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Background. Although antivirals remain important for the treatment COVID-19, methods to assess treatment efficacy are 
lacking. Here, we investigated the impact of remdesivir on viral dynamics and their contribution to understanding antiviral 
efficacy in the multicenter Adaptive COVID-19 Treatment Trial 1, which randomized patients to remdesivir or placebo.

Methods. Longitudinal specimens collected during hospitalization from a substudy of 642 patients with COVID-19 were 
measured for viral RNA (upper respiratory tract and plasma), viral nucleocapsid antigen (serum), and host immunologic 
markers. Associations with clinical outcomes and response to therapy were assessed.

Results. Higher baseline plasma viral loads were associated with poorer clinical outcomes, and decreases in viral RNA and 
antigen in blood but not the upper respiratory tract correlated with enhanced benefit from remdesivir. The treatment effect of 
remdesivir was most pronounced in patients with elevated baseline nucleocapsid antigen levels: the recovery rate ratio was 1.95 
(95% CI, 1.40–2.71) for levels >245 pg/mL vs 1.04 (95% CI, .76–1.42) for levels <245 pg/mL. Remdesivir also accelerated the 
rate of viral RNA and antigen clearance in blood, and patients whose blood levels decreased were more likely to recover and survive.

Conclusions. Reductions in SARS-CoV-2 RNA and antigen levels in blood correlated with clinical benefit from antiviral 
therapy.

Clinical Trial Registration. NCT04280705 (ClinicalTrials.gov).
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The Adaptive COVID-19 Treatment Trial 1 (ACTT-1) was one 
of the earliest randomized placebo-controlled trials conducted 
during the COVID-19 pandemic and the first to demonstrate 
the clinical efficacy of the antiviral remdesivir [1]. In that study, 
remdesivir shortened the time to recovery in patients hospital-
ized with COVID-19 and lowered risk of disease progression 
and death among those requiring oxygen supplementation. 
Today, remdesivir remains one of few safe and effective antivi-
ral treatment options for COVID-19 that retains activity 

against all known variants of concern [2]. However, fundamen-
tal questions that could better inform its clinical use remain un-
answered. In particular, our understanding of remdesivir’s 
impact on viral dynamics and our strategies to identify patients 
who would benefit from treatment are unclear. One approach 
to improve these gaps in knowledge is through the develop-
ment of prognostic laboratory markers to guide therapy. Yet, 
the specific biomarkers that may aid in these goals remain 
unknown.

We analyzed viral and immunologic biomarkers from 
ACTT-1 to identify subsets of patients who derive greater ben-
efit from remdesivir. In doing so, we compared 3 viral assays (1) 
to determine if any could measure the antiviral effects of re-
mdesivir and (2) to assess if reductions in viral load early in 
the course of treatment affected severe disease outcomes. To 
optimize the precision and accuracy of these measurements, 
we utilized sensitive assays that quantitated viral RNA and an-
tigen in blood (plasma RNA and serum nucleocapsid antigen) 
[3–5] and the upper respiratory tract (RNA), as well as 
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SARS-CoV-2–specific antibody responses. We also evaluated 
interleukin 6 (IL-6) and C-reactive protein (CRP): 2 inflamma-
tory biomarkers associated with worse disease [6–8].

METHODS

Study Design and Participants

The original ACTT-1 protocol and study design have been de-
scribed [1]. This analysis was conducted with data and biospe-
cimens from ACTT-1 participants who received at least 1 day of 
treatment with remdesivir or placebo and from whom biospeci-
mens were available for measurement of plasma viral RNA, 
upper respiratory tract viral RNA, serum viral nucleocapsid, 
IL-6, and CRP—all collected at baseline and at least 
1 other time point within the 6 days following randomization 
(Supplementary Figure 1). Written informed consent was ob-
tained from each patient or legally authorized representative. 
Patients were grouped into 2 categories based on disease se-
verity and ordinal scale group per the National Institute of 
Allergy and Infectious Diseases: 

Moderate/severe disease: patients were hospitalized but 
not critically ill and consisted of those in group 4 (not re-
quiring supplemental oxygen) or group 5 (requiring low- 
flow supplemental oxygen)

Critical disease: patients required care in the intensive care 
unit and consisted of those in group 6 (requiring high- 
flow oxygen or noninvasive ventilation) or group 7 (re-
quiring invasive mechanical ventilation) [1]

These groupings were based on an a priori hypothesis that 
antiviral treatment would demonstrate better efficacy earlier 
in the course of illness, when viral replication is suspected to 
be higher. Symptom duration was dichotomized at 5 days based 
on our hypothesis that this time point could differentiate 
changes in viral load given prior reports of improved efficacy 
with early remdesivir use [1].

Details for our a priori hypotheses regarding viral and in-
flammatory biomarkers were defined in a statistical analysis 
plan (supplementary material). Serum, plasma, and upper re-
spiratory tract specimens were collected at designated visits 
during hospitalization, including study days 1 (baseline), 3, 
and 5 (ie, prior to and at 2 and 4 days after treatment initiation, 
respectively). All laboratory assays were performed centrally.

Measurement of SARS-CoV-2 RNA and Nucleocapsid

Oropharyngeal swabs were preferentially collected over nasopha-
ryngeal swabs when available; both were collectively categorized 
as upper respiratory specimens. For the primary analysis, samples 
collected from baseline through study day 5 were included. Upper 
respiratory and plasma viral RNA was measured with the Roche 

cobas SARS-CoV-2 RT-PCR assay on a Roche cobas 6800 instru-
ment via the SeraCare AccuPlex SARS-CoV-2 Verification Panel 
as the exogenous standards and calibrators. Validation of the 
quantitative viral load assay in plasma was performed with 
spike-in of clinical materials, standards, and calibrators into re-
constituted commercial plasma (Lyphochek 2211-08; Bio-Rad). 
For quantitative calculations, similar to prior studies [9], values 
below the assay limit of quantification (LOQ) of 62 copies/mL 
(1.79 log10 copies/mL) were imputed as half the LOQ 
(31 copies/mL or 1.49 log10 copies/mL) when RNA was de-
tected but not quantifiable and one-quarter the LOQ (15.5 cop-
ies/mL or 1.19 log10 copies/mL) when RNA was not detected.

SARS-CoV-2 nucleocapsid levels were determined in 90 µL 
of serum in duplicate with a quantitative Simoa assay 
(Quanterix) at baseline through study day 5. Simoa (single- 
molecule array) is a novel and ultrasensitive microparticle- 
based enzyme-linked immunosorbent assay platform capable 
of precise quantification of specific protein and/or antibody 
targets within the femtomolar range of concentrations [10]. 
The lower level of quantification for the SARS-CoV-2 nucleo-
capsid assay is 3 pg/mL. For quantitative calculations, values 
below that level were imputed as half this value (1.5 pg/mL).

Measurement of Immunologic Biomarkers

Baseline anti–SARS-CoV-2 spike IgG antibody levels were 
measured with 10 µL of serum in duplicate via a semiquantita-
tive Simoa assay (Quanterix); seropositivity was defined as pa-
tients having measurements above the assay cutoff of 770 ng/mL. 
IL-6 and CRP were measured from serum in duplicate via 
electrochemiluminescence (Meso Scale Discovery) per the 
manufacturer’s instructions.

Clinical and Virologic End Points

The primary clinical outcome of ACTT-1 was time to recovery, 
defined as the point at which a patient met criteria for improve-
ment to ordinal scale 1 (not hospitalized, without limitation of ac-
tivities), 2 (not hospitalized, with limitation of activities but not 
requiring new supplemental oxygen), or 3 (hospitalized but no 
longer requiring ongoing medical care; ie, still hospitalized for in-
fection control or placement reasons). Patients who did not recov-
er failed to progress to ordinal score 3, 2, or 1 over the course of the 
study. Mortality through day 28 was a secondary clinical end 
point. Virologic end points were evaluated as the daily rate of 
change in viral load and as changes in viral load trajectories.

Statistical Analyses

A statistical analysis plan (supplementary material) was written 
prior to analysis of the unblinded data, and it was amended 
once to add prespecified analyses for plasma viral RNA and 
anti–SARS-CoV-2 antibody measurements. Clinical and demo-
graphic characteristics of study participants were summarized 
with descriptive statistics. Differences in distributions of viral 
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assays were compared with the Mann-Whitney U test. 
Correlations were estimated by Pearson correlation coefficient. 
Log-rank tests assessed differences in survival and recovery times 
through methods applied in the original study [1]. Kaplan-Meier 
curves are shown. Time-to-event analyses were supplemented by 
proportional hazards models and the Fine-Gray method for com-
peting risk for recovery, with death as a competing risk [11]. To 
evaluate longitudinal changes in biomarkers, linear regression 
models were fit to all available values for each patient to estimate 
the patient-specific daily rate of decline as a derived variable; sen-
sitivity analyses per linear mixed effects models were estimated 
when appropriate. Additionally, slopes were dichotomized to de-
termine viral load trajectories, defined as increasing (persistently 
positive) for positive slopes (or zero slopes when a baseline value 
was above the LOQ) or decreasing (persistently negative) for neg-
ative slopes (or zero slopes when a baseline value was below the 
LOQ). Primary analyses adjusted for potential baseline imbalanc-
es in measurements of viral load (ie, prior to receipt of remdesivir 
or placebo) by inclusion of baseline viral load as a covariate in a 
linear regression model. Tests of proportions were conducted 
with the chi-square test. Wald confidence intervals were used 
for all primary analyses. All P values were 2-sided. All analyses 
were conducted in R statistical software and confirmed indepen-
dently by 2 biostatisticians. Figures were produced with R soft-
ware (ggplot2 and forester packages [12]) and Prism (GraphPad).

RESULTS

Study Design and Participants

We tested a substudy cohort of 642 ACTT-1 participants who 
provided specimens at baseline and at least 1 subsequent time 
point within the first 6 days following randomization 
(Supplementary Figure 1). Demographic and clinical charac-
teristics were generally well balanced between the participants 
in the placebo arm (n = 319) and remdesivir arm (n = 323), 
as well as between the overall cohort and original ACTT-1 
study population (Table 1, Supplementary Table 1). The medi-
an age was 59 years; the median time from symptom onset was 
9 days; and mortality was 9% vs 11% in the remdesivir and pla-
cebo arms, respectively. Biomarker analyses were stratified by 
disease severity, comparing patients with moderate/severe dis-
ease (ie, patients considered noncritically ill who required no or 
minimal oxygen supplementation) with those who presented 
with critical disease (ie, patients considered critically ill who re-
quired high-flow oxygen, mechanical ventilation, or extracor-
poreal membranous oxygenation).

Comparison of Baseline Measures of Viral Load and Inflammatory 
Biomarkers

The majority of participants had quantifiable viral loads at 
study entry irrespective of assay used: 87.9% (564/642) for se-
rum viral nucleocapsid, 85.2% (547/642) for upper respiratory 

tract viral RNA, and 56.9% (365/642) for plasma viral RNA. 
Patients with critical disease had higher baseline plasma and 
upper respiratory tract viral RNA levels as compared with pa-
tients with moderate/severe disease: plasma viral RNA median, 
2.40 vs 1.49 log10 copies/mL, P < .001; upper respiratory tract 
viral RNA median, 3.64 vs 3.26 log10 copies/mL, P = .002 
(Figure 1A, Supplementary Tables 2 and 3). Patients with crit-
ical disease also presented later in illness with modestly pro-
tracted symptoms (mean days, 10.5 vs 9.3; P = .002). Viral 
loads were lower among patients reporting longer durations 
of symptoms prior to enrollment and, on average, decreased 
over the early period of observation among placebo recipients 
(Supplementary Figure 2).

Plasma viral RNA and serum nucleocapsid levels correlated 
with inflammatory biomarkers (Figure 1B, Supplementary 
Table 4); modest but stronger correlations were seen between 
these blood viral biomarkers and CRP (Pearson correlation, 
r = 0.237 for plasma RNA and r = 0.189 for nucleocapsid; 
both P < .001) and IL-6 (r = 0.361 for plasma RNA and 

Table 1. Demographic and Clinical Characteristics of the Study 
Population at Baseline

Placebo Remdesivir

Included  
(n = 319)

Total  
(n = 516)

Included  
(n = 323)

Total  
(n = 532)

Age, y, median (IQR) 59 (47-68) 60 (49-70) 59 (48-69) 59 (49-69)

Male sex 205 (64.26) 328 (63.57) 210 (65.02) 347 (65.23)

Race and ethnicity

Asian 30 (9.40) 56 (10.85) 42 (13.00) 79 (14.85)

Black or African 
American

84 (26.33) 114 (22.09) 73 (22.60) 105 (19.74)

White 167 (52.35) 286 (55.43) 168 (52.01) 273 (51.32)

Ethnicity: 
Hispanic or Latino

69 (21.63) 114 (22.09) 89 (27.55) 132 (24.81)

Clinical 
characteristics

Any comorbidities 255 (79.94) 417 (80.81) 271 (83.90) 435 (81.77)

Days of 
symptoms, 
median (IQR)

9 (7-13) 9 (7-13) 9 (6-12) 9 (6-12)

Baseline ordinal 
scale a

4 38 (11.91) 63 (12.21) 39 (12.07) 75 (14.10)

5 114 (35.74) 202 (39.15) 148 (45.82) 231 (43.42)

6 56 (17.55) 98 (18.99) 42 (13.00) 94 (17.67)

7 111 (34.80) 153 (29.65) 94 (29.10) 132 (24.81)

Disease severity 
subgroups b

Moderate/severe 152 (47.65) 265 (51.36) 187 (57.89) 306 (57.52)

Critical 167 (52.35) 251 (48.64) 136 (42.11) 226 (42.48)

Patients in our primary biomarker analysis cohort (Included) vs all patients from the original 
Adaptive COVID-19 Treatment Trial 1 (Total). Data are presented as No. (%) unless noted 
otherwise.  
aNational Institute of Allergy and Infectious Diseases categorization of COVID-19 disease 
severity.  
bModerate/severe disease is a combined subgroup of ordinal scales 4 and 5. Critical disease 
is a combined subgroup of ordinal scales 6 and 7.
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r = 0.122 for nucleocapsid; P < .001 and P = .002, respectively), 
in contrast to upper respiratory tract viral RNA. Anti– 
SARS-CoV-2 spike antibodies were detected in 57.3% patients, 
and antibody levels negatively correlated with all 3 measures of 
viral load.

Higher Baseline Viral Loads Were Associated With Worse Clinical 
Outcomes

Patients with higher baseline viral loads were less likely to re-
cover or survive (Figure 2, Supplementary Table 5). Cox pro-
portional hazard models showed that higher baseline viral 

Figure 1. Distribution of baseline viral loads by disease severity and correlation with other biomarkers. A, Distribution of baseline viral loads by assay categorized by 
disease severity. Box plots indicate the median (line) and IQR (box). Wilcoxon P values assess differences in medians between disease severity groups, and proportions 
of samples are shown below each assay’s limit of quantification (LOQ; illustrated by size of bottom circle). RNA values below the assay LOQ of 1.79 log10 copies/mL 
were set as half the LOQ (1.49 log10 copies/mL) when measurements were above the lower limit of detection and one-quarter the LOQ (1.19 log10 copies/mL) when 
RNA was not detected; nucleocapsid antigen values below the assay LOQ of 3 pg/mL were set as half the LOQ (1.5 pg/mL). B, Matrix heat map of Pearson correlations 
between baseline biomarker levels among all patients in the primary cohort. *P < .05. **P < .01. ***P < .001. Coefficient estimates are provided in Supplementary 
Table 4. CRP, C-reactive protein; IL-6, interleukin 6.

Figure 2. Distribution of baseline viral loads by assay according to the clinical outcome: A, recovery; B, mortality. Box plots indicate the median (line) and IQR (box). 
Wilcoxon P values assess differences in medians between disease severity groups, and proportions of samples are shown below each assay’s limit of quantification 
(LOQ; illustrated by size of bottom circle). RNA values below the assay LOQ of 1.79 log10 copies/mL were set as half the LOQ (1.49 log10 copies/mL) when measurements 
were above the lower limit of detection and one-quarter the LOQ (1.19 log10 copies/mL) when RNA was not detected; nucleocapsid antigen values below the assay LOQ of 
3 pg/mL were set as half the LOQ (1.5 pg/mL).
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loads were associated with an increased risk of mortality (plas-
ma viral RNA: hazard ratio (HR), 4.44 [95% CI, 1.41–13.96]; 
upper respiratory tract viral RNA: HR, 7.80 [95% CI, 1.70– 
35.82]; serum viral nucleocapsid: HR, 3.92 [95% CI, 1.11–13.86]) 
and lower likelihood of recovery (plasma viral RNA: recovery 
rate ratio [RRR], 0.42 [95% CI, .33–.53]; upper respiratory tract vi-
ral RNA: RRR, 0.51 [95% CI, .40–.64]; serum viral nucleocapsid: 
RRR, 0.53 [95% CI, .42–.66]) among patients with moderate/ 
severe disease (Table 2). Higher baseline plasma viral RNA levels 
also correlated with a lower likelihood of recovery among patients 
who were critically ill (RRR, 0.582 [95% CI, .44–.78]), a finding not 
observed with other measures of viral load. Elevated IL-6 levels 
were similarly associated with a lower likelihood of survival and re-
covery across all categories of disease severity.

Patients With Elevated Blood Viral Loads at Baseline Recovered 
Faster With Remdesivir

Among participants with moderate/severe disease, those with 
higher baseline serum viral nucleocapsid levels recovered faster 
when treated with remdesivir vs those who received placebo 
(RRR, 1.95 vs 1.04 for levels above and below the cohort median 
of 2.39 log10 pg/mL; for interaction, P = .01; Figure 3A). A sim-
ilar trend was seen for patients with higher baseline plasma vi-
ral RNA levels (RRR, 1.95 vs 1.24 for levels above and below the 
cohort median of 2.09 log10 copies/mL; for interaction, 
P = .06). Remdesivir also shortened the time to recovery 
when given earlier in illness. Among patients with moderate/ 
severe disease who were treated within 5 days of initial symp-
toms, 93% vs 54% recovered by day 28 in the remdesivir and 
placebo arms, respectively (RRR, 3.0; 95% CI 1.70–5.28), as 

opposed to 94% vs 88% among those treated 5 days after 
symptom onset (RRR, 1.27; 95% CI, .99–1.63; for interaction, 
P = .006; Supplementary Table 6). Similar findings were ob-
served if symptom duration was analyzed as a continuous var-
iable (Supplementary Table 7). There was no differential 
treatment effect for remdesivir on mortality across subgroups 
of viral load (Figure 3B) or symptom duration. Additionally, al-
though patients with antispike antibodies had improved clini-
cal outcomes when compared with individuals who were 
seronegative, clinical benefit from remdesivir did not vary by 
baseline antibody status.

Remdesivir Accelerated the Reduction of Viral Load in Blood

Relative to placebo, participants with moderate/severe disease 
who received remdesivir had larger averaged daily declines in 
levels of serum viral nucleocapsid (difference, −0.062 log10 

pg/mL/d; P = .003) and plasma viral RNA (difference, −0.040 
log10 copies/mL/d; P = .004; Figure 4A, Supplementary 
Table 8); sensitivity analyses based on linear mixed effects mod-
els demonstrated comparable results (Supplementary Table 9). 
Reductions in blood viral RNA and antigen were greater among 
patients treated within 5 days of initial symptoms 
(Supplementary Table 10). Remdesivir similarly reduced the 
likelihood of an increasing viral load trajectory in blood during 
the first 5 days of treatment among patients with moderate/ 
severe disease: the relative risk of an increasing viral load 
comparing remdesivir against placebo was 0.068 for serum viral 
nucleocapsid (P < .001) and 0.366 for plasma viral RNA 
(P = .006; Figure 4B). In contrast, no effect of remdesivir was 
observed on the upper respiratory tract viral RNA levels among 

Table 2. Likelihood of Recovery or Death Based on Baseline Viral Load or Inflammatory Biomarker

Recovery Mortality

Disease Severity: Biomarker RRR 95% CI P Value HR 95% CI P Value

Moderate/severe

Nucleocapsid, log10 pg/mL 0.53 .42–.66 <.001 3.92 1.11–13.86 .034

RNA, log10 copies/mL

Plasma 0.41 .33–.53 <.001 4.44 1.41–13.96 .011

Upper respiratory 0.50 .40–.64 <.001 7.80 1.70–35.82 .008

Inflammatory Biomarkers, log10 pg/mL

CRP 0.83 .67–1.04 .106 1.79 .65–4.95 .259

IL-6 0.53 .42–.67 <.001 3.68 1.32–10.29 .013

Critical

Nucleocapsid, log10 pg/mL 0.77 .58–1.03 .078 1.07 .61–1.87 .805

RNA, log10 copies/mL

Plasma 0.58 .44–.78 <.001 1.53 .83–2.85 .175

Upper respiratory 0.84 .63–1.12 .239 1.12 .64–1.98 .687

Inflammatory Biomarkers, log10 pg/mL

CRP 0.74 .55–1.00 .050 1.75 .93–3.29 .085

IL-6 0.39 .28–.53 <.001 3.55 1.41–8.96 .007

Cox model estimates of HR for mortality and RRR based on baseline elevation of viral load or inflammatory biomarker (dichotomized at baseline median) when adjusted for treatment arm.  

Abbreviations: CRP, C-reactive protein; HR, hazard ratio; IL-6, interleukin 6; RRR, recovery rate ratio
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patients with moderate/severe disease. No significant changes 
in viral loads were observed in patients who were critically ill.

Reductions in Viral Load Were Associated With Improved Clinical 
Outcomes

Patients with declines in plasma viral RNA or serum viral nu-
cleocapsid over the first 5 days had improved times to clinical 
recovery as compared with individuals without declines 
(Figure 5, Supplementary Table 11). This association was 
seen in patients with moderate/severe disease (P = .001 for 
plasma viral RNA, P = .018 for serum viral nucleocapsid) and 
those with critical disease (P = .004 for plasma viral RNA, 
P = .013 for serum viral nucleocapsid). Notably, no patient 
who was critically ill and exhibited increasing serum levels of 
viral nucleocapsid recovered. Decreasing trajectories of plasma 

viral RNA and serum viral nucleocapsid were similarly associ-
ated with reduced mortality across both disease severity sub-
groups (Supplementary Figure 3, Supplementary Table 12). 
In contrast, the trajectories of upper respiratory viral RNA 
had weaker associations with clinical outcomes in patients 
with moderate/severe disease and failed to show any associa-
tion with outcomes among patients with critical illness.

DISCUSSION

In this analysis of a large-scale, phase 3, randomized clinical trial, 
we hypothesized that accelerated reductions in peripheral 
SARS-CoV-2 viral load would correlate with improved patient 
outcomes. By assessing 3 methods to quantify viral load, we dem-
onstrated that the 2 blood measurements (viral RNA 

Figure 3. Impact of remdesivir on clinical outcomes according to viral load subgroups. Forest plots illustrate subgroup analyses of Cox models to evaluate for a differential 
effect of remdesivir on (A) recovery and (B) mortality based on baseline viral load or presence of antispike antibodies. Viral load measurements were dichotomized at median 
values per assay: 2.39 log10 pg/mL (245 pg/mL) for serum nucleocapsid, 2.09 log10 copies/mL (123 copies/mL) for plasma RNA, and 3.41 log10 copies/mL (2570 copies/mL) for 
upper respiratory RNA. P values for treatment interaction are shown. HR, hazard ratio; PLC, placebo; RDV, remdesivir; RRR, recovery rate ratio.
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and nucleocapsid antigen) more consistently associated with the 
clinical risk of severe disease outcomes and the benefits of anti-
viral therapy when compared with upper respiratory RNA.

ACTT-1 was the first randomized placebo-controlled trial to 
demonstrate the efficacy of remdesivir in improving recovery 
in patients hospitalized with COVID-19. Since its completion, 
several other trials have corroborated the clinical efficacy of re-
mdesivir in similar and disparate populations [13, 14]. 
However, because identifying the specific patients within this 
broader population who are likely to benefit from treatment 
has continued to prove challenging, we hypothesized that aug-
menting commonly used categorizations of disease severity 
with laboratory assessments might offer new insights. We 
previously showed that simple hematologic parameters in 

combination with baseline disease severity better predicted 
risk of disease progression [15]. Here, we report that 
SARS-CoV-2 biomarkers in the peripheral blood may also offer 
new insights. In particular, the associated benefits of remdesivir 
were most pronounced among patients who were not critically 
ill with elevated serum nucleocapsid antigen levels (>2.39 log10 

pg/mL) or shorter durations of symptoms, with a similar favor-
able trend seen in patients with higher levels of plasma viral 
RNA (>2.09 log10 copies/mL). Moreover, early trajectories of 
both these viral analytes correlated with clinical outcomes. 
These findings support the hypothesis that antivirals are 
more effective when used earlier in illness and that unmitigated 
viral replication (or an inability to decrease peripheral viral 
loads) is associated with worse prognoses.

Figure 4. Virologic efficacy of remdesivir vs placebo. A, Differences in mean daily rate of change of viral load among patients with moderate/severe disease by treatment 
arm. P values are shown for differences in adjusted daily rate of change when normalized to baseline level. For calculations, RNA values below the assay limit of quan-
tification (LOQ) of 1.79 log10 copies/mL were set as half the LOQ (1.49 log10 copies/mL) when measurements were above the lower limit of detection (LLOD) and one-quarter 
the LOQ (1.19 log10 copies/mL) when RNA was not detected. B, Bar plot of patients with increasing or persistently elevated viral loads measured through 5 days of treatment. 
Relative risk (RR) of an increasing viral load comparing remdesivir and placebo recipients are shown with corresponding P values.
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Although upper respiratory specimens are commonly used 
to measure viral loads in clinical and research settings, mea-
surements in peripheral blood may offer several advantages. 
In our study, plasma viral RNA and serum nucleocapsid assays 
more consistently associated with mortality and recovery 
across a wider range of disease severity when compared with 
upper respiratory RNA measurements. Plasma RNAemia as a 
correlate of worse disease has been reported with other respira-
tory viral infections [16, 17], and several studies have similarly 
found it to be predictive of critical illness and poorer outcomes 
in COVID-19 [18–22]. Here, we demonstrate that SARS- 
CoV-2 RNAemia may serve as a useful prognostic biomarker 
among patients without critical illness, although sensitivity 
may decline in mild or early illness where plasma RNA levels 
may be low or absent [23]. In contrast, nucleocapsid antigen 
may be a more sensitive marker earlier in infection [3, 24– 
29], and in our study it was present in a considerably higher 
proportion of patients when compared with plasma viral 
RNA (87.9% vs 56.9%), potentially pointing to the added value 

of measuring circulating antigen levels concurrently with plas-
ma viral RNA. In a similar cohort of patients, plasma antigene-
mia in ranges comparable to those that we observed correlated 
with poorer outcomes, including worse pulmonary disease and 
prolonged hospitalizations [5]. Peripheral blood biomarkers 
may provide new insights into COVID-19 pathogenesis: IL-6 
and CRP correlated better with viral RNA and antigen mea-
surements in blood than with viral RNA levels in the upper re-
spiratory tract, suggesting that the presence and magnitude of 
viremia better reflect the immune dysregulation associated 
with worse patient outcomes [30–32].

To the best of our knowledge, ours is one of the first studies 
to demonstrate the systemic antiviral efficacy of remdesivir as 
compared with placebo in the setting of a randomized con-
trolled trial. We observed that 5 days of remdesivir accelerated 
declines and improved trajectories of viral biomarkers in blood 
but not in the upper respiratory tract. With rare exception [33], 
multiple prospective clinical trials of remdesivir similarly did 
not find any antiviral impact of remdesivir on upper respiratory 

Figure 5. Time to recovery comparing patients with increasing vs decreasing viral loads. Kaplan-Meier curve analyses compare patients with decreasing viral loads (blue) 
and those with increasing or persistently elevated viral loads (red) through the first 5 days of treatment. P values represent test of the log-rank statistic.
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tract viral RNA levels [34–37], supporting the assertion that 
this specimen type may be less sensitive for in vivo monitoring 
of antiviral therapies and/or that the antiviral effect of remde-
sivir may be relatively modest in hospitalized patients, particu-
larly those treated later in illness. Nonetheless, the concordant 
reductions in peripheral viral RNA and antigen levels that we 
observed suggest possible detection of an in vivo inhibition of 
viral replication [27, 38, 39]. These findings may hint at an un-
derlying rationale, such as reduced concentrations of remdesi-
vir in lung tissue [40] and/or spillover from primary sites of 
replication, wherein the peripheral blood offers a better 
compartment in which to measure treatment responses in real- 
world settings. Note that ACTT-1 was conducted prior to recom-
mendations for the use of immunomodulating therapies to 
temper hyperinflammatory responses in severe COVID-19 dis-
ease. As such, it remains to be seen if the antiviral effects of re-
mdesivir may even be greater among patients receiving 
immunosuppressive therapies (eg, corticosteroids), which may 
prolong the duration of viral replication and shedding [41].

Our study has some limitations. First, our analyses were pre-
defined but exploratory and not adjusted for multiple compar-
isons. Second, some patients did not contribute samples, which 
may have been missing at random due in part to the over-
whelming burden placed on the medical system at the time 
when ACTT-1 was conducted. However, the proportion of re-
coveries and ventilator-free survivals captured in our study 
were comparable to those observed in the original cohort 
(Supplementary Table 1), suggesting that any missingness 
was not largely driven by outcomes. Additionally, sensitivity 
analyses that included all patients with a baseline viral load 
(Supplementary Tables 3 and 5) or assessed for cohort selection 
bias (Supplementary Tables 13 and 14) supported our primary 
findings. Third, restricting enrollment to hospitalized patients 
may have selected for overall lower baseline viral loads, poten-
tially underestimating the strength of associations with clinical 
outcomes, particularly among patients who presented later in 
illness (Supplementary Figure 2A). Fourth, quantitative poly-
merase chain reaction and Simoa assays may not be available 
in all settings and would benefit from further study to validate 
diagnostic cutoffs and better determine their routine clinical 
applicability. Last, as ACTT-1 enrolled unvaccinated patients 
during the first wave of the pandemic, our findings may vary 
by factors such as immune status and SARS-CoV-2 variant. 
Yet, growing evidence suggests that plasma viral RNA and nu-
cleocapsid antigen correlate with clinical parameters across 
more recent viral variants [5, 42].

In summary, in this analysis of a randomized clinical trial, we 
report that SARS-CoV-2 plasma RNA and nucleocapsid anti-
gen have potential as surrogate biomarkers for evaluating the 
benefit of antiviral therapy and warrant further study. As re-
mdesivir is one of the few available treatments that retains ac-
tivity against circulating variants of concern [43–45], an 

understanding of its real-world antiviral effects and their ability 
to inform clinical outcomes remains important. Our study may 
also offer insights into strategies that could be applied to the 
evaluation of other antiviral drug candidates.
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