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ABSTRACT: The syntheses of previously unknown sulfide- and
telluride-pillar[n]arenes are reported here. These macrocycles,
among others, were tested as catalysts for alkylation reactions in
aqueous solutions. Telluride-pillar[5]arene (P[5]-TePh) showed
the best performance, emulating the behavior of the methyl-
transferase enzyme cofactor S-adenosyl-L-methionine. Using 1.0
mol % of P[5]-TePh, benzyl bromides reacted with NaCN/NaN3
in water, yielding organic nitriles/azides. The catalyst was recycled
and efficiently reused for up to six cycles. 1H NMR experiments
indicate a possible interaction between the substrate and P[5]-
TePh’s cavity.

■ INTRODUCTION
Enzymes are great catalysts with impressive efficiency,
specificity, and selectivity.1,2 Methyltransferases, for instance,
promote the transference of a methyl group to a variety of
substrates (e.g., proteins, lipids, RNA, and DNA) in biological
processes related to metabolism, biosynthesis, and detoxifica-
tion of exogenous compounds.3−5 The cofactor of this enzyme
is a sulfonium salt named S-adenosyl-L-methionine (SAM) 1,
which is the donor of the methyl group to a given nucleophile
(Figure 1a).6−9 Inspired by the transformation mediated by
methyltransferases, many reports in the literature have been
disclosed with a focus on the preparation and utilization of
SAM and derivatives (including its selenium analog) and their
application as group transfer agents in a broader sense.10−15

Structurally simpler SAM derivatives 2, most as sulfonium or
selenonium salts,16−22 but rarely telluronium salts,23,24 have
also been applied as alkylating agents (Figure 1b).

Synthetic macrocycles with tailored cavities can produce
noncovalent bonding interactions with different substrates,
resulting in the stabilization and organization of intermediates,
offering a different environment for chemical reactions.25

Pillar[n]arenes have emerged as a new generation of
supramolecular macrocyclic hosts in the past decade (Figure
1c).26,27 These macrocycles can form inclusion complexes with
different small molecules through dipole−dipole interactions,
hydrogen bonding, π−π stacking, etc.15,28−46 They have shown
several promising applications for drug delivery,31−34 as
nanomaterials,35−37 sensors,38−40 and as transmembrane
channels.41−43 In organic synthesis, the use of pillar[n]arenes
is still little explored, especially owing to their application as
catalysts.44−46 Xiao and co-workers reported the synthesis of

pillar[5]arenes which when combined with PdCl2(CH3CN)2,
could efficiently catalyze Heck coupling reactions of styrene
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Figure 1. (a) S-adenosyl-L-methionine (SAM) 1, an electrophile for
methylation of nucleophiles; (b) chalcogenonium salts 2 as alkylating
agents; (c) representation of a pillar[n]arene.
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and aryl halides.44 In 2019, Lan and co-workers described a
cross-linked porous polymeric material based on pillar[5]-
quinone, which was used to load Pd-catalyst and prepare a
heterogeneous catalyst. The catalyst was highly efficient for
Suzuki-coupling reactions and could be recycled and reused six
times without any drop in reaction yield.45 Recently, a
pillar[5]arene-based [2]rotaxane was designed and developed
by Guo and co-workers, which, upon coordination with Pd
ions, was efficiently used to catalyze Suzuki couplings.46

Although less reported, there are examples of pillararenes
catalyzing reactions in aqueous environments, demonstrating
their significant potential as catalysts.47,48

Accordingly, as part of our interest in developing new
organochalcogen compounds with privileged molecular
structures for different applications,49−53 allied to the synthesis
and application of pillar[n]arenes,54−57 we report herein the
synthesis of chalcogen-based pillar[5]arenes, including un-
known sulfide- and telluride-based pillar[n]arenes. Addition-
ally, we screened their catalytic activity in promoting the
alkylation of nucleophiles dissolved in aqueous solutions and
the possibility of recycling and reusing them.

■ RESULTS AND DISCUSSION
The monomeric catalysts (M-YPh, where Y = S, Se, or Te)
depicted in Table 1 employed in this study were prepared from

the corresponding monomeric bromides (M-Br).54 Likewise,
the pillar[n]arene catalysts (P[n]-YPh, where n is 5 or 6 and Y
= S, Se, or Te) were obtained from the bromide starting
material. To date, only the selenium-pillar[n]arene analog is
known.58 All catalysts were obtained in good yields (see the
Supporting Information for the experimental details). To test
their ability to promote an alkylation reaction in aqueous

solution, we chose the conversion of benzyl bromide 3a to the
corresponding cyanide 4a as the model experiment (Table
1).59−61 Without a catalyst, the reaction of 3a and 2 equiv of
NaCN produced only 15% of product 4a after stirring the
reaction at room temperature for 24 h as previously reported
(entry 1).16 Addition of 5.0 mol % of monomeric catalysts
accelerated product formation, especially for the tellurium
analog M-TePh. In that case, 45% of benzyl nitrile 4a was
obtained after 24 h (entry 4). Next, chalcogen-based
pillar[n]arenes were screened. At this time, however, 1.0 mol
% of the catalyst was used to keep the same amount of
chalcogen in the reaction media (entries 5−10). As observed
for the monomeric species, the reaction showed a clear trend
between the nature of the chalcogen and the yield observed for
product 4a. Telluride P[5]-TePh outperformed all other
catalysts, delivering the product in near quantitative yield after
24 h of reaction (Entry 7). We performed experiments with
shorter duration and observed that after 12 h the reaction was
essentially done (entries 8 and 9). It is noteworthy that the
contribution of the pillar[n]arene scaffold to the reaction
outcome. Keeping the catalytic amount of chalcogen the same
in all experiments, 4a formation was significantly increased
using P[5]-TePh compared to the reaction using M-TePh
(entries 4 and 7). Moreover, it was observed that the
pillar[n]arene cavity size was not critical for the catalytic
activity under identical reaction conditions. P[6]-TePh
performed similarly to P[5]-TePh (entries 7 and 10).
Therefore, we continued our study with P[5]-TePh due to
its easier preparation when compared to P[6]-TePh.

Next, we applied the best reaction conditions to convert
other substrates to nitriles catalyzed by 1.0 mol % of P[5]-
TePh in aqueous solution (Figure 2). First, we observed that
the yield of the conversion of benzyl bromide to 3a was not
affected on a larger scale. Then, aryl bromides assembled with

Table 1. Optimization of the Reaction Conditionsa

entry catalyst mol % yield (%)b

1 none 0.0 15
2 M-SPh 5.0 5
3 M-SePh 5.0 29
4 M-TePh 5.0 45
5 P[5]-SPh 1.0 22
6 P[5]-SePh 1.0 55
7 P[5]-TePh 1.0 96
8c P[5]-TePh 1.0 92
9d P[5]-TePh 1.0 40
10 P[6]-TePh 1.0 85

aReaction conditions: benzyl bromide (0.174 mmol), catalyst (0.0−
5.0 mol %), NaCN (0.348 mmol) in H2O (1.0 mL) at 25 °C for 24 h.
bIsolated yield. c12 h of reaction. d6 h of reaction.

Figure 2. Substrate scope for conversion of halides to cyanides
catalyzed by P[5]-TePh. aIsolated yield. bCinnamyl chloride was used
as substrate.
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electron-donating or electron-withdrawing groups were con-
verted to the corresponding nitriles 4b−h in reasonable to
good yields. Noteworthy, no clear correlation between the
electronic properties and product yield was observed for these
substrates. Product 4i obtained in 40% yield revealed that α-
carbonyl bromides are feasible substrates for this trans-
formation. Additionally, nitrile 4n was prepared in 68% yield
when the same reaction conditions were applied using
cinnamyl chloride as the substrate. On the contrary, products
4j-m from an electron-rich benzyl bromide, allyl bromide, or
alkyl bromides could not be produced in desirable amounts.
To improve the yield of product 4j, we prepared the bromide
starting material and immediately used it in the reaction.
However, the strong electron donation capacity of the
dimethylamino substituent triggered its decomposition faster
than the reaction with the nucleophile. The results collectively
indicate that at the current stage, regardless of the substrate
solubility in water, only activated starting materials toward
displacement reactions are feasible substrates for the trans-
formation. The reaction conditions for effective conversions of
less reactive aliphatic halides or to obtain products with lower
boiling points should be better designed. Finding better
catalysts is crucial in this context.

To demonstrate the effectiveness of this protocol, we studied
the conversion of selected substrates to azides using NaN3 as
the nucleophile (Figure 3). Gratifyingly, benzyl bromide was

converted to respective azide 5a in 90% yield. Importantly,
without P[5]-TePh, only 8% 5a was obtained. Other benzyl
bromides containing electron-donating or electron-withdraw-
ing groups, an α-carbonyl derivative, and cinnamyl chloride
were used as substrates. Products 5b-5g were obtained in
reasonable to good yields, mirroring the results obtained with
cyanide as the nucleophilic species.

Due to their electron-rich cavities, pillar[n]arenes have
excellent host−guest properties, forming stable complexes
through charge transfer interactions (e.g., cation-π interactions,
CH-π interactions, and π−π stacking).31−34 To further
understand the interactions between substrates and P[5]-
TePh in the reaction, we performed 1H NMR analysis of a
mixture of P[5]-TePh and bromide 3i, chosen because it has a
higher molecular weight (more experimental details and 1H

NMR spectra are given in the Supporting Information).
Although small, various signal shifts could be observed for
catalyst and bromide 3i (Figure 4a). These results might

suggest the formation of an inclusion complex between the
pillar[n]arene and the substrate. In addition, since signal shifts
were observed for the aromatic protons of 3i, we suggest that
the aryl group of 3i could be engulfed into the P[5]-TePh
cavity, while the CH2 group was not. These observations are
consistent with previous reports, considering that the cavity
size of the pillar[5]arenes can accommodate a benzene ring62

and lead to the formation of an efficient host−guest
complex.63−69

Nevertheless, the catalytic activity of pillar[n]arene catalysts
P[n]-YPh as an alkylating agent is not solely related to the size
of the cavity or its host−guest interactions with the substrate.
The chalcogen atom is crucial in the substrate conversion to
products. Based on our previous results and reported
literature,70−73 we propose that the active species is a
telluronium salt, as depicted in Figure 4b.

Finally, developing safer and greener organic reactions is a
major goal nowadays.74,75 Accordingly, in addition to water
being used as the reaction solvent, we studied the possibility of
recovering and reusing catalyst P[5]-TePh. To our delight, we
found that after the extraction of the reaction mixture, benzyl
bromide and product 4a could be separated from P[5]-TePh
by washing the crude mixture with hexanes. In this way, the
catalyst could be reused for another reaction after water and
NaCN addition. This process could be efficiently repeated
during 5 cycles with excellent catalyst recovery and without
reducing the reaction yield on 4a formation. Although the
reaction yield remained constant, after the fifth cycle, a drop in
the recovery of the catalyst was observed (Figure 5).

■ CONCLUSIONS
In conclusion, we have described, for the first time, the
synthesis of sulfur- and tellurium-based pillar[n]arenes. These
novel macrocycles were obtained in excellent yields via a
simple nucleophilic substitution reaction from the correspond-
ing bromide. The ability of monomeric catalysts M-YPh (5.0
mol %) and pillar[n]arene catalysts P[n]-YPh (1.0 mol %) to
promote the conversion of bromides to the related nitriles or
azide in an aqueous solution containing NaCN or NaN3 was

Figure 3. Substrate scope for conversion of halides to azides catalyzed
by P[5]-TePh. aIsolated yield. bCinnamyl chloride was used as
substrate.

Figure 4. (a) Signal shifts observed by 1H NMR of a mixture P[5]-
TePh and 3i in CDCl3; (b) structure of the proposed active alkylating
agent.
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investigated. It was found that the chalcogen nature and the
pillar cavity size are critical for catalytic performance. 1H NMR
experiments of mixtures of P[5]-TePh and a substrate
indicated possible host−guest interactions in the form of an
inclusion complex. Moreover, it was feasible to perform the
reaction on a larger scale, and the catalyst P[5]-TePh could be
recovered and reused effectively for five reaction cycles.
Inspired by these results, we are pursuing further develop-
ments, including the design of new chalcogen-pillar[n]arenes
and their application to a broader panel of organic trans-
formations.

■ EXPERIMENTAL SECTION
General Remarks. The reactions were monitored by TLC carried

out on Merck silica gel (60 F254) using UV light as a visualizing
agent, an iodine chamber, and 5% vanillin in 10% H2SO4 and heat as
developing agents. Baker silica gel (particle size 0.040−0.063 mm)
was used for flash chromatography. Proton nuclear magnetic
resonance spectra (1H NMR) were obtained on a Varian AS-400 or
a Bruker Avance NEO 500 MHz employing a direct broadband probe
at 500 MHz. Spectra are recorded in CDCl3 solutions. Chemical shifts
are reported in parts per million, referenced to tetramethylsilane
(TMS) as the internal reference. Coupling constants (J) are reported
in Hertz. Abbreviations to denote the multiplicity of a particular signal
are s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of
doublet of doublets), q (quartet), quint (quintet), sex (sextet), t
(triplet), and m (multiplet). Carbon-13 (13C{1H} NMR) nuclear
magnetic resonance spectra and Carbon-13-attached proton test
(13C{1H}-APT NMR) nuclear magnetic resonance spectra were
obtained on a Varian AS-400 or on Bruker Avance NEO 500 MHz
employing a direct broadband probe at 125 MHz. The high-resolution
atmospheric pressure chemical ionization mass spectrometry (APCI-
QTOF) and electrospray ionization (ESI-QTOF) mass spectrometry
analyses were performed on a Bruker Daltonics micrOTOF-Q II
instrument in operating positive mode. The samples were solubilized
in HPLC-grade acetonitrile and injected into the source by means of a
syringe pump at a flow rate of 5.0 μL min-1. The following instrument
parameters were applied: capillary and cone voltages were set to
+4000 and −500 V, respectively, with a desolvation temperature of
180 °C. For data acquisition, processing, and isotope simulations,
Compass 1.3 for micrOTOF-Q II software (Bruker daltonics, USA)
was used. Melting point (mp) values were measured in a Fisatom
430D instrument with a 0.1 °C precision. The Fourier transform
infrared (FTIR) measurements were performed on a Nicolet iS50
(Thermo Fisher Scientific). UV−visible absorption spectra were
obtained in the UV/visible range (from 200 to 800 nm) using a
Varian Cary 50 Scan spectrophotometer and quartz cuvettes with a
path length of 10 mm and 1.5 mL. UV−visible spectra were recorded
using dichloromethane. Final concentrations of compounds: P[5]Br,
P[5]TePh, and P[6]TePh = 1,0 μM. P[6]Br = 0,2 μM.

General Procedure for Alkylation of NaCN Catalyzed by
P[5]-TePh. A 10.0 mL round-bottomed glass vial was added with the
appropriate alkyl bromide 3a-n (0.174 mmol), P[5]-TePh (0.00174
mmol, 8.0 mg; 1.0 mol %), and water (1.0 mL). The resulting mixture
was stirred at room temperature for 5 min. After this, NaCN (0.348

mmol, 17.1 mg) was added, and the mixture was stirred for an
additional 12 h. The reactions were monitored by TLC until the total
disappearance of the starting materials (the progress of the reaction
could also be visually observed. See Figure S1). After that, the
reaction mixture was extracted with ethyl acetate (3 × 15.0 mL). The
combined organic layers were dried over Na2SO4 and concentrated
under a vacuum. The residue was purified by preparative TLC using
hexane/ethyl acetate (90:10) as the eluent.
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