Skip to main content
. 2024 Sep 19;16:1419–1429. doi: 10.2147/NSS.S468748

Table 2.

Prediction of Different Machine Learning Models and Logistic Regression in the Validation Dataset (n = 61)

LR SVM RF
AUC (95% CI) 0.543 (0.389–0.697) 0.653 (0.505–0.802) 0.422 (0.27–0.575)
Accuracy (95% CI) 0.537 (0.374–0.693) 0.659 (0.494–0.799) 0.415 (0.263–0.579)
Balanced Accuracy 0.543 0.653 0.422
Sensitivity 0.455 0.727 0.318
Specificity 0.632 0.579 0.526
Positive predictive value 0.588 0.667 0.438
Negative predictive value 0.5 0.647 0.4
Prevalence 0.537 0.537 0.537
Precision 0.588 0.667 0.438
Recall 0.455 0.727 0.318
F1 Score 0.513 0.696 0.368
Kappa 0.085 0.308 −0.152

Abbreviations: AUC, area under receiver operating characteristic curve; CI, confidence interval; LR, logistic regression; SVM, support vector machine; RF, random forest.