length between two nodes.
Clustering coefficient It measures the interconnectivity of its neighbors.

Connectivity Minimum number of elements that need to be removed to disconnect the leftover nodes from each other.
Assortativity Measures the correlation coefficient of degree between pairs of linked nodes.
Eigen value It is the measure of the influence of nodes in a network.

Fig. (2). The computational workflow for the identification of nov-
el drug targets using a network-based approach. (A higher resolu-
tion  /  colour  version  of  this  figure  is  available  in  the  electronic
copy of the article).

Recently, Robin et al.  proposed three promising thera-
peutic targets against Cryptococcus gattii using comparative
genomics and subtractive approach that are- Mitochondrial
distribution and morphology protein 10 (MDM10), osmolari-
ty two-component  system, phosphorelay intermediate  pro-
tein YPD1 (YPD1), and mitochondrial distribution and mor-
phology protein 34 (MDM34, MMM2) [30]. However, the
study  is  completely  based  on  computational  analysis  and
still needs to be confirmed experimentally. Rrp9 (U3 small
nucleolar ribonucleoprotein associated protein) is a promis-
ing drug target against Candida albicans based on in-silico
studies.  Docking  studies  revealed  that  it  shows  binding
affinity with dicyclomine, which targets signal transduction
genes and inhibits virulence factors in C. albicans [31]. Com-

putational  studies  revealed  that  5  protein-coding  genes,
namely His6, PabaA, FasA, FtmA, and erg6, can act as puta-
tive drug targets against Aspergillus fumigatus [32]. Howev-
er, elucidation of the 3D structure of these targets is lacking
till now.

3.  RECENT  THERAPEUTIC  APPROACHES  FOR
COMBATING ANTIFUNGAL RESISTANCE

3.1. Advancements in the Drug Delivery System
Despite the available antifungal therapeutics, the preva-

lence of fungal infections is still increasing due to the devel-
opment of multidrug resistance to existing antifungal drugs,
and the foremost reason for the development of drug resis-
tance is found to be associated with suboptimal drug concen-
tration and non-specific cell targeting [33, 34]. Furthermore,
novel antifungal therapies show less efficacy due to the in-
sufficiency of the suggested route of administration, lack of
controlled  clinical  trials,  or  high  cost  of  production  com-
pared to conventional antifungals [35]. The development of
the drug delivery system based on nano-formulations pro-
vides insight to overcome these limitations. However, most
of the available drugs are hydrophobic, which reduces their
solubility  and  bioavailability,  causing  pharmacokinetic
problems. However, the pharmacokinetic profile can be im-
provised by the covalent conjugation of drugs with the poly-
mers [36]. Efforts have been made to optimize the compati-
bility between drugs and nanoparticles using the in-silico ap-
proach, which is time-effective and augments drug loading,
retention, and stability. Molecular simulations are the ideal
technique  to  improve  the  design  of  drug  delivery  devices
and are driven by long-range non-covalent interactions. Sim-
ulations serve as a “computational microscope,” which pro-
vides information that is difficult to get experimentally, such
as the influence of molecular interactions on crucial parame-
ters like release rate, drug delivery device's responsiveness
to external stimuli,  and interactions between nanoparticles
and  biological  material  [37].  Several  Databases/Tools  are
available to design nanoparticle-based drug delivery systems
(Table 2). However, so far, there is no currently stored infor-
mation regarding the 3D structure of nanomaterials and their
correlation  with  physicochemical  properties  and  toxicity,
which brings about the need to build a database regarding
such information.



Bioinformatics Approaches in the Development of Antifungal Therapeutics and Vaccines Current Genomics, 2024, Vol. 25, No. 5   327

Table 2. Databases/tools available to design nanoparticle-based drug delivery systems.

Name Type Description URL
Nanowerk Database Currently available nanomaterials (about 4500) http://www.nanowerk.com/

ENanoMapper Database Provides toxicology data http://data.enanomapper.net/

NBI knowledge base Repository Data on nanomaterial characterization, biological interactions, and synthesis
methods http://nbi.oregonstate.edu/

Nanomaterial Registry (NR) Repository Physiochemical properties of nanomaterials and their biological interactions http://naomaterialregistry.net/
PubVINAS Tool Nano-modeling tool http://www.pubvinas.com/

3.2. Combination Therapy
Combination therapy using multiple drugs, is a promis-

ing therapeutic strategy, improving the combined molecules'
efficacy, reducing toxicity, and combating antimicrobial re-
sistance [38]. Clinical studies have demonstrated the effec-
tiveness of combination therapy in various instances. Sha-
ban  et  al.  demonstrated  that  Carvacrol,  a  monoterpene
phenol,  shows  both  additive  and  synergistic  effects  when
combined with antifungal drugs: nystatin fluconazole, caspo-
fungin,  and  amphotericin  B  against  C.  auris  [39].  Terbi-
nafine (TEF) and azoles show synergistic effects; azoles tar-
get the plasma membrane, increasing TEF absorption [40].
Various combinations of plant natural products and existing
antifungal drugs have been investigated for combating anti-
fungal resistance, such as Brazilian Red Propolis and A. Sel-
lowiana in combination with fluconazole act synergistically
against C. parapsilosis and C. glabrata. Propolis acts on the
cell wall and facilitates the penetration of fluconazole inside
the cells [41].  Recently, it  has been reported that ribavirin
works synergetically with caspofungin against C. albicans
and can be effective in treating C. albicans infections [42].

There will be millions of combinations for the thousands
of FDA-approved drugs, and the systematic high-throughput
screening of all possible drug combinations is time-consum-
ing and challenging, therefore, there is delimited knowledge
of effective drug combinations [43]. There are many unansw-
ered  questions,  like  which  two  molecules  in  combination
would be optimal or at what concentration they will work as
a better therapeutic agent? What endpoint is relevant? What
percentage of  populations are likely to get  leverage? How
can  combination  therapy  be  justified  over  monotherapy?
How to counterbalance the production cost and the chances
of potentially increased toxicity of this approach?

Computational  strategies  enable  in  silico  screening  of
combination  effects.  The  network-based  approach  is  one
such strategy that offers novel insight to explore the “multi-
ple-drug,  multiple  targets”  paradigm  aiming  at  modifying
multiple  disease  proteins  within  the  same  disease  module
while minimizing toxicity profiles [44].

The pharmacokinetic and pharmacodynamic properties
of drugs and the appropriate drug dosage in combination can
be  quantified  using  mathematical  modeling  [45,  46].  The
binding effect of each drug involved in combination therapy
is determined using the MD simulations, which also suggest
the possible outcome of the allosteric binding of other drugs,

whether the drugs in combination show synergism or antag-
onism [47].

Various databases have been generated on combination
therapy,  such  as  the  Drug  combination  database  (DCDB)
[48], drug-drug interaction (DDI) [49], Antifungal synergis-
tic  drug  combination  database  (ASDCD) [50],  DrugComb
(DB)  [51].  Some  freely  available  software  and  tools  that
have been developed for analyzing combination data based
on machine learning techniques are Combenefit [52], Syner-
gyFinder [53], Synergy [54], and SynToxProfiler [55]. How-
ever, the lack of available input data is still considered a ma-
jor limitation for the computational design of combination
therapies  that  demands  attention  for  bringing  in  better  re-
sults of combination therapies.

3.3. Drug Discovery

3.3.1. De Novo Drug Development
Developing novel drugs with required pharmacological

activity is crucial for maintaining the development pipeline.
Computer-Aided Drug Design is an efficient tool to expedite
the drug discovery process and relies on information regard-
ing the receptor (target) and its binding ligand. The two dif-
ferent  approaches  in  CADD are  Structure-Based  Comput-
er-Aided Drug Design (SB-CADD) and Ligand-Based Com-
puter-Aided Drug Design (LB-CADD) [56]. SB-CADD ap-
proach includes the following steps: (1) Mining data: Vari-
ous  databases  have  been  developed  to  extract  information
about protein structural data, drug interactions, side effects,
metabolic  pathways,  protein-protein  interactions/networks,
drug targets, etc. (2) Protein structure prediction: 3D struc-
tures  of  proteins  can  be  predicted  computationally  using
methods such as homology modeling and de novo modeling.
However, the former is the best-suited method and the most
accurate [57]. Other methods for the detection of 3D struc-
tures  of  protein  include  X-ray  crystallography,  NMR,  and
Electron microscopy [58]. (3) Molecular docking and Molec-
ular dynamic (MD) simulations: Molecular docking allows
the prediction of interaction between a drug candidate and
target protein (receptor) to make a stable complex [59]. Vari-
ous  docking  programs  have  been  developed  till  now,  and
among  all  software,  Autodock  Vina,  MOE-Dock,  and
GOLD  give  the  best  scores  with  their  algorithms  [60].
Molecular docking is insufficient for understanding the be-
havior of a drug in the actual  physical  system, as proteins
are  dynamic  and  exist  in  different  conformational  states.
MD simulations are an advantageous technique to overcome
the shortcomings of molecular docking [61]. LB-CADD: A
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ligand-based approach is implemented when the 3D struc-
ture  of  the  protein  or  target  molecule  is  unavailable  [62].
This approach elucidates the relationship between the struc-
tural and physicochemical properties of the compound and
its biological activity [63]. The two most widely used com-
putational strategies in the LB-CADD approach are Quantita-
tive  structure-activity  relationships  (QSAR)  and  pharma-
cophore  modeling  [64].  While  the  3D  QSAR  pharma-
cophore  approach  incorporates  the  chemical  properties  of
both the most active and inactive compounds together with
their  biological  activity,  pharmacophore  modeling  solely
makes  use  of  the  common  chemical  features  found  in  the
most active compounds. DrugRep is a web server for re-pro-
filing drugs that achieves its task using both receptor-based
screening and ligand-based screening. The cavity detection
approach detects the possible binding pockets of receptors
and  performs  batch  docking  using  AutoDock  Vina  [65].
However, discussing the details of these approaches is not in
the scope of this article.

3.3.2. Drug Repurposing
The re-profiling of existing drugs, as compared to the tra-

ditional drug discovery approach or new drug designing is
cost-effective and time-saving with additional benefitssuch
as  lower  chances  of  failure  in  the  later  stages  of  clinical
trials [66]. Multi-omics era and bioinformatics analysis pro-
vide insight into drug repurposing [62]. Antifungal effects of
various non-antifungals (antitumor and antimicrobial agents)
can be uncovered using the drug repurposing strategy. Vari-
ous  anti-bacterial  drugs  such  as  aminoglycosides,
macrolides, tetracyclines, quinolone peptides, and others, in-
cluding rifampicin and linezolid, are also known to possess
antifungal activities [67]. It has been recently reported that
atorvastatin,  an  inhibitor  of  HMG-CoA reductase,  a  lipid-
lowering drug, is confirmed to have antifungal activity in flu-
conazole-resistant Candida albicans [68].

Computational drug repurposing have been classified in-
to drug-centric (similar drugs have similar pharmacological
effects) and disease-centric (similar disease needs the same
therapies). Current in-silico approaches that have been devel-
oped in the context of drug repurposing are of three types:
(1) target-driven repurposing, (2) genome-wide repurposing,
and (3) Literature-driven repurposing [69].

3.3.2.1. Target-driven Repurposing
The affinity of drug molecules to more than one target is

the key notion behind target-driven repurposing [70]. Tar-
get-driven repurposing exploits the drug libraries available
for high-throughput screening, followed by virtual screening
such  as  docking  or  ligand-based  screening.  This  approach
can screen nearly all drug compounds with known chemical
structures [71]. Based on protein targets, new indications are
identified by linking a drug to a specific disease [69].

3.3.2.2. Genome-wide Repurposing
The advancement in genome-wide metrics has made it

possible  to  repurpose  FDA-approved  drugs  for  treating

heterogeneous diseases [72]. The Online Mendelian Inheri-
tance  in  Man (OMIM) and the  Gene Expression Omnibus
(GEO) are two publicly available repositories that enable a
systemic survey of disease similarity within the framework
of the genome. The drug-target interaction networks repre-
sent  another  domain  of  genome-wide  repurposing.  It  ex-
ploits the disease omics data because disease pathways can
be constructed using network analysis [69].

3.3.2.3. Literature Driven Repurposing
The literature-driven repurposing, or “text mining,” lev-

erages  the  huge  scientific  literature  on  drugs  and  disease
[71]. Bioinformatics and chemoinformatics tools combined
with the text mining approach led to novel discoveries sys-
temically. Several information sources or databases are avail-
able  for  indication  discovery  such  as  PubMed and OMIM
[69].

3.4. Drug-microbiome Interactions
The gut microbiome (GM) and drug interactions share a

reciprocal  relationship.  GM  can  interfere  with  drug
metabolism and, hence, can increase, decrease, or toxify the
drug efficacy  to  a  clinically  significant  level.  On the  con-
trary, drug intake may also alter the composition of gut mi-
crobiota,  which, in turn, may affect the individual's  health
and other drug responses [73]. Drug metabolism by GM of
over 180 orally administered drugs has already been report-
ed, and non-oral administered drugs are under research [74].
Human  GM  shows  inter-individual  variation  and  acts  as
unique  fingerprints  [75].  A  new  field,  “Pharmacomicro-
biomics,” has been proposed, to investigate the interplay be-
tween GM variation and drug pharmacodynamics and phar-
macokinetics [76]. Drug absorption, distribution in the body,
metabolism,  and  elimination  (ADME)  are  the  four  funda-
mental  processes  studied in  the field  of  pharmacokinetics.
GM interaction with antifungal drugs has been reported in
the literature. Fluconazole administration is the most widely
used antifungal, which impacts the gut microbiome composi-
tion [77]. Hence, the study of the drug-microbiome interac-
tions can prove to be a milestone in antifungal treatment.

Table 3 depicts some available databases that contain in-
formation about drug-microbiome interactions. DrugBug is
the  only  tool  available  to  predict  the  susceptibility  of  the
drug to get metabolized by the GM. In addition, DrugBug
was developed using a machine learning technique based on
the structural similarity of drugs, as drugs with certain func-
tional groups are more prone to metabolism by the GM [78].
Currently, the use of the in-silico approach in understanding
drug-microbiome interactions lags behind other areas. The
emergence of next-generation sequencing and advancements
in the characterization of GM provide a lot of the latest infor-
mation to create datasets and develop novel computational
pipelines using these datasets. Moreover, the composition of
GM varies in every individual due to numerous factors like
population  difference,  age,  diet,  genome,  presence  of  dis-
ease, lifestyle, and gender [79]. Hence, the universalization
of these studies is still far from being achieved.
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Table 3. Drug-microbiome interaction databases.

Name Description References
Microbe Drug Association Database (MDAD) Contains experimentally supported information about drug-microbe interaction [80]

PharmacoMicrobiomics database Classify drug-microbe interaction based on microbial taxa and body site [81]

Microbiota- Active Substance Interaction Database (MASI) Provide information about the abundance of GM, drug impact on GM, and
vice-versa [82]

Table 4. The most widely used bioinformatics tools available for the prediction of epitopes.

MHC-I Binding Prediction Tools MHC- II Binding
Prediction Tools

Linear B-cell Epitope
Prediction Tools

Conformational B-cell
Epitopes Prediction Tools

IEDB
NetCTL

MHCpred
NetMHC nH-

LAPred
CTL-Pred
SVMHC

RANKPE
BIMAS
MAPPP

ProPred SYFPEI-
TIPREDEP
MHCPEP

IEDB
NetMHC-II MHCpred

MetaMHC Me-
taSVMP, Propred-II

RANKPEP PREDIVA-
CEpiDOCK
Consensus

SYFPEITH, BIMAS
CTL-pred EpiTOP
MHCPEP EpiVax,
PREDEPP TEPI-

TOPE
EPIPREDITEpiMatrix

Bepipred BCpred
ABCpred

Pcipep BCEpred
Igpred

BepiTope
PrediTop PEO-

PLE LBtope
SVMTrip

COBEproEPMLR

Discotope
Ellipro
CBTope
Epitope
BEPro
CEP

SEPPA

CED
EPITOME MAPO-

TODEEPCES
EPSVR EPMETA

3.5. RNA-based Therapeutics
RNA molecules are used as a drug or a vaccine to gener-

ate a therapeutic response in experimental organisms which
brings RNA-based therapeutics to the forefront as an emerg-
ing  source  of  treatment  option  for  different  fungal  infec-
tions. The core concept of RNA therapeutics is the manipula-
tion of protein function and/or production. This can be ac-
complished by either directly targeting proteins, interfering
with the RNAs that encode the necessary proteins, or supply-
ing the genetic instructions for protein synthesis [83]. RNA-
mediated  gene  silencing  is  a  well-conserved  phenomenon
and has been investigated in a diverse group of fungi. There
used to be so many limitations on the practical implications
of RNA-based methods, such as rapid therapeutic deteriora-
tion, specificity to inhibit fungal pathways only, crossing the
cell envelope barrier, and challenges in facilitating RNA es-
cape from the endosome [84]. Some frequently used strate-
gies to overcome the challenges felt in RNA-based therapeu-
tics are nanoparticle-based delivery [85], chemical modifica-
tion to prevent deterioration and decrease immunogenicity
[86], and the use of aptamer as a delivery carrier to increase
specificity [87]. Based on machine learning, various bioinfor-
matics tools and servers have been developed which facili-
tate  the designing of  RNA-based therapeutics  and are dis-
cussed in the next section.

In  Aspergillus  nidulans,  the  siRNA  shows  an  in-vitro
gene silencing effect targeting ornithine decarboxylase (OD-
C), a fungal polyamine gene essential for fungal growth and
development [88]. RNAi mechanism was successfully tested
in  Aspergillus  fumigatus  against  ALB1/PKSP  and  FKS1
genes  [89].

imRNA is a server for designing immunomodulatory sin-
gle-stranded RNA to develop RNA-based therapeutics. In ad-
dition to it, this server may also identify minimum mutations
required to decrease the immunomodulatory potential  of a
given RNA sequence. Computer-aided designing of siRNA
can also be done using this server [90]. AptaBlocks is a com-
putational approach that aids in designing RNA complexes

and  improvising  RNA-based  drug  delivery  systems  [91].
PFRED is another computational platform for designing anti-
sense oligonucleotides and siRNA [92]. Si-Fi (siRNA Tar-
get Finder) is yet another tool available online for designing
siRNA [93]. Various link prediction models have been devel-
oped, such as GKLOMLI for inferring miRNA–lncRNA in-
teractions [94], SPRDA predicts piRNA associated with dis-
eases [95], and AMDECDA predicts circRNA-disease asso-
ciation [96].

4. MODERN VACCINE DEVELOPMENT
Traditional  methods  of  developing  vaccines  come at  a

huge cost in terms of time and money [97]. Artificial intelli-
gence-driven immunology research has led to the emergence
of immunoinformatics as the field of study [98]. The use of
immunoinformatics  tools  in  designing  vaccines  nowadays
has also facilitated a rationalized strategy known as “Rev-
erse  Vaccinology  (RV).  The  basic  premise  of  the  RV  ap-
proach is to search for immune-dominant epitopes that can
be recognized by B and T cell receptors, known as B cell epi-
topes  (BCEs)  and  T  cell  epitopes  (TCEs),  respectively,
which  evoke  both  humoral  and  cellular  immune  response
[14].  The  most  widely  used  bioinformatics  tools  available
for  the  prediction  of  epitopes  are  tabulated  in  Table  4.
Promiscuous antigenic proteins are filtered using the subtrac-
tive proteomics approach [99], and the epitope selection list
is narrowed down based on antigenicity, allergenicity, im-
munogenicity,  druggability,  virulence,  self-tolerance,  im-
mune  boosting  potential,  toxicity,  conservancy,  etc  [100].
Since  the  single-epitope-based  vaccine  has  low  immuno-
genicity  and  antigenicity,  hence  the  multi-epitope  vaccine
construct  was  favored.  The  epitopes  and  adjuvant  can  be
fused  using  appropriate  linker  selection,  and  the  final
vaccine construct can be simulated and evaluated before the
experimental validation [14]. RV approach has been success-
fully  applied to  build  effective  subunit  vaccine candidates
against  emerging  strains  of  mycobacterium,  peptide
vaccines based on essential genes and virulent genes against
bacterial infections, subunit vaccines against the Zika virus,
and many others against coronaviruses [101].
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CONCLUSION
Despite advancements in antifungal treatment, the preva-

lence of infections is still increasing, resistance to the exist-
ing antifungal drugs remains a major concern, and the goal
of  achieving  control  over  fungal  diseases  is  constantly
pushed  further.  Of  course,  there  has  been  tremendous
progress in the development of novel antifungal drugs, but it
may take many years from discovery to clinical use. For this
reason, it is important to optimize existing molecules and de-
velop novel combinations and alternative therapies to pre-
vent  and  treat  mycosis.  Computer-aided  drug  designing,
nano-modeling tools,  drug repurposing, and immunoinfor-
matics approaches can change the paradigm of therapeutic
development. Moreover, the interactions between the micro-
biome and drug metabolism need to be explored further to
improve  drug  efficiency.  To  conclude,  it  can  be  said  that
bioinformatics  or  computational  approaches  have  the  im-
mense potential to accelerate the process of identification of
more efficient drug/vaccine candidates and facilitate the de-
velopment of antifungal therapeutics.
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