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Lipid droplets (LDs) are dynamic organelles essential for cellular lipid

homeostasis. Assembly of LDs occurs in the endoplasmic reticulum (ER), and

the conserved ER membrane protein seipin emerged as a key player in this

process. Here, we review recent advances provided by structural, biochemical,

and in silico analysis that revealed mechanistic insights into the molecular

role of the seipin complexes and led to an updated model for LD biogenesis.

We further discuss how other ER components cooperate with seipin during

LD biogenesis. Understanding the molecular mechanisms underlying seipin-

mediated LD assembly is important to uncover the fundamental aspects of

lipid homeostasis and organelle biogenesis and to provide hints on the patho-

genesis of lipid storage disorders.
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Lipid droplets (LDs) are evolutionary conserved

organelles and the main cellular energy reservoir of

eukaryotic cells by storing neutral lipids (NLs) in their

core. These NLs, such as triacylglycerol (TAG) and

steryl esters (SEs), can also be used to produce lipid

precursors for the synthesis of new membranes. Hence,

LDs emerge as crucial metabolic hubs that store

energy and membrane building blocks. LDs can like-

wise mitigate lipotoxicity by diverting excess free fatty

acids into NLs through esterification. Thus, the regula-

tion of biogenesis, maintenance, and consumption of

LDs is vital for lipid homeostasis and cellular metabo-

lism [1–4].

How do lipid droplets form?

Among the cellular organelles, LDs have a unique

structure composed of a NL core surrounded by a

phospholipid monolayer [5–7]. LDs are assembled in

the endoplasmic reticulum (ER), where both NLs

and monolayer phospholipids are synthesized. At low

concentrations, NLs are dissolved within the ER; how-

ever, if their concentration reaches 5–10%, they phase-

separate and form a lens-like structure, the precursor

of a new LD (Fig. 1) [8–10]. Further accumulation of

NLs supports the growth of a nascent LD that eventu-

ally buds from the ER toward the cytosol to form a
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mature LD (Fig. 1) [1–4,7,11]. In this model, the sim-

ple accumulation of NLs is necessary and sufficient to

trigger LD formation. In fact, in both yeast and mam-

malian cells, LDs are completely lost only if NL syn-

thesis is blocked, either genetically or

pharmacologically [12–14]. Similarly, when NLs and

aqueous solutions are mixed in vitro, particles with the

structure and morphology of LDs are produced [15].

LD formation is also influenced by the membrane bio-

physical properties stemming from the phospholipid

composition, since phospholipids that promote either

negative or positive curvature have been shown to

interfere with NL nucleation and LD budding [15,16].

Also, a variety of proteins regulate the formation of

LDs. Acting at different assembly steps, these proteins

have an impact on the morphology, proteome, and

lipidome of LDs ([17] and reviewed in [2,3,18]).

The main factor involved in LD biogenesis is seipin,

an evolutionarily conserved ER integral membrane

protein, which is mutated in patients with Berardinelli–
Seip congenital lipodystrophy, a severe form of congeni-

tal generalized lipodystrophy [19]. In the budding yeast

Saccharomyces cerevisiae, seipin (Sei1, also known as

Fld1) and its functional partner Ldb16 were identified

by genetic screens as mutants with aberrant LD mor-

phology [20,21]. In the absence of functional seipin,

LDs still form but are highly heterogeneous, assembling

in either small clusters or in a few supersized LDs

[19–21]. These defects can arise from impaired LD

maturation [22], defects in ER–LD contacts [23,24], and

an abnormal LD proteome [23]. Although almost two

decades have passed since the contribution of seipin to

LD formation was first described, the mechanism by

which it facilitates LD assembly has started to unravel

only recently [25–31]. Here, we summarize the latest

advances in understanding the function of seipin and

how it contributes to LD biogenesis.

Seipin is central to LD homeostasis

Seipin is an evolutionarily conserved ER membrane

protein composed of two transmembrane (TM) domains

proximal to the N- and C-termini and separated by an

extended ER luminal domain (Fig. 2) [32–34]. In yeast,

Ldb16, a fungi-specific ER-resident membrane protein,

has been characterized as an obligatory binding partner

of Sei1 and essential for a functional seipin complex

[23,35,36]. Since then, seipin complexes with other pro-

tein partners have been characterized in most common

model systems.

Seipin is localized to the ER membrane as foci that

often correspond to subdomains for organelle biogene-

sis or ER–LD junctions [20,23,24,36–40]. These have

been suggested to be preferentially localized in ER

tubules rather than ER sheets [41]. Immobilization of

seipin in the nuclear envelope resulted in LD accumu-

lation in this region [14], supporting the model that

seipin determines the sites for LD biogenesis. Seipin

Cytosol

ER Lumen

Neutral lipid synthesis Lens formation Unidirectional LD growth

Neutral lipids

Fig. 1. Lipid droplet biogenesis at the endoplasmic reticulum. Neutral lipids (NLs) are synthesized within the endoplasmic reticulum (ER)

bilayer. Upon reaching a critical concentration, the NLs demix and coalesce to form a lens-like structure. As NLs continue to be synthesized,

the lens grows into a premature lipid droplet (LD). Upon continued growth, the LD buds toward the cytosolic face of the ER as a result of

unidirectional growth. LDs can remain associated with the ER membrane or detach completely.
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has also been implicated in the biogenesis of nuclear

LDs [42]. This topic will not be discussed here, as it

was covered in detail in a recent review [43]. Several

other ER proteins colocalize with seipin at the sites of

LD formation, including the phosphatidic acid phos-

phatase Pah1 and its activators Nem1/Spo7; NLs bio-

synthetic enzymes, which promote localized synthesis

of TAG [44–46]; the Fat Induced Transcript 2 (FIT2)

proteins [47–49]; and Pex30 [38,39]. Additionally, the

Lipid Droplet Organization proteins of 16 and 45 kDa

(Ldo16 and Ldo45, respectively) in yeast and the

Ldo45 human homolog Promethin/lipid droplet assem-

bly factor 1 (LDAF1) are recruited to the sites of LD

biogenesis through their interaction with seipin [40,50–53].
How most of the proteins listed above contribute to LD

formation requires further investigation. However, these

proteins appear to play a regulatory role, while seipin has

a central role in LD biogenesis.

Although seipin localizes in the ER membrane, it

influences the properties of the LD surface. For exam-

ple, seipin deletion promotes the recruitment of pro-

teins to the LD monolayer that have amphipathic

helices and lipid packing defect sensing motifs

[23,54,55]. Seipin may also interfere with the flux of

phospholipids from the ER into the LD monolayer.

Therefore, by being localized at the ER–LD interface,

seipin is well positioned to regulate the trafficking of

proteins and lipids from the ER to the LDs [23,24,54].

Seipin has also been implicated in the metabolism of

phosphatidic acid (PA), a precursor of TAG [35,56,57].

Yeast mutants lacking either seipin or Ldb16 accumu-

late increased levels of PA in ER regions adjacent to
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Fig. 2. Seipin is an evolutionarily conserved protein. A schematic depiction of seipin morphology and multiple sequence alignments of

specified domains in the designated species. Sequences were aligned using the Multiple Sequence Comparison by Log-Expectation (MUS-

CLE) [75] and then depicted for graphical view by Jalview [76]. The red box in the luminal helix region represents the luminal helices in yeast

Sei1. Yeast Sei1 was used as the reference sequence for the alignment, and the aligned sequences are in the same order depicted in the

schematic below. Seipin sequences were taken from the following Uniprot entry numbers: Yeast – Q06058; Fly – Q9V3X4; Zebrafish –

A0A8M2BKD6; Human – Q96G97 (isoform 1); Mouse – Q9Z2E9; Arabidopsis – SEI1 Q9FFD9, SEI2 F4I340, and SEI3 Q8L615.
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clusters of abnormal LDs. Interestingly, inhibition of

phosphatidylcholine synthesis reverted this phenotype,

leading to the formation of supersized LDs, highlighting

the importance of ER phospholipid homeostasis in con-

trolling LD size [57]. Seipin was shown to bind PA in

vitro [25] and was also proposed to regulate glycerol-3-

phosphate acyltransferase (GPAT) enzymes involved

in the synthesis of PA [58]. The extent to which these

observations contribute to regulating PA homeostasis at

the sites of LD biogenesis should be addressed in the

future.

In addition to its key role in LD biogenesis, seipin

remains associated with the ER–LD interface, where it

appears to control LD size. This role of seipin in LD

maintenance was revealed in experiments in which the

seipin protein was acutely depleted, resulting in a

reduction in the number of small LDs and a rise in the

number of supersized LDs. This observation has sug-

gested that NLs diffused from smaller LDs with higher

internal pressure to larger ones through the ER, as

suggested by the Oswald ripening process [14]. There-

fore, seipin can be envisioned to function as a valve

that controls the flow of NLs, and eventually mono-

layer phospholipids and surface proteins, into and out

of the LDs following their biogenesis.

Structural insights into the seipin
complexes

Recent cryo-electron microscopy (cryo-EM) structures

of seipin from multiple species, together with molecu-

lar dynamic (MD) simulations and cell biology, pro-

vided tremendous insight into the mechanism by which

seipin promotes LD formation.

A lipid-binding helix to concentrate TAG

Structures of the luminal domains of human [25] and

fly [26] seipin were determined by cryo-EM (Fig. 3A).

These studies revealed that seipin assembles into a

defined homooligomeric ring consisting of 11 subunits

in human cells [25] and 12 in flies [26], confirming ear-

lier biochemical analysis in yeast that suggested seipin

oligomers assembled as a toroid [59]. Mutations dis-

rupting seipin oligomerization displayed strong defects

in LD morphology, indicating that the assembly of the

ring-like structures is essential for seipin function

[25,26]. In the oligomer, each protomer of the luminal

domain consists of a b-sandwich fold. Curiously, this

fold resembles lipid-binding domains, such as the

Niemann-Pick C2 (NPC2) sterol-binding domain [60],

suggesting a potential lipid-binding activity (Fig. 3B).

In fact, the purified luminal domain of human seipin

appears to bind to PA in vitro [25]. However, it is

unclear whether this also occurs in vivo.

In addition to the b-sandwich, the luminal domain

of human and fly seipin shares a structural motif con-

sisting of a hydrophobic helix lining the center of the

seipin ring (Fig. 3A,C). A peptide composed of the fly

seipin hydrophobic helix was shown to localize to LDs

in vivo and in vitro. This localization was lost with a

mutant peptide incorporating three aspartate residues,

suggesting that this helix may take advantage of the

packing defects present on the LD surface and binding

NLs [26]. Further support for the role of this hydro-

phobic helix in TAG binding came from MD simula-

tions [61]. When embedded in a lipid bilayer with a

composition that mimics the ER, the luminal domain

of human seipin was able to interact with TAG even if

it was present at very low concentrations [30,61].

Given that the hydrophobic helix sits in the center of

the seipin oligomeric ring, the binding leads to an

effective concentration of TAG molecules at its center,

thereby facilitating their phase separation. The simula-

tions indicate that two conserved serine residues, via

their hydroxyl group, mediate the interactions with

carboxyl ester groups of TAG [28,30] (Fig. 3B). Con-

sistent with in silico experiments, mutations of these

serine residues showed defects in the LD morphology.

More recently, similar experiments revealed that seipin

uses a similar chemistry to concentrate other NLs,

such as cholesteryl esters (CE), since the hydroxyl

groups in seipin interact with the carboxyl ester groups

present in NLs [61]. Consistent with these observations

in yeast, seipin-deficient mice show reduced CE-

containing LDs in steroidogenic tissues [62]. These

findings contrast with earlier studies suggesting that

seipin was dispensable for the formation of LDs con-

taining CE and retinyl esters, another type of neutral

lipid [63]. The causes for the discrepancy are unclear,

but, given that CE has a much higher melting temper-

ature when compared to TAG (44C vs. 4C, respec-

tively), they may be attributed at least in part to the

different temperatures at which the experiments were

conducted in the two studies. It has been shown that,

given their high melting temperature, the packaging of

CE into LDs can also be facilitated by TAG, which

can act as a solvent even if present in trace amounts

[64]. Thus, it is possible that minute levels of TAG can

also facilitate the nucleation of CE under certain

conditions.

More recently, two structures of the full-length yeast

seipin were also solved (Fig. 3A) [27,29]. Like human

and fly seipin, yeast seipin forms a homooligomeric

ring comprised of a b-sandwich fold, but with only 10

subunits. However, instead of a hydrophobic luminal
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Fig. 3. Seipin structure and function. (A) Cryogenic electron microscopy structures of seipin obtained from different model systems. Left to

right: seipin from human (PDB: 6DS5 [25]), fly (PDB: 6MLU [26]), and yeast (PDB: 7OXP [27] and PDB: 7RSL [29]). The top exhibits a view

from the cytosol toward the ER lumen, and the bottom corresponds to a 90° rotation. (B) Luminal domain of human seipin (PDB: 6DS5

[25]). The inset focuses on a protomer with the two serine residues S165 and S166 that are suggested to bind neutral lipids in red. Serine

residues are positioned at the center of the seipin ring. On the right, the structure of the sterol-binding protein Niemann-Pick disease C2

(NPC2) (PDB: 2HKA [60]). NPC2 and the luminal domain of seipin share a b-sheet fold, suggesting it can serve as a lipid-binding motif. (C)

Coulombic electrostatic potential of seipin luminal domains from yeast (PDB: 7OXP [27]), humans, and fly (as denoted in (A)). In contrast to

human and fly seipin, the center of the yeast seipin ring is highly charged.
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helix, the yeast seipin luminal helix is polar and

shorter (Fig. 3C). As expected for a polar helix, MD

simulations revealed that this feature is ineffective in

binding TAG [27]. Yeast seipin overcomes this limita-

tion through its binding partner, Ldb16 [23,27,36]. In

fact, Ldb16 is an obligatory seipin partner and is

unstable in the absence of Sei1 [27,36]. Through a site-

specific photocrosslinking approach, the position of

Ldb16 was mapped and shown to reside in the center

of the yeast seipin ring [27]. Structural prediction and

mutagenesis studies revealed that Ldb16 provides the

missing hydrophobic helix harboring hydroxylated res-

idues suitable for binding to TAG (Fig. 4A,B) [27,61],

similarly to human seipin. This suggests that in yeast,

seipin function is broken down into two polypeptides.

Consequently, human seipin can rescue a sei1Dldb16D
phenotype [27,36]. Taken together, these data support

the model in which all seipin complexes use a similar

molecular mechanism to concentrate NLs. Thus, a uni-

fying molecular mechanism for seipin function emerges.

Rearrangements within seipin complexes

A major advance of yeast seipin structures was that

they allowed the first visualization of seipin transmem-

brane segments (Figs 3A and 5) [27,29]. The yeast sei-

pin TMs sit proximal to the short N- and C-termini

and are separated by an extended b-sandwich. They

also adopted a unique crossed arrangement that is sta-

bilized by the TM2 capping helix, termed the locking

ER Lumen

Cytosol

Sei1 Ldb16 Neutral lipids Ldb16

Sei1

(A)

(B)

C101

Ldb16 (prediction)

N-term

C101

N-term
C101

T63

T61
T52

S53
S55

S62

N-term

90°90°

Ф

–10 +10
Electrostatic potential

Fig. 4. Ldb16 complements Sei1 for TAG binding. (A) TrRosetta [77] based model of Ldb16 (residues 1–101) is predicted to encompass

both transmembrane domains and the luminal helix. The Coulombic electrostatic potential of the luminal helix is depicted. Ldb16 presents

an electrostatic neutral face, possibly toward the center of the yeast seipin ring. This may potentially create a similar electrostatic neutral

interface similar to human and fly seipin that may serve as the neutral lipid-binding site of the yeast seipin complex. Hydroxyl residues sug-

gested to be important for neutral lipid binding are shown in red. (B) Hypothetical model of the Ldb16 position within the Sei1 ring. (Left)

Speculative schematic of how yeast Ldb16 resides within the seipin disc to promote neutral lipid accumulation. (Right) Structural depiction

of how a protomer of Sei1 and of Ldb16 might sit together. Sei1 is based on PDB: 7OXP [27] and Ldb16 is a predicted model as explained

in (A). The membrane bilayer is denoted by black lines.
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helix (also called switch region) (Fig. 4) [27,29]. Conse-

quently, both in vivo experiments and MD simulations

revealed that TM positioning plays a role in LD for-

mation and TAG accumulation [27,29,31]. Structural,

MD, and in vivo analysis showed that under the dele-

tion of the locking helix, the TMs move in relation to

one another, resulting in disturbed LD formation [27].

As noted beforehand and shown in Fig. 3, two similar

structures or yeast seipin were reported [27,29]. While

in one of the structures, the 10 protomers of the seipin

ring appeared identical (PDB: 7OXP), the second

structure showed protomers alternating between two

distinct conformations, called A and B (PDB: 7RSL).

The A conformation was similar to the one described

above. In the B conformation, the locking helix rotates

to become part of an extended TM2, with both TMs

displaying an increased tilt and projecting toward the

center of the ring in a cage-like organization [27,29]. It

was proposed that the cage-like arrangement would

further facilitate TAG concentration to support LD

budding and growth. Further investigation will be

required to validate the presence of multiple seipin

conformations within the same ring, as this was not

observed in other structural or in silico studies. More-

over, it is unclear how the alternating conformations

would function in a seipin ring with an odd number

of protomers, such as in humans (11 protomers per

seipin ring).

The exact mechanism of how the TMs affect LD

formation remains unclear. Previous MD simulations

conducted on human seipin pinpointed specific regions

of the TMs that may play a specific role in TAG accu-

mulation [30]. However, this was performed with a

naive placement of the TMs within the bilayer before

the TMs of yeast seipin were resolved and in silico

structure prediction was available. With higher resolu-

tion seipin structures available, as well as in silico

structure prediction, it may be possible to understand

how the TMs of seipin promote efficient LD forma-

tion. This approach was recently used to examine

seipin-mediated LD formation in a large MD system

where TAG spontaneously nucleates [31]. Interestingly,

simulations of LD budding with the human seipin with

or without its TMs showed that the TMs pushed TAG

toward the budding LD and facilitated the emergence

of the membrane stalk connecting the ER and LDs

[14]. Surprisingly, as the simulations were extended in

time, the TMs shifted and adopted an open conforma-

tion [31]. This TM opening was also observed in a

recent MD study looking at the initial stages of LD

Name: Sei1-Ldb16 Complex

Location: Endoplasmic reticulum membrane
                 ER-LD junctions / Organelle biogenesis subdomains

Yeast Sei1 protomer (PDB: 7OXP) Human Seipin protomer (Alphafold)

Functional elements: 

Complex members: Ldb16 and Ldo16/Ldo45

Name: Seipin Complex (Human)

Location: Endoplasmic reticulum membrane
                 ER-LD junctions / Organelle biogenesis subdomains

Functional elements: 

L27 I262

I24
I265

Complex members: Promethin/LDAF1
   

Fig. 5. Reported seipin complex functional elements. Location, partners, and functional elements of yeast (left) and human isoform 1 (right)

seipin. The functional elements are annotated on a protomer of Sei1 (PDB: 7OXP [27]) and human seipin (as predicted by Alphafold). Sei1-

TMs are modeled based on the electron density observed in PDB: 7OXP [27], hence shorter than predicted. Human seipin encompasses

the full length of the TMs, as predicted by Alphafold.
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formation. However, in this study, seipin was not suffi-

cient to induce directional budding in tubular mem-

branes. Moreover, directional budding was lost when

the TM opening occurred [65]. It has been postulated

that this tilting of the TMs could support the growth

of LDs and stabilize the contact with a mature LD

[66]. While these data support a role for seipin TMs

during LD formation, a comprehensive understanding

of seipin function and dynamics during the several

stages of LD biogenesis is still lacking.

Seipin-interacting proteins

Studies searching for binding partners of yeast seipin

led to the identification of Lipid Droplet Organization

proteins of 16 and 45 kDa (Ldo16 and Ldo45, respec-

tively) [51,52,58]. Notably, these two proteins are

encoded by a consecutive, partly overlapping open

reading frame and are generated by alternative splicing

with the Ldo16 sequence included in the Ldo45

sequence. Both Ldo16 and Ldo45 bind to the seipin

complex independently of each other, and their dele-

tion results in a mild LD morphology defect [51,52].

Therefore, it has been hypothesized that they might

act as regulatory subunits of the seipin complex.

Ldo16 and Ldo45 appear to have common and dis-

tinct functions. Ldo45 favors LD growth and TAG

accumulation, while Ldo16 appears to function pri-

marily during LD consumption through lipophagy

[51,52]. In fact, recently, a new role of mediating LD

tethering to the vacuole was described for Ldo16 due

to its interaction with the vacuolar protein Vac8

[67,68]. In the absence of Ldo16, Ldo45 can also inter-

act with Vac8 [67,68]. As Ldo45 encompasses Ldo16,

it is plausible that the ability of Ldo16 to target LDs

in the vacuole is retained in Ldo45. These studies are

beginning to shed light on the molecular role of Ldo16

in the LD life cycle. However, the molecular role of

Ldo45 remains a mystery.

Based on sequence similarity and immunoprecipita-

tion experiments, the human protein LDAF1 (also

known as Promethin/TMEM159 or CG32803 in fly)

was proposed to be homologous to the yeast Ldo45

[50,53]. Immunoprecipitation experiments in mamma-

lian cultured cells showed that LDAF1 binds to seipin.

Curiously, this interaction requires a seipin hydropho-

bic helix, which is also important to bind and concen-

trate TAG within the seipin ring [28,40]. In yeast, Sei1,

Ldb16, and Ldo45 were shown to form a complex,

although the regions involved in complex assembly

and recruitment of Ldo45 have not been defined. Fur-

thermore, LDAF1 was suggested to regulate the mor-

phology of LDs and the accumulation of TAG [40],

similarly to Ldo45 [51,52], but the exact molecular role

of Ldo45 and LDAF1 remains unclear. Following the

advances in the molecular mechanisms of the seipin

complexes succeeding the cryo-EM structures, future

work on the structure of the complete seipin complexes

with their interactors may help us to understand how

these proteins contribute to LD homeostasis.

Other proteins seem to interact or collaborate with sei-

pin complexes in the regulation of lipid metabolism. An

example is the yeast ER-resident protein, Pex30, and its

human homolog, MCTP2. These have been characterized

as factors that contribute to LD biogenesis and LD main-

tenance [38,39,58,69,70]. The role of Pex30 is especially

important in the absence of the seipin complex, since

sei1Dpex30D cells are unable to produce new LDs or pre-

peroxisomal vesicles (PPVs), the precursors of new peroxi-

somes. Therefore, a high lipotoxic effect is observed as a

strong growth defect [39]. Together with Sei1, Pex30 con-

tributes to the formation of ER subdomains for the gener-

ation of new LDs and PPVs [38,39,45].

In developing adipocytes, seipin has been reported

to interact with AGPAT2, Lipin-1 [71], and GPAT3

[58], which are enzymes belonging to the lipid synthesis

pathway. This interaction is suggested to facilitate adi-

pocyte differentiation [71,72].

Arabidopsis thaliana contains three seipin isoforms

(SEIPIN-1, -2, -3) that were reported to collaborate

for the normal number and size of LDs with two LD

proteins: LDAPs (LD-associated proteins) and LDIP

(LDAP-interacting protein). Interestingly, LDIP,

which was proposed to have an analogous function to

LDAF1/Promethin, interacts with seipin through its

conserved hydrophobic helix [73]. However, only

SEIPIN-2 and SEIPIN-3 interact with VAP27-1

(vesicle-associated membrane protein-Associated Pro-

tein 27-1), a membrane contact site protein with a lipid

transfer role [74].

Conclusions and future directions

Over the past few decades, the advancement in under-

standing of LDs, from the idea of simple lipid accumu-

lation to a well-regulated organelle critical to cellular

homeostasis, has come a long way. In recent years, the

mechanism of LD formation has taken shape, with sei-

pin taking center stage. Recent structural data on seipin

complexes have provided much clarification on the con-

tribution of the distinct protein domains of seipin in LD

formation (Fig. 5). In fact, it is becoming evident that

the molecular mechanisms by which seipin complexes

promote LD formation are extremely conserved.

In the future, it will be important to understand the

differences in seipin structure and interactors among
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different species, as well as how seipin partners and

other associated factors coordinate their activities dur-

ing the various stages of the life cycle of LDs: from

monolayer organization to LD growth and shrinkage,

including participation in protein diffusion and target-

ing. As in recent years, these insights will likely come

from the intersection of imaging, structural, and

modeling approaches and may contribute to the devel-

opment of treatments against LD-related pathologies.
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