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Abstract

Tumour-infiltrating T cells offer a promising avenue for cancer treatment, yet their states remain to 

be fully characterized. Here we present a single-cell atlas of T cells from 308,048 transcriptomes 

across 16 cancer types, uncovering previously undescribed T cell states and heterogeneous 

subpopulations of follicular helper, regulatory, and proliferative T cells. We identified a unique 

stress response state, TSTR, characterized by heat shock gene expression. TSTR cells are detectable 

in situ in the tumour microenvironment across various cancer types, mostly within lymphocyte 

aggregates or potential tertiary lymphoid structures in tumor beds or surrounding tumor edges. 

T cell states/compositions correlated with genomic, pathological, and clinical features in 375 

patients from 23 cohorts, including 171 patients who received immune checkpoint blockade (ICB) 

therapy. We also found significantly upregulated heat shock gene expression in intratumoural 

CD4/CD8 cells following ICB treatment, particularly in non-responsive tumors, suggesting a 

potential role of TSTR cells in immunotherapy resistance. Our well-annotated T-cell reference 
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maps, web portal, and automatic alignment/annotation tool could provide valuable resources for 

T-cell therapy optimization and biomarker discovery.

Introduction

Tumour-infiltrating T cells (TILs) are a crucial component of the TIME and have 

demonstrated anticancer efficacy in various settings, such as chimeric antigen receptor 

(CAR) T-cell therapy, TIL therapy, and immune checkpoint blockade (ICB) therapy. 

However, TILs are phenotypically and functionally diverse, and their characteristics 

determine the effectiveness and potential side effects of anticancer therapies1–7. As T-

cell-directed or combinational therapies rapidly expand to treat different cancer types 

with varying responses, a comprehensive understanding of TIL biology is essential for 

effectively stratifying patients and advancing future therapies. The application of single-cell 

RNA sequencing (scRNA-seq) has revolutionized our understanding of cell states and 

heterogeneity within the TIME8–18. A recent pan-cancer study characterized various TIL 

states and paths to exhaustion19. However, further analysis of TILs is necessary due to their 

remarkable heterogeneity. Additional scRNA-seq datasets from complementary diseases, 

tissue types, and conditions are critical to fully capture all possible TIL states in the 

TIME and better characterize heterogeneous subsets. Moreover, investigating the biological 

relevance and clinical significance of TIL subsets in larger patient cohorts, particularly in 

the context of immunotherapy, is imperative. Furthermore, cross-study comparisons remain 

challenging due to inconsistencies in the markers and gene signatures used to define TIL 

states. Although automatic annotation tools20,21 are available, they lack the desired level of 

granularity, as they were not specifically designed for TILs.

In this study, we analyzed T cells from 27 datasets across 16 cancer types13,15,16,18,22–34. 

More than 65% of the analyzed T cells were not present in the previous pan-cancer study19. 

We characterized 32 distinct T cell states, further dissected the heterogeneous regulatory, 

follicular helper, and proliferative subsets, and highlighted the stress response state by 

integrating single-cell and spatial profiling data. We investigated the genomic, pathological, 

and clinical correlates of these T cell states in large patient cohorts, and in the context 

of ICB therapy. We also created well-annotated T-cell reference maps, an interactive web 

portal, and an automatic alignment/annotation tool to support efficient single-cell profiling 

of T cells.

Results

Pan-cancer analysis of T cells

We collected scRNA-seq data from T cells across 16 cancer types and 9 non-

neoplastic/normal tissue types, comprising 486 samples from 324 individuals (Fig. 1a–b; 

Supplementary Tables 1–2). 16 out of 27 datasets13,15,16,18,22–34 were not present in the 

previous pan-cancer study22 (Supplementary Tables 1). 308,048 high-quality T cells were 

identified following rigorous quality control (Supplementary Fig. 1; Methods). We identified 

6 major types of T cells: CD4, CD8, gamma delta T cells (Tgd), natural killer T cells (NKT), 

mucosal-associated invariant T cells (MAIT), and proliferative T cells (Extended Data Fig. 
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1). CD4 T cells were the most abundant subset (Fig. 1c) and their cellular fractions varied 

substantially across tissues of different locations/conditions (Fig. 1d).

Transcriptional diversity of CD8 T cells

Unsupervised clustering analysis identified 14 clusters of CD8 T cells (Fig. 2a), each 

observed in multiple datasets (Supplementary Fig. 2a–b). Based on differentially expressed 

genes (DEGs) (Supplementary Table 3), canonical immune markers (Fig. 2b–d; Extended 

Data Fig. 2a), and curated gene signatures (Fig. 2e; Supplementary Table 4), we defined 

14 transcriptional states: naïve-like (TN, c3, c13), transitional effector (t-TEFF, c0), effector 

(TEFF, c2, c8, c10, c11), central memory (TCM, c6), resident memory (TRM, c12), stress 

response (TSTR, c4), interferon response (TISG, c5), senescent-like (TSEN, c9), precursor 

exhausted (p-TEX, c7), and exhausted (TEX, c1) CD8 T cells (Fig. 2a).

The two TN clusters displayed a naïve-like phenotype with high expression of naïve gene 

signature (Fig. 2b, e). The t-TEFF cluster showed high expression of GZMK, CXCR4, 

and early activation markers CD44 and CD69 (Fig. 2b; Extended Data Fig. 2a). The four 

TEFF clusters highly expressed effector molecules (e.g., FGFBP2, CX3CR1, FCGR3A, 
and KLRG142,43), cytolytic activity-related genes, and consistently, high cytotoxicity gene 

signature and TCR signaling (Extended Data Fig. 2a; Fig. 2e). The TCM cluster exhibited 

high expression of GZMK, CD44, EOMES, CD28, CCR7, exclusively expressed DKK337–

38, and downregulated activation markers (e.g., NKG7, PRDM1, ID2, HOPX, FGFBP2), 
consistent with its TCM phenotype. The TRM cluster displayed high expression of IL7R, 
PRDM1, TGFBR2, and upregulated ITGA1, along with downregulated SIPR1, CCR7, 
SELL, consistent with their tissue retention property. The TSTR cluster was characterized 

by unique expression of stress-related heat shock genes (e.g., HSPA1A, HSPA1B)39–41 and 

a stress response gene signature (Fig. 2e), along with the highest expression of NF-κB 

signaling, a primary regulator of cellular stress response42. The TISG cluster displayed 

high expression of interferon-stimulated genes (ISGs) and the interferon (IFN) response 

signature (Supplementary Table 3; Fig. 2e). The TSEN cluster demonstrated the highest 

expression of T cell senescence signature43, low CD27 and cytotoxicity. The TEX cluster 

was characterized by the highest expression of exhaustion-related markers, HAVCR2 
(TIM-3), LAG3, TIGIT, PDCD1 (PD-1), CTLA4, LAYN, and transcription factors (TFs) 

such as TOX, with low expression of TCF7 (TCF1) (Fig. 2c–e). In accordance with previous 

work19–44, TEX cells also highly expressed cytotoxicity markers and CXCL13, ENTPD1 
(CD39), and TNFRSF9 (4–1BB), indicating that they were likely antigen-experienced. 

The p-TEX cluster (c7) bridges TEX and other TEFF clusters (Fig. 2a). Relative to TEX, 

p-TEX cells had lower expression of inhibitory checkpoint receptors, exhaustion-related TFs, 

cytotoxicity genes, and terminally differentiated T cell markers, but higher expression of 

TCF7, CD27, CD28, and EOMES (Fig. 2c–e).

To understand the differentiation trajectories of CD8 T cells, we first projected the 

expression of naïve, activation/effector, cytotoxicity, and exhaustion gene signatures onto 

the UMAP, which is following its expected dynamics (Fig. 2f). Monocle 345–47 analysis 

revealed three main paths (Fig. 2g; Extended Data Fig. 2b): all started with TN, followed 

by t-TEFF, with path 1 ending in a terminally differentiated TEFF state, path 2 connected 

Chu et al. Page 4

Nat Med. Author manuscript; available in PMC 2024 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with p-TEX and ending in the TEX state, and path 3 ending in the TSTR state. These paths 

imply divergent cell fates, which are also supported by expression kinetics of related gene 

signatures along the inferred pseudotime axis (Fig. 2h). We observed substantial changes 

in the CD8 T cell landscape. Tumor tissues exhibited decreased fractions of TN cells and 

increased fractions of TEFF (c10, c11), TCM, TSTR, TISG, TSEN, p-TEX, and TEX cells. TEX 

fractions were low or undetectable in healthy/uninvolved normal tissues but were elevated in 

various primary tumours and highly enriched in metastases [one-sided Games-Howell test, 

FDR adjusted p-value: 2.8e-4 (U vs. M), and 8.4e-4 (P vs. M)] (Fig. 2i–k; Extended Data 

Fig. 2c–d; Supplementary Fig. 2c).

CD4 T cell states and heterogeneous TREG and TFH populations

We identified 12 different CD4 T cell states (Fig. 3a): TN (c2, c6, c7, c9, c10), T follicular 

helper (TFH, c3), T helper 17 (Th17, c8), TCM (c0), T regulatory (TREG, c1), cytotoxic 

(CTL, c5), stress response (TSTR, c4), and IFN response (TISG, c11) states (Supplementary 

Table 5). Each state was observed across multiple datasets (Supplementary Fig. 3a–b). 

TN clusters expressed high levels of naive markers (Fig. 3b–c; Extended Data Fig. 3a; 

Supplementary Table 5). TCM cluster highly expressed CD69, GPR183, IL7R, KLF2, TOB1, 
and the anti-apoptosis gene signature (Supplementary Table 6). The CTL cluster markedly 

expressed cytolytic activity-related genes and chemokine/chemokine receptors (Fig. 3b–c). 

The TREG cluster exhibited a classical TREG gene signature (IL2RA, FOXP3, CTLA4, and 

TNFRSF4). The TFH cluster was characterized by high expression of ICOS, TNFRSF4, 
BCL6, TOX, CXCL13, PDCD1, and CTLA4. The Th17 cluster showed high expression of 

RORA and IL17A/F. The CD4 TSTR cluster highly expressed heat shock genes and stress 

response signature and the CD4 TISG cluster was marked by IFN response. Our annotation 

of these cell states was also supported by published gene signatures19,23,48 (Supplementary 

Fig. 4). CD4 T cell states and compositions varied significantly between normal and tumor 

tissues (Fig. 3d–f; Extended Data Fig. 3b–c; Supplementary Fig. 3c). TN c6 and c7 were 

highly abundant in healthy tissues but depleted in uninvolved normal and tumor tissues. TCM 

subset was abundant in healthy/uninvolved normal tissues but decreased in primary tumours 

and further reduced in metastases. Conversely, TREG and TFH subsets were low in healthy/

uninvolved normal tissues but highly enriched in tumour tissues [one-sided Games-Howell 

test, FDR adjusted p-values: for TREG, 4.1e-13 (U vs. P) and 4.0e-16 (U vs. M); for TFH, 

0.023 (U vs. P) and 9.0e-8 (U vs. M)].

CD4 TREG and TFH clusters displayed relatively lower purity (Supplementary Fig. 3a) and 

greater variability in inferred pseudotime (Extended Data Fig. 3d–e). Further subclustering 

analysis identified 7 TREG subclusters (Fig. 3g–h; Supplementary Table 7; Supplementary 

Fig. 5). TREG c1 highly expressed naïve markers, while c2 displayed high expression of 

co-stimulatory molecules (e.g., TNFRSF4, TNFRSF18, TNFRSF9), and cytokine receptors 

(e.g., IL1R1, IL1R2, IL21R), suggesting their highly activated phenotype (Fig. 3h). TREG 

c0 bridged the naïve and activated states, while c3 had a Th2-like profile with high 

expression of GATA3. TREG c4 expressed high levels of TNFRSF13B56. TREG c5 marks 

a stress response state39–41. TREG c6 expressed LRRC32, a TREG-specific receptor for 

TGF-β50. Among these subsets, TREG c2 fractions were significantly increased in tumours 

(Supplementary Fig. 5d). Utilizing the same approach, we identified 5 TFH subclusters (Fig. 
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3i–j; Supplementary Table 8). TFH c1 expressed high levels of PDCD1, TIGIT, TOX2, 

CXCR5, CD40LG, ICOS, and ASCL2, suggesting a mature Tfh state. TFH c3 appears to be 

at a late developmental stage (Fig. 3i, right). TFH c0 expressed high IL7R, CCR7, SELL, 
and CXCL13. TFH c2 expressed KLRB1, ICOS, CD69, GPR183, and KLF2, indicating 

a transitional state. TFH c4 expressed IRF4 and BATF, two TFs for TFH differentiation. 

In summary, we characterized 12 TREG and TFH subsets, highlighting their heterogeneous 

nature.

States of unconventional and proliferative T cells

Five unconventional T cell subsets were identified: NKT (c0, c4), MAIT (c2), MAIT-

like (c1), and Tgd (c3) clusters (Extended Data Fig. 4a–b; Supplementary Table 9; 

Supplementary Fig. 6a). NKT c0 was CD8+FCGR3A+, with high expression of cytotoxicity 

genes, activation markers, and chemokines. NKT c4 cells were EOMES+, expressing 

XCL1/2, CXCR6, TIGIT, LAG3, and inhibitory killer cell immunoglobulin-like receptors 

(KIRs), suggestive of tissue-resident NKT cells. MAIT c2 expressed TRAV1–2, SLC4A10, 

and high levels of GZMK and KLRB1, similar to previously reported CD161+ MAIT 

cells51. MAIT-like c1 displayed a similar profile but had low TRAV1–2 and no SLC4A10. 

Tgd c3 showed a unique expression of Tgd cell-related markers (Extended Data Fig. 4b; 

Supplementary Fig. 6b). Among them, NKT c0 fractions were decreased in primary tumours 

(Supplementary Fig. 6c).

We identified 8 proliferative T cell subclusters: CD8+ (c0, c4, c5, c7), CD4+ (c1, c6), and 

double negative (DNT, c2, c3) T cells (Extended Data Fig. 4c–d; Supplementary Fig. 7a–b; 

Supplementary Table 10). Subcluster c0 displayed characteristics of activated CD8 T cells, 

while c4 exhibited lower cytotoxicity and higher expression of C1QB and MT1G/E/X52,53. 

Subcluster c5, mapped to CD8 TEX cluster after regressing out proliferative cell markers, 

displayed the highest levels of cytotoxicity and expression of inhibitory checkpoint receptors 

(Extended Data Fig. 4d–e). Subcluster c7 was characterized by high expression of PRF1, 
NKG7, GZMK, LAG3, TIM-3, and TGF-b1. Subcluster c1 was activated CD4+ T cells and 

c6 was proliferative TREG (Extended Data Fig. 4f). The DNT c3 had the highest GZMK 
expression and c2 showed the lowest cytotoxicity levels. Among these subsets, c0 and 

c6 showed relatively higher fractions in tumours (Supplementary Fig. 7c). Our findings 

highlight the transcriptional heterogeneity among proliferative T cells, often overlooked in 

single-cell studies.

Transcriptional similarity and co-occurrence patterns

We analyzed the phenotypic relationships of these T cell states. Unsupervised hierarchical 

clustering analysis revealed 4 main branches (Fig. 4a). TN subsets clustered tightly in the 2nd 

branch and TEFF subsets formed the 3rd branch. CD4 and CD8 TSTR were grouped together 

in the 4th branch, as were the CD4 and CD8 TISG subsets. Tgd subset formed a separate 

branch due to distinctive profiles. We also investigated T cell state co-occurrence through 

spearman correlation analysis of cluster frequencies (Fig. 4b; Supplementary Table 11). 

CD4 and CD8 TSTR, and CD4 and CD8 TISG subsets showed strong positive correlations 

in primary and metastatic tumours, indicating their co-occurrence in the TIME. In primary 

tumors, CD8 TEX, CD4 TREG, and TFH exhibited positive co-occurrence, which, together 

Chu et al. Page 6

Nat Med. Author manuscript; available in PMC 2024 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with CD4/CD8 TSTR exhibited negative correlations with CD4/CD8 TN, CD8 TEFF, and 

CD4 CTL subsets (Fig. 4b, left). In metastatic tumors, CD8 TEX was negatively correlated 

with CD4/CD8 TN and TEFF subsets (Fig. 4b, right), indicating mutual exclusivity.

Correlations with genomic, molecular, pathological features

Next, we examined their correlations with major clinical, histopathological, and molecular 

features in scRNA-seq datasets (Supplementary Table 2). Among the 8 cancer types 

examined, CD8 TEX and CD4/CD8 TISG states were observed more frequently than 

expected in metastases derived from head & neck squamous cell carcinoma (HNSC), 

non-small cell lung cancer (NSCLC), and melanoma (Fig. 4c). The CD4/CD8 TSTR states 

were associated with aggressive phenotypes across cancer types including triple-negative 

breast cancer (TNBC), rectal adenocarcinoma, hepatocellular carcinoma (HCC), HNSC, and 

NSCLC in smokers.

We then analyzed bulk RNA-seq data from TCGA cohorts using gene signatures derived 

from our scRNA-seq data (Supplementary Table 12). To ensure specificity, we merged 

similar subsets (e.g., CD4/CD8 TSTR, CD4 TN, CD8 TEFF) and focused on cell states 

with unique gene signatures. Tumours with low T-cell infiltration levels were excluded 

(Supplementary Table 13; Supplementary Fig. 8a). We found a significant positive 

correlation between CD8 TEX signature scores and TMB in LUAD and MSI-driven uterine 

corpus endometrial carcinoma (UCEC) (Extended Data Fig. 5a), consistent with previous 

studies61. We observed variations in TMB correlations across genotypic/molecular subtypes 

with individual cancer types. For instance, positive correlations were found between TMB 

and TREG, TFH, TEX, and CD8 TEFF states in EVB+ stomach adenocarcinoma (STAD), 

while negative correlations were seen in genomically stable STAD. In KRAS-mutant 

LUADs, there was a strong positive correlation between TMB and CD8 TEX, while no such 

correlation was found in EGFR-mutant LUADs. Similar variation was observed in bladder 

urothelial carcinoma with and without 9p21 loss. These findings suggest the diversity in TIL 

states and landscapes associated with cancer genotypic/molecular subtypes.

We further assessed the association of T cell subsets with overall survival (OS) in TCGA 

cohorts (Extended Data Fig. 5b). Higher CD4 TCM was linked to increased OS in sarcoma. 

In cancers related to oncogenic viruses, such as HPV+ HNSC, cervical squamous cell 

carcinoma, and endocervical adenocarcinoma (predominantly HPV), significant associations 

were observed between T cell subset abundance and improved OS. Conversely, no such 

association was found in HPV-NHSC, and in LGG, T cell subsets were linked to reduced 

OS, reflecting the immunosuppressive nature of glioma TIME. Unlike LGG, multiple T cell 

subsets were associated with improved OS in melanoma, consistent with a high burden of 

ultraviolet light mutations known for their enriched immunogenic potential62.

Correlations with TMB and ICB response in CPI1000+ cohorts

We also analyzed the CPI1000+ cohorts56. Of the 1,008 patients, 562 with available 

genomic, expression, and clinical response data were included. UV signature mutations 

were positively correlated with the abundance of CD8 TN, TEFF, TISG, and TEX, while a 

negative association was observed between the APOBEC mutation signature and CD8 TEX 
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(Fig. 4d). Clonal TMB was positively correlated with CD8 TEX, CD4/CD8 TSTR, and CD8 

TISG. Additionally, PD-L1 expression in immune and tumour cells was strongly associated 

with the levels of CD8 TEX, CD8 TISG, and TREG in urothelial carcinoma64 (Supplementary 

Fig. 8b).

These patients received single-agent checkpoint inhibitors without prior ICB treatment56 and 

predominantly had baseline pretreatment specimens. We found no significant difference 

in the levels of individual T cell states between responders and non-responders. We 

then tested all possible combinations of T cell states in the 3 largest cohorts: renal cell 

carcinoma58, melanoma56, and urothelial cancer57. In the renal and melanoma cohorts, we 

observed low response rates in patients with high levels of CD4/CD8 TSTR and low CD4 

TFH or low CD8 TEX. Conversely, high response rates were observed in patients with 

low CD4/CD8 TSTR and high CD4 TFH or high CD4/CD8 TN (Extended Data Fig. 6). 

These results suggest that the combination of high CD4/CD8 TSTR and low CD4 TFH in 

pre-treatment tumors is associated with an unfavorable response to ICB therapy. However, 

these findings were not observed in the urothelial cancer cohort64, possibly due to the 

dominant immunosuppressive mechanism in this cancer type being TGF-β signaling from 

fibroblasts64. While the correlation between low CD4 TFH and poor response to ICB therapy 

is expected, it’s worth noting that the TSTR state has been previously underappreciated.

TSTR cells are detectable in situ across cancer types

To account for the potential stress-induced expression of heat shock genes in T cells during 

tissue dissociation59, we aimed to validate TSTR cells within intact cells through in situ 
hybridization and target RNA detection. Specifically, we performed RNAscope on an LN 

metastasis from a melanoma patient (Fig. 5a, i) and examined the expression of HSPA1B, 

a top DEG in CD4/CD8 TSTR clusters, in distinct regions of melanoma cells (Fig. 5a, ii) 

and peritumoral lymphocytes (Fig. 5a, iv) from the same tissue section. We found HSPA1B 
expression in both melanoma cells (Fig. 5a, iii) and peritumoral lymphocytes (Fig. 5a, v).

Next, we sought to confirm the existence of TSTR cells in situ within the TIME using an 

orthogonal technology, we analyzed the public CosMx dataset from NSCLC patients60. We 

found high expression of HSPA1A and HSPA1B in T cells, primarily, within lymphocyte 

aggregates (LAs) near the tumor bed or myeloid-enriched stroma (Fig. 5b, i–iv). We 

confirmed the co-expression of CD3D, HSPA1A, and HSPA1B in T cells at subcellular 

resolution in all 3 tissue sections from tumor lung-5 (Fig. 5b, v-vii; Extended Data Fig. 7, 

left) and in tissue sections from other lung cancers (Supplementary Fig. 9), as well as in 

HCC (Extended Data Fig. 7, right).

We then conducted a pan-cancer analysis to map TSTR cells and examine their spatial 

relationships. We analyzed Visium data (10x Genomics) across 6 cancer types: melanoma, 

LUAD, basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (CSCC), clear 

cell RCC (ccRCC), and gastric adenocarcinoma (GAC) (Supplementary Table 14). Regions 

highly expressing T cell markers were examined at high magnification to confirm the 

presence of lymphocytes (Supplementary Figs. 10a–c and 11a–b), and TSTR cells were 

mapped spatially based on their expression of HSPA1A/HSPA1B within T-cell-enriched 

spots (Supplementary Figs. 10d and 11c). We successfully mapped TSTR cells in 33 tissue 
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sections across all 6 cancer types that contained T-cell-enriched spots (Fig. 5c; Extended 

Data Fig. 8–9; Supplementary Fig. 12). TSTR cells were primarily localized within LAs, 

particularly those within tumor beds or surrounding tumor edges.

Finally, we investigated the relationship between TSTR cells and tumor hypoxia in the TIME. 

Previous studies have shown that hypoxic conditions can activate TFs including HIF-1α 
(HIF1A), HIF-2α (EPAS2), RELA, RELB, NFKB1, NFKB2, CREB (CREB1), and Nrf2 

(NFE2L2), which are essential for hypoxic adaptation61. Using Visium data, we measured 

the expression levels of these TFs and plotted them alongside the spatial distribution of TSTR 

cells. TSTR cells were predominantly located near or within hypoxic cancer cell domains 

(Fig. 5d; Extended Data Fig. 8–9; Supplementary Fig. 12). Additionally, we combined 

the Visium data to assess whether T-cell enriched spots with high levels of stress signals 

were more likely to be hypoxic. Our analysis showed significant correlations between the 

expression levels of HSPA1A/HSPA1B and hypoxia-related TFs only in a subset of cancer 

types examined (Supplementary Fig. 13). We did not observe any significant correlation 

between the expression levels of these TFs in cancer cells and TSTR cell fractions in CosMx 

and scRNA-seq cohorts. Further functional studies are necessary to determine the underlying 

mechanisms of stress response in T cells.

Enrichment of CD4/CD8 TSTR cells in non-responsive tumors

Since certain TSTR signature genes can be expressed by cancer cells and other cell lineages, 

deconvolution of bulk RNA-seq data may not provide an accurate estimate of the actual 

TSTR abundance in a given sample. We, therefore, attempted to assess the clinical relevance 

of TSTR cells using publicly available scRNA-seq datasets. We obtained scRNA-seq data 

from 6 cohorts18,44,48,62–64 of patients who underwent anti-PD-1/PD-L1 therapy, which 

included a total of 247 samples from 133 patients18,44,48,62–64 (Supplementary Table 15). 

We applied TCellMap to align T cells uniformly from these public scRNA-seq datasets with 

the T cell maps built in this study (Extended Data Fig. 10; Methods).

In the BCC cohort 18 (Fig. 6a), we observed enriched CD4 TFH cells in the responsive (R) 

tumors before and after ICB therapy (Fig. 6b). Notably, we also observed highly enriched 

CD4 and CD8 TSTR cells in non-responsive (NR) tumors before and especially after ICB 

therapy (Fig. 6b). Further supporting these results, we observed a significant upregulation 

of HSPA1A and HSPA1B expression in both CD4 and CD8 T cells in NR (vs. R) tumors 

following ICB treatment and in the post- (vs. pre-) ICB timepoint (Fig. 6c–d; two-sided 

Welch’s t-test, FDR adjusted p-value < 2.2e-16 for all comparisons for HSPA1A). In 

the NSCLC cohort51 (Fig. 6e), we observed enriched CD8 TSTR cells in LN metastases 

compared to primary tumors at the pre-ICB timepoint. During ICB treatment, there was a 

greater enrichment of CD4 and CD8 TSTR cells in the NR tumors (Fig. 6f). We consistently 

observed a significant upregulation of HSPA1A and HSPA1B expression in both CD4 and 

CD8 T cells in LN-Met (vs. primary tumors) before ICB treatment, and in NR (vs. R) 

tumors during ICB treatment (Fig. 6g–h; two-sided Welch’s t-test, FDR adjusted p-value < 

2.2e-16 for all comparisons for HSPA1A).

In the RCC cohort62 (Fig. 6i), we observed an enrichment of CD8 TSTR and CD4 TSTR 

cells in tumors exposed to ICB and highly enriched CD4 TSTR cells in NR tumors (Fig. 6j; 
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Supplementary Fig. 14a). In both cohorts of resectable breast cancer48, the CD4/CD8 TSTR 

cell fractions increased 2–3 times in on-treatment tumors from patients with limited/no T 

cell clonal expansion compared to those with clonal expansion (p = 0.015 and p = 0.026, 

respectively). However, the proportion of TSTR among T cells was generally low and not 

presented in the data. In the advanced TNBC cohort 64, we observed increased expression 

of HSPA1A and HSPA1B in CD4 and CD8 T cells from NR (vs. R) tumors before and after 

treatment in patients who were treated with paclitaxel (Supplementary Fig. 14b), but not in 

those received paclitaxel plus anti-PD-L1.

Finally, we investigated whether CD8 TSTR cells are specific for mutation-associated 

neoantigens (MANA). Among several studies that have successfully detected MANA-

specific T cells, the study by Caushi et al.63 made their scRNA-seq and scTCR-seq data 

on CD8 T cells available (Fig. 6k). MANA- and viral-specific (EBV, influenza) CD8 T cells 

were identified using the MANA and viral functional expansion of specific T cells assay, 

respectively63. We found enriched CD8 TSTR cells in the MANA (but not viral)-specific 

CD8 T cells in tumours from patients with no major pathological response (non-MPR) 

(Fig. 6l). Consistently, we observed significantly higher expression levels of HSPA1A and 

HSPA1B in MANA-specific CD8 T cells in tumours from non-MPR patients compared to 

those from MPR patients (Fig. 6m–n; two-sided Welch’s t-test, FDR adjusted p-value < 

2.2e-16 for all comparisons).

Discussion

In this study, we provide a high-resolution T-cell reference catalogue with well-defined 

cell states and gene signatures for the research community. The unprecedented scale of 

the datasets has enabled us to elucidate 32 T cell states, including previously undescribed 

and overlooked states22. We were able to further dissect TREG, TFH, and proliferative 

T cell subsets and discover the TSTR state, leading to an improved understanding of 

the transcriptional heterogeneity of T cells. Importantly, all data have been harmonized 

together in a common analytical framework, providing a robust T-cell reference map for the 

community. To facilitate the use of this resource, we have built a user-friendly, interactive 

Single-Cell Research Portal (SCRP, https://singlecell.mdanderson.org/TCM/) for visualizing 

and querying the T cell maps built in this study (Supplementary Fig. 15). Additionally, 

we provide TCellMap (https://github.com/Coolgenome/TCM), an R script that automatically 

aligns and annotates T cells from a query scRNA-seq dataset with our reference maps 

(Extended Data Fig. 10).

The identification of the TSTR state is intriguing. In previous scRNA-seq studies, the 

expression of stress-related genes in T cells was thought to be a potential artifact related 

to tissue dissociation, and TSTR cells have been largely overlooked. In a recent study, the 

expression of HSPA1A, HSPH1, and HSPA6 in glioma-infiltrating CD3E+ T cells was 

confirmed by RNA in situ hybridization72. By integrating data from multiple independent 

single-cell and spatial profiling platforms, this study presents the first, most comprehensive 

pan-cancer characterization of TSTR cells at cellular, subcellular resolution, and within the 

tissue context. We demonstrate that TSTR cells are detectable in situ within the TIME across 

6 cancer types examined. Notably, TSTR cells were mostly mapped to LAs or likely tertiary 
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lymphoid structures (TLSs) within the tumour beds or surrounding tumour edges, indicating 

that they may play a role in the TIME. Given the acknowledged role of TLSs in cancer73, it 

would be of great interest to understand the crosstalk between CD4/CD8 TSTR cells, other 

T, B/plasma, and dendritic cell subsets that coexist with TSTR cells in TLSs, as well as its 

impact on the function of TLSs and anti-tumor immunity.

The roles of TSTR cells in tumor immunobiology and immunotherapy response remain 

largely unknown. Our analysis of 16 scRNA-seq studies and the CPI1000+ cohorts63 

collectively suggests that the presence of TSTR cells within TIME is biologically relevant 

and has potentially significant clinical implications. Our results demonstrate that CD4/CD8 

TSTR cells are enriched in aggressive cancer subtypes or metastases and are associated with 

an unfavorable response to ICB therapy, more consistently and strongly than other known 

T cell subsets (TEX, TREG, or TFH) in the examined cohorts38,51,55,70,71. Interestingly, we 

found that the expression of stress response signature was massively upregulated following 

anti-PD-1/PD-L1 therapy, primarily in NR tumours, and TSTR cells were predominantly 

upregulated in tumour-specific CD8 T cells. These findings suggest that TSTR cells represent 

a distinct resistance mechanism to ICB therapy that warrants further validation in larger, 

longitudinal cohorts. Moreover, our trajectory analysis of CD8 T cells suggests that TSTR 

cells are likely from a diverged differentiation path, which is an intriguing area for further 

investigation. It is essential to track the differentiation trajectories of CD8 T cells, their 

cells of origin, phenotypic transition, and antigen specificity during disease progression and 

the course of ICB therapy. We also need to investigate the causes of stress responses in 

TILs mechanistically. Their inconsistent and puzzling relationships with hypoxia68 across 

cancer types may be indicative of other properties of the tumor, which requires additional 

investigation to determine the causality.

This study has several limitations. First, the analysis of T-cell receptor (TCR) repertoire was 

limited by the unavailability of paired scTCR-seq data for most of the datasets collected. 

Second, the lack of paired primary-metastatic tumors prevented the inference of changes in 

TIL states with tumor progression. Third, the Visium platform does not provide single-cell 

resolution, potentially leading to the omission of diffuse T-cell infiltrates in the TIME. 

Therefore, further spatial profiling of TILs at cellular, subcellular resolution in larger cohorts 

could result in a comprehensive understanding of their spatial neighborhoods, multicellular 

modules, and signaling hubs74.

In summary, our work addresses several challenges faced by the research community, 

such as the need of a reliable TIL reference map and the need for an automatic tool 

to align/annotate T cells to a desired level of granularity, in order to facilitate T-cell 

therapy optimization, biomarker discovery, and clinical applications. Notably, our study 

sheds light on the potential involvement of TSTR cells in immunotherapy resistance, and this 

finding may guide future efforts in the development of biomarkers and therapeutic targets. 

Moreover, investigating stress response in T cells in the context of CAR T-cell therapy and 

TIL therapy could be an interesting avenue for future research. Finally, our findings may 

stimulate further research on stress response in other TIME cell types, which have promising 

translational potential.
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METHODS

scRNA-Seq data collection

Transcriptome data for T cells in 486 samples from 324 individuals across 27 scRNA-seq 

datasets (Fig. 1a–b; Supplementary Tables 1–2) were obtained, including 10 generated 

internally in the Advanced Technology Genomics Core (ATGC) facility at the University of 

Texas MD Anderson Cancer Center (MDACC), and the rest from public studies13,15,16,28,22–

34. The data accession numbers and references for public datasets13,15,16,18,22–34 including 

those generated by us are provided in Supplementary Table 1. Detailed clinical information 

on patients and samples is provided in Supplementary Table 2. For the collection of public 

datasets, we included all accessible datasets that were released on or before June 2020. 

Samples that passed quality control and datasets with at least 500 cells were selected. The 

normal bone marrow dataset from healthy donors was downsampled to 30,000 cells (about 

20% of the original size). Additional filters included quality filtering and doublets removal 

(as described in the following sections). In addition, six scRNA-seq datasets18,44,48,62–

64 from patients who received ICB therapy were included for validation purposes. The 

data accession numbers and references for these datasets18,44,48,62–64 and detailed clinical 

information are provided in Supplementary Table 15. Furthermore, as a demo of TCellMap, 

four additional scRNA-seq datasets were collected and processed. The data accession 

numbers and references for these datasets are provided in Supplementary Table 16.

scRNA-Seq data generation

We included in-house scRNA-seq data from unique patient cohorts, such as early-stage lung 

cancers with tumour and matched normal lung tissues, a large lymphoma cohort including 

follicular lymphoma (FL) and large B-cell lymphoma (LBCL), low-grade glioma (LGG) and 

aggressive glioblastoma (GBM) together with non-neoplastic brain tissues, HPV+ head and 

neck cancer (HNSC), paired primary-metastatic stomach adenocarcinomas (STAD) together 

with matched normal stomach tissues and PBMC samples, and a cohort of acute myeloid 

leukemia (AML) with longitudinal samples collected during ICB therapy. In addition, we 

generated scRNA-seq data on normal bone marrow (BM), PBMC samples, and reactive 

lymph nodes (LN) from healthy donors.

For these in-house cohorts, all datasets (except the STAD) were generated in the ATGC 

facility at MDACC. All experiments were compliant with the review board of MDACC, 

and the studies were conducted in accordance with the Declaration of Helsinki. For the 

LUAD (LC_1) study, as we previously described75, all samples were obtained under the 

waiver of consent from banked or residual tissues approved by MDACC internal review 

board (IRB) protocols (PA14–0077 and LAB90–020). For the rest of the cohorts, written 

informed consent was provided by all patients. Tumor specimens were collected with 

informed consent in accordance with the MDACC IRB-approved protocols (LN_1, LN_2, 

and BRCA_2: PA19–0420; GBM: 2012–0441; AML: PA12–0305; HNSC_2: 2019–1059, 

LAB02–039, and PA18–0782; LUAD LC_5: PA14–0276; OV: 2017–0264). For the STAD 

dataset, the study was approved by the Ethics Committee of Zhejiang Cancer Hospital 

(# IRB-2020–109) and all patients provided written informed consent to participate. All 

patients were at stage IV and treatment-naïve prior to sample collection. Fresh tumors 
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or biopsies were placed in 10% FBS RPMI 1640 media after collection and transferred 

to the laboratory for immediate processing. The tissues were minced and enzymatically 

digested37. Following red blood cell removal, cells were filtered, counted, and stained with 

SYTOX Blue viability dye (S34857, Life Technologies), followed by fluorescence-activated 

single cell sorting (FACS) to collect viable singlet cells. The methods for sample collection, 

processing, library preparation, and sequencing for our in-house cohorts were described 

in our previous studies14,22,23,31,68. We selected samples that passed quality control and 

datasets that had at least 500 cells. Additional filters included quality filtering and doublets 

removal (as described in the following sections).

scRNA-seq data integration, quality control, and data filtering

Raw scRNA-seq datasets generated in-house were pre-processed (demultiplex cellular 

barcodes, read alignment, and generation of gene count matrix) using Cell Ranger Single 

Cell Software Suite (v3.1.0, 10x Genomics). Quality control metrics were generated and 

evaluated. For previously published scRNA-Seq datasets, cell annotation tables (including 

quality control metrics, cell types, etc.) were obtained from the original publications. T 

cell clusters were selected based on either available cell type annotation or identification 

using Seurat (version 3.1.0)76 with default parameters and based on the unique expression 

of T-cell marker genes (e.g., CD3D, CD3G). Normalization was performed using Seurat, 

dividing the UMI counts of genes by the total UMI count of each cell, and scaling by 1e4 for 

computational efficiency. Count data, when unavailable, were replaced with CPM/TPM data. 

All normalized data was log2-transformed.

We integrated all datasets using the Seurat (version 4.0) rPCA approach. First, the T cell 

expression matrix of each dataset was normalized by NormalizeData function with default 

parameters. Next, we applied the FindVariableFeatures function with default parameters to 

detect HVGs for each normalized matrix. The SelectIntegrationFeatures function was then 

applied with nfeatures = 1000 to choose genes for integrating multiple datasets. We then 

removed cell cycle-related genes from the gene set to reduce the cell-cycle effect on data 

integration. The ScaleData and RunPCA functions were applied sequentially with parameter 

features set to these genes. After that, the matrix for each dataset was scaled and principal 

component analysis (PCA) was performed. We used the FindIntegrationAnchors function 

with reduction=”rpca” to find a set of anchors between all matrices, which were used to 

integrate the matrices with the IntegrateData function and parameter dims=1:50. Finally, we 

applied the ScaleData function to scale the integrated matrix with default parameters.

The data matrices were annotated with the sample, patient, and project IDs, and then 

filtered to remove likely cell debris and doublets, using similar approaches as described 

in our previous studies14,2,,23,31,68. Briefly, cells with low complexity libraries (in which 

detected transcripts are aligned to < 200 genes), likely dying or apoptotic cells (where 

>15% of transcripts are derived from the mitochondria), and cells with high-complexity 

libraries (in which detected transcripts are aligned to > 6,500 genes) were removed. UMAP 

(uniform manifold approximation and projection)77 plots were generated, and the expression 

of canonical marker genes was reviewed to further identify and clean doublets. T cells 

co-expressing discrepant markers of other cell lineages (e.g., cells in a T-cell cluster showed 
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expression of canonical marker genes of epithelial or B, myeloid, and stromal cell lineages) 

were further cleaned. For studies with paired single-cell V(D)J sequencing data generated 

on the same libraries, cells with both productive T cell receptors and B cell receptors or had 

≥2 productive T cell receptors were further removed. The filtering process was repeated to 

ensure high-quality cells, resulting in 308,048 cells for further analysis.

Batch effect evaluation and correction

We evaluated the significance of batch effects and the performance of two commonly used 

batch correction methods, harmony71 and reciprocal principal component analysis (rPCA)72, 

using the silhouette score80. The score measures how similar an object is to its own cluster 

(batch) compared to other clusters (batches) and ranges from −1 to +1, where a high value 

indicates that the object is well-matched to its own cluster (batch), and poorly matched to 

neighboring clusters (batches). We computed the silhouette score for each cell using the 

following formula. For cell i ∈ BI(cell i in batch BI), let

a i = 1
BI − 1 ∑j ∈ BI, i ≠ j d i, j

be the mean distance between i and all other data points in the same cluster, where BI  is the 

number of points belonging to batch BI, and d i, j  is the distance between cell i and j in the 

batch BI. Let

b i = min
J ≠ I

1
BJ

∑j ∈ BJ d i, j

be the smallest mean distance of i to all points in any other cluster, of which i is not a 

member. The cluster with this smallest mean dissimilarity is said to be the “neighboring 

cluster” of i because it is the next best-fit cluster for point i. Then the silhouette score of cell 

i is

s i =
b i − a i

max a i , b i , BI > 1

0 , if BI = 1
.

HVGs were identified using the FindVariableFeatures function of Seurat69, and PCA was 

performed using the top 2,000 HVGs. Harmony and rPCA were applied to remove batch 

effects in the PCA space when clustering major cell lineages, and each cell’s silhouette 

score was computed as described previously74. The average score of all data points of 

a cluster was used to quantitatively assess overall batch mixing. For major cell types, 

CD4+ and CD8+ T cells, the silhouette scores were computed using the 20% downsampled 

data, and this process was repeated 20 times. The silhouette scores obtained from the 

downsampling analysis were then aggregated and averaged. Consistent with the results of 

a recent benchmark study of batch-effect correction methods for scRNA-seq data74, the 

Seurat rPCA approach72 showed better performance (lower silhouette score) than harmony 
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(Supplementary Fig. 1a), displaying a good ability to mix batches while preserving cell type 

purity.

Unsupervised cell clustering and subclustering analysis

HVGs were further filtered to remove mitochondrial genes, ribosomal genes, and T 

cell receptor genes that could potentially influence cell clustering results. The Shared 

Nearest Neighbor (SNN) graph was constructed using the FindNeighbors function, and 

unsupervised clustering was performed with the FindClusters function. Clustering analysis 

was conducted separately on cycling and non-cycling cells due to their distinct expression 

of cell proliferation markers25. Multiple rounds of clustering and subclustering analysis 

were performed to identify major cell types (e.g., CD4 T cells, CD8 T cells, NKT cells, 

MAIT cells, proliferative T cells) and distinct cell transcriptomic states within each major 

cell type. UMAP70 was performed with the Seurat function RunUMAP for dimensionality 

reduction and 2-D visualization of the single cell clusters. The number of significant 

principal components (PCs) was determined based on the elbow plot generated with 

the ElbowPlot function of Seurat (Supplementary Fig. 1c). ROGUE75, an entropy-based 

statistic, was applied to quantify the purity of identified cell clusters. Various resolution 

and PC parameters for unsupervised clustering were evaluated, and the resulting UMAP 

plots and cluster marker genes were reviewed to determine the optimal number of clusters 

and guide the proper clustering of our scRNA-seq datasets (Supplementary Fig. 2a and 3a). 

For CD4 and CD8 T cells, the first 50 PCs, calculated using 1,978 HVGs identified by 

Seurat were used for unsupervised clustering with the resolution set to 0.3, yielding a total 

of 14 and 12 cell clusters, respectively (Figs. 2a and 3a). For unconventional T cells, the 

first 5 PCs, and 1,792 HVGs identified by Seurat were used for unsupervised clustering 

with a resolution set to 0.3, yielding a total of 5 cell clusters (Extended Data Fig. 4a). 

For proliferative T cells, the first 15 PCs, and 1,748 HVGs identified by Seurat were used 

for unsupervised clustering with a resolution set to 0.3, yielding a total of 8 cell clusters 

(Extended Data Fig. 4c).

Determination of major T cell types and cell states

To define major cell types and cell states, we integrated information from multiple 

steps. First, we identified differentially expressed genes (DEGs) using the FindAllMarkers 
function in Seurat R package69 for major cell types. DEG lists were filtered based on the 

following criteria: expressed in at least 20% of cluster cells; expression fold change >1.2, 

and the FDR q-value <0.05. Second, we generated feature and bubble plots for top 50 DEGs 

and immune cell markers (Supplementary Tables 3, 5, 7–10). Third, gene signature scores 

were calculated for curated gene sets related to T cell functional states (Supplementary 

Tables 4 and 6) for each cell cluster of CD4/CD8 T cells using Seurat’s AddModuleScore 
function. Finally, we integrated multiple layers of information, including cluster distribution, 

cluster-specific genes (particularly the top 50 DEGs), expression of cluster marker genes and 

canonical immune cell markers, as well as functional gene signatures and carefully reviewed 

by our multidisciplinary team, along with by an extensive literature search to carefully 

annotate cell transcriptomic states.

Chu et al. Page 15

Nat Med. Author manuscript; available in PMC 2024 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Single-cell trajectory inference

We applied Monocle3 (version 0.2.0)47 to reconstruct the cellular differentiation trajectory 

of CD8 and CD4 T cell subsets. Specifically, the clusters were divided into large, well-

separated partitions using the function cluster_cells and fitted a principal graph within each 

partition using the function learn_graph. The principal graph, displayed on the UMAP as 

“skeleton lines”, indicating the differentiation trajectories. Based on prior knowledge, we 

selected the naïve T cell cluster CD8_c3 and CD4_c6 as the root for the trajectory for CD8 

and CD4 T cells, respectively. We ran the learn_graph function with Euclidean distance ratio 

set to 0.1 and 0.2, minimal branch length set to 15 and 30, and geodesic distance ratio set to 

0.8 and 0.3 to build the CD8 and CD4 T cell trajectories, respectively.

Quantification of tissue enrichment of T cell subsets

We utilized the Ro/e approach, as previously described8 to assess the enrichment or depletion 

of each T cell subset in specific tissue types (or cancer types/subtypes). Briefly, we 

calculated the ratio of observed cell number to random expectation using a chi-square test 

in each cluster across different tissue groups (or cancer types/subtypes). An Ro/e value > 1 

indicates enrichment, while an Ro/e value < 1 indicates depletion of cells in a specific tissue 

or cancer types/subtype.

Quantifying T cell subset transcriptome similarity and inferring co-occurrence patterns

To evaluate the phenotypic relationships and transcriptome similarity among 31 non-

proliferative T cell subsets identified in this study, we employed unsupervised hierarchical 

cluster analysis based on the Euclidean distance matrix to generate a dendrogram. 

Additionally, we conducted sample-level Spearman correlation analysis of cell cluster 

frequencies across distinct tissue groups (healthy, uninvolved normal, primary tumor, and 

metastatic tumor tissues) to investigate the co-occurrence patterns of various T cell states in 

both normal and tumor tissues, taking into account both positive and negative associations.

T cell deconvolution analysis and correlation of T cell subsets with clinical and 
histopathological variables in scRNA-seq, TCGA, and CPI1000+ cohorts

To examine the correlation between T-cell states and clinical variables, we first collected 

corresponding information for our scRNA-seq, TCGA, and CPI1000+ cohorts56. Clinical 

and histopathological data for scRNA-seq cohorts were downloaded from original studies 

(Supplementary Table 2). Bulk mRNA-seq expression data (normalized) for TCGA cohorts 

were downloaded from the NCI Cancer Genomic Data Commons (NCI-GDC: https://

gdc.cancer.gov). Clinical annotation, survival data and the tumour mutational burden (TMB) 

was obtained from previous TCGA Pan-cancer studies76,77. Clinical data for the CPI1000+ 

cohorts were obtained from the original study56, and mutation quality characteristics and 

bulk expression data were kindly shared by Drs. Litchfield and Swanton. A total of 1, 008 

patients, 562 patients with genomic data, expression data, and clinical response data, were 

included in the analysis. To analyze TCGA cohorts, samples with low T cell frequencies 

were identified using MCP-counter78 based on MCP-counter-inferred T cell gene signature 

scores, and the bottom 25 % samples were excluded from subsequent T cell deconvolution 

analysis (Supplementary Table 13).
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T cell deconvolution was performed on normalized bulk expression data from tumour 

samples of TCGA cancer types and their genotypic/molecular subtypes (n = 52) as well 

as those of samples of the CPI1000+ cohorts using unique gene signatures from 9 T cell 

states in this study (Supplementary Table 12). The gene signatures were extracted from 

the top 30 most significant DEGs followed by additional filtering to ensure the uniqueness 

of the gene signatures. For T-cell deconvolution analyses in both cohorts, we included 

only patients with available bulk expression data. Spearman’s correlation analysis was 

applied to quantify correlations between levels of signature gene expression and tumour 

mutation burden (TMB) across cohorts of main cancer types as well as their genotypic/

molecular subtypes, followed by FDR (false discovery rate) correction of resulting p-values 

for multiple hypothesis testing. For survival analysis, the Cox proportional hazards model 

was fit using patient groups dichotomized by the median level of signature expression (high 

or low). Similarly, as described above, the p-values were adjusted from multiple testing.

T cell reference mapping using the R script TCellMap

We developed an R script (TCellMap.R, https://github.com/Coolgenome/TCM) based on 

the Seurat R package (v4) to map T cells from a query dataset to our T cell maps. The 

bioinformatics flow involves extracting T cells (as described in the section “scRNA-seq data 
integration, quality control and data filtering”), normalizing and scaling query, identifying 

HVGs, removing cell cycle-related genes from DEGs (Supplementary Tables 3 and 5) and 

HVGs, performing PCA, and finding transfer anchors by FindTransferAnchors function 

with reference.reduction=”rpca” on intersection of DEGs and HVGs, mapping query data to 

reference data by MapQuery function with default parameters, and automatically annotating 

cells, as shown in Extended Data Fig. 10. The results could be exported as a plain text or 

visualized in UMAP plots. To evaluate the method’s effectiveness, we performed leave-one-

out cross-validation on annotated single-cell datasets with ≥ 5,000 T cells. The prediction 

accuracy was computed by comparing the automatically assigned T cell states with their 

original cell labels (Extended Data Fig. 10b). Additionally, we demonstrated the T cell 

reference mapping by processing 4 additional query datasets (as listed in Supplementary 

Table 16) using the methods described above (Extended Data Fig. 10c).

Detection of TSTR cells in situ by RNAscope

RNA in situ hybridization is a method to detect target RNA within intact cells. RNAscope 

2.5 LS Reagent Kit with red chromogen (ACDBio, cat. no. 322150) was used on a 

Leica Bond RXm automated stainer. The procedure recommended in the user manual was 

followed including a 15-minute 95°C antigen retrieval in Tris-EDTA buffer, a 15-minute 

protease digestion, and subsequent one-minute probe hybridization. The Hs-HSPA1B target 

probe (ACDBio, cat. no. 1101828-C1) was run alongside positive Hs-PPIB (ACDBio, cat. 

no. 313908) and negative dapB (ACDBio, cat. no. 312038) control probes. Stained slides 

were dried at 60°C for 30 minutes and mounted using VectaMount Permanent Mounting 

Medium (Vector Laboratories, cat. no. H-5000).

Detection of TSTR cells in situ using the CosMx SMI datasets

To verify the detection of TSTR cells in situ, we analyzed the public CosMx Spatial 

Molecular Imager (SMI, NanoString) datasets, 60 including five non-small-cell lung cancer 
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(NSCLC) samples (eight tissue sections) and one hepatocellular carcinoma (HCC) sample 

(one tissue section) (https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-

dataset/). The methods for data processing, cell segmentation, and cell type identification 

were described in the original study60. Cellular spatial contexts (x, y coordinates), along 

with transcriptome data and cell type annotations were extracted, then co-expression patterns 

of T cell markers and heat shock genes in the same tissue section were examined. Spatial 

locations of these transcripts were mapped to the corresponding cells (based on the x, y 
coordinates) to confirm the co-expression of CD3D, HSPA1A, and HSPA1B in the same 

cells at cellular and subcellular resolutions across all tissue sections.

Collection and generation of spatially resolved transcriptomics (SRT) data

We downloaded four published SRT datasets, including breast cancer (BC)79, Melanoma80, 

cutaneous squamous cell carcinoma (CSCC) 82, and clear cell renal cell carcinoma (ccRCC) 
91. The BC and melanoma datasets were generated using the spatial transcriptomics 

technology, and the CSCC and ccRCC datasets were generated using the Visium spatial 

platform (10X Genomics). We also generated SRT data on lung adenocarcinoma (LUAD) 

and gastric adenocarcinoma (GAC) samples using the Visium spatial platform as described 

in our previous study69. Briefly, the FFPE tissue blocks with DV200 >50% were selected 

for sectioning. Appropriate-sized sections were placed within the frames of capture areas on 

the Visium Spatial Gene Expression Slide (PN-1000188, 10X Genomics) with one section 

in each capture area (6.5 × 6.5 mm). Tissues were deparaffinized, stained, and decross-

linked, followed by probe hybridization, ligation, release, and extension. Visium spatial gene 

expression FFPE libraries were constructed with Visium Human Transcriptome Probe Kit 

(PN-1000363) and Visium FFPE Reagent Kit (PN-1000361) following the manufacturer’s 

guidance, and sequenced on the Illumina NovaSeq 6000 platforms to achieve a depth of at 

least 75,000 mean read pairs and 2,000 median genes per spot.

SRT data processing and analysis, mapping the spatial locations of T cells and TSTR cells

We obtained gene expression count matrices and histology images for the four public 

SRT datasets from their original studies79–82 and processed our in-house data using the 

Space Ranger pipeline (v-1.3.0, 10x Genomics) with default parameters. The processed 

data were then analyzed using the TESLA python package v1.2.2 (https://github.com/

jianhuupenn/TESLA). We applied TESLA to map the spatial locations of T cells directly 

on histology images and to detect the tissue border by the “cv2_detect_contour” function 

with parameter “apertureSize=5, L2gradient=True”, then enhance gene expression at the 

super-pixel level within the tissue border by the “imputation” function with parameter “s=1, 

k=2, num_nbs=10”. Next, we used the “annotation” function to annotate cell types. T cells 

were identified based on their expression of T cell markers (e.g., CD3D, CD3G). The 

“visualize_annotation” function was then applied to project the spatial locations of T cells 

directly on histology images. For each tissue section, regions with detectable T cell signals 

were pathologically reviewed and analyzed at high magnification to confirm lymphocyte 

presence (Extended Data Figs. 7 and 8). Next, we examined the heat shock gene (e.g., 

HSPA1A and HSPA1B) expression in spots with T cell signals and further mapped the 

spatial locations of TSTR cells. In addition, to examine whether the presence of TSTR cells 

in the TIME was associated with tumor hypoxia, we curated a list of transcription factors 
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(TFs) that are reported to be activated under hypoxic conditions61 including HIF1A, EPAS2, 

RELA, RELB, NFKB1, NFKB2, CREB1, and NFE2L2. In the same manner, as described 

above, we projected hypoxia-related gene activity on histology image and then overlaid the 

hypoxia signal and the spatial locations of TSTR cells on the same images using a custom 

script (https://github.com/Coolgenome/TCM/blob/main/res_largerT.py#L230).

To investigate the relationship between heat shock gene expression and hypoxia within 

the TIME, we leveraged the Seurat (v4)72 rPCA workflow to correct the potential batch 

effect in each Visium dataset. This was conducted in the manner described in the scRNA-

seq data integration, quality control, and data filtering section. We then applied Seurat’s 

dimensionality reduction, clustering, and visualization workflow with default parameters, as 

detailed in the Determination of major T cell types and cell states section. Through this 

workflow, we identified clusters of spots enriched with T cells based on their marker gene 

expression, and performed Spearman correlation analysis to assess the association between 

the expression levels of heat shock genes and 8 hypoxia-related TFs within T cell-enriched 

spots. To ensure statistical significance, we performed Holm adjustment on the resulting 

p-values.

Collection of scRNA-seq data from patients received ICB therapy, data processing and 
analysis

We collected additional scRNA-seq data from 247 samples from 133 patients across 6 

cohorts and 4 cancer types to evaluate the clinical relevance of T cell subsets including 

TSTR cells, in the context of ICB therapy. The data accession numbers and references for 

these datasets and detailed clinical information are provided in Supplementary Table 15. 

The scRNA-seq cohort from Yost et al.18 was included in the original data collection used 

to build the T-cell atlas. For the scRNA-seq datasets from Liu et al. 84 (GSE179994) and 

Bi et al.62 (SCP1288), CD4 and CD8 T cells were extracted based on cell type annotation 

provided by the original studies. For scRNA-seq datasets from Caushi et al.63 (GSE173351) 

and Zhang et al. 64 (GSE169246) without a cell type annotation, read count matrices 

were merged using Seurat, followed by quality filtering and batch effect correction as 

described in the section “scRNA-seq data processing, quality control and data filtering”, and 

unsupervised cell clustering analysis to identify and extract CD4 T and CD8 T cells. For 

the scRNA-seq dataset from Caushi et al.63 (GSE173351), the original study defined tumor-

specific and viral-specific CD8+ TCR clonotypes by the MANAFEST and viraFEST assay, 

respectively. We integrated their TCR clonotype data and scRNA-seq data and identified 

CD8 T cells that were defined as tumor-specific or viral-specific.

TCellMap (https://github.com/Coolgenome/TCM) was then applied to uniformly align T 

cells extracted from each scRNA-seq dataset to the CD4 and CD8 T cell maps built in this 

study in the same manner as described in the section “T cell reference mapping using the 

R script TCellMap” (Extended Data Fig. 10). Annotation was added, and the abundance of 

each T cell subset was then quantified. For each T cell subset, we calculated Ro/e values 

to quantify their tissue prevalence between groups. For group-level analysis based on Ro/e 

values, only T cell subsets with ≥ 100 total cells were included (≥ 30 tumor- or viral-specific 

CD8 T cells for the scRNA-seq dataset from Caushi et al.63). In addition to Ro/e values, 
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we also measured the expression levels of heat shock genes (e.g., HSPA1A and HSPA1B) in 

all CD4 and CD8 T cells and compared their expression levels between groups. The clinical 

response information for each dataset (Supplementary Table 15) was defined by the original 

studies. Comparison analysis was performed at multiple levels, such as between responsive 

(R) and non-responsive (NR) tumors, between different time points (e.g., pre- vs. post-ICB), 

and/or tissue types (e.g., primary vs. metastatic; ICB-naïve vs. ICB-exposed) for cohorts 

with available metadata.

Additional statistical analyses

In addition to the bioinformatics approaches and statistical analyses described above, all 

other statistical analyses were performed using statistical software R v3.6.0. To compare the 

fractions of different T cell clusters and subclusters across tissue groups in our single-cell 

studies (box plots in main and supplementary figures), and to compare expression levels 

of gene signatures across patient groups defined by PD-L1 expression (Supplementary Fig. 

8b), the Games-Howell pairwise test was applied to calculate the p-values, followed by FDR 

correction for multiple hypothesis testing. For cell fraction comparisons across tissue or 

patient groups, samples that had < 200 T cells were excluded. Sex was not considered in the 

study design because there was insufficient statistical power to perform sex-specific analyses 

for most of the scRNA-seq datasets included in this study. All statistical significance 

testing in this study was two-sided unless specified, and results were considered statistically 

significant at P-values or FDR q-values < 0.05. When a p-value reported by R (v3.6.0) was 

smaller than 2.2e-16, it was reported as “P < 2.2 × 10−16”.
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Extended Data

Extended Data Fig. 1. Major T cell types.
a) Global UMAP of all T cells and major T cell types. The subpopulations of CD4, CD8, 

proliferative, and unconventional T cells were further separated and defined by subsequent 

clustering analysis. b) Bubble plot showing the average expression levels and cellular 

fractions of representative marker genes across six major T cell types.
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Extended Data Fig. 2. Characterization of CD8 T cell clusters.
a) Bubble plot showing the average expression levels and cellular fractions of selected 

marker genes in 14 defined CD8 T cell clusters. The complete list of the top 50 most 

significant differentially expressed genes (DEGs) is provided in Supplementary Table 3. b) 

Monocle 3 trajectory analysis of CD8 T cell differentiation demonstrating multiple possible 

routes. c) The UMAP and density plots before and after downsampling analysis. UMAP 

(top) and density plots (bottom) of CD8 T cells demonstrating T cell distribution across four 

main tissue groups. High relative cell density is shown as bright magma. For CD8 T cells, 

the downsampled cell number is 11,592 cells for each tissue group. d) Box plot showing 

cell fractions of CD8 T cell subsets across four tissue groups. Each dot represents a sample. 

H, normal tissues from healthy donors; U, tumor-adjacent uninvolved tissues; P, primary 
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tumor tissues; M, metastatic tumor tissues. The one-sided Games-Howell test was applied to 

calculate the p values between those four tissue groups (n = 20, 51, 156, 39), followed by 

FDR (false discovery rate) correction. FDR-adjusted p value: *≤0.05; **≤0.01; ***≤0.001; 

****≤0.0001. Boxes, median ± the interquartile range; whiskers, 1.5× interquartile range.

Extended Data Fig. 3. Characterization of CD4 T cell clusters.
a) Bubble plot showing marker gene expression across 12 defined CD4 T cell clusters. 

The complete list of the top 50 most significant DEGs is provided in the Supplementary 

Table 5. b) The UMAP and density plots before and after downsampling analysis. UMAP 

(left) and density plots (right) of CD4 T cells demonstrating T cell distribution across four 

main tissue groups. High relative cell density is shown as bright magma. For CD4 T cells, 
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the downsampled cell number is 10,703 cells for each tissue group. c) Box plot showing 

cell fractions of 12 CD4 T cell subsets across four tissue groups. Each dot represents a 

sample. H, normal tissues from healthy donors; U, tumor-adjacent uninvolved tissues; P, 

primary tumor tissues; and M, metastatic tumor tissues. The one-sided Games-Howell test 

was applied to calculate the p values between those four tissue groups (n = 20, 53, 158, 

39), followed by FDR (false discovery rate) correction. FDR-adjusted p value: *≤0.05; 

**≤0.01; ***≤0.001; ****≤0.0001. Boxes, median ± the interquartile range; whiskers, 

1.5× interquartile range. d) Monocle 3 trajectory analysis of CD4 T cells. Cells are color 

coded for their corresponding pseudotime. e) Ridge plots show the distribution of inferred 

pseudotime across CD4 T cell clusters.

Extended Data Fig. 4. Characterization of unconventional T cells and proliferative T cells.
a) UMAP view of 5 innate T cell clusters. b) Bubble plot showing marker gene expression 

across 5 innate T cell clusters. The complete list of top 50 most significant DEGs is provided 

in the Supplementary Table 9. c) UMAP view of 8 proliferative T cell clusters. d) Bubble 
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plot showing marker gene expression across 8 proliferative T cell clusters. The complete 

list of top 50 most significant DEGs is provided in the Supplementary Table 10. e) Sankey 

diagram showing the mapping of four proliferative CD8 subsets to the rest of CD8 T 

cell clusters after regressing out cell proliferative markers. f) Sankey diagram showing the 

mapping of two proliferative CD4 subsets (P_c6_Treg and P_c1) to the rest of CD4 T cell 

clusters after regressing out cell proliferative markers.

Extended Data Fig. 5. Correlations with tumor mutational burden (TMB) and patient survival in 
TCGA cohorts.
a) Correlation between the abundance of 9 T cell states (estimated via T cell deconvolution 

analysis using unique gene signatures in Supplementary Table 12) and TMB across 52 

cancer types and their genotypic/molecular subtypes (labeled on the left with numbers 

indicating sample size). A total of 11,051 TCGA tumors with bulk RNA-seq data available 

were included and samples with low abundance of T cells (the bottom 25% of the ranked 

data) as estimated using MCP-counter were excluded (Supplementary Table 13). TMB and 

leukocyte fractions were from TCGA pan-cancer study by Thorsson et al.77. The annotation 

of cancer types and their genotypic/molecular subtypes was adopted from our recent study 

by Han et al. (Nature Communication, 12, 5606, 2021). The size of the rectangle is 

proportional to statistical significance (p-value, two-sided spearman correlation test, FDR-

adjusted) and the color intensity is proportional to Spearman correlation coefficient (rho). 
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Boxes, median ± interquartile range; whiskers, 1.5× interquartile range. b) Correlation 

with patient overall survival (OS). The size of the rectangle is proportional to statistical 

significance (FDR-adjusted p-value) and the color intensity is proportional to log scaled 

hazard ratio (HR).

Extended Data Fig. 6. Correlation with patient survival in the CPI1000+ cohorts.
Association with ICT response in three large cohorts of cancer patients from the CPI1000+ 

cohort with both RNA sequencing and clinical response data available are shown. Samples 

predominantly represented baseline pretreatment specimens, treated with single-agent 

immune checkpoint inhibitor (CPI) and without prior CPI treatment. Patients of the bladder 

cancer cohort (Bladder_U_MAR) and renal cancer cohort (Renal_U_MCD) received single-

agent anti-PD-L1 therapy and patients of the combined melanoma cohort received either 

single-agent anti-CTLA-4 or anti-PD-1 therapy. More details on the clinical data (for 

example, drug treatment and biopsy timepoint, radiological response) of these patients can 
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be found in the Supplementary Table 1 of the original study by Litchfield et al.56. Immune 

deconvolution was performed on normalized gene expression data from the original study 

using the 9 gene signatures included in the Supplementary Table 12. For each cohort, we 

assessed the radiological response rates in patient groups with all the different possible 

combinations of T cell state gene signature expression. Patient groups showing the highest 

ICT radiological response rates (among top 6) or the lowest response rates (among bottom 

6) are shown. Sig_1, T cell state 1; Sig_2, T cell state 2; Res%, response rate. Hi, high 

expression group; lo, low expression group. Hi and lo groups were split based on the 

group median value of gene signature expression. Recurrently presented gene signatures are 

highlighted in color.
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Extended Data Fig. 7. Detection of in situ HSPA1A and HSPA1B expression in tumor-infiltrating 
T cells in NSCLC and HCC samples by CosMx.
Two consecutive tissue sections from a NSCLC sample (sections ‘Lung 5_Rep1’ and ‘Lung 

5-Rep3’) and one tissue section from a hepatocellular carcinoma (HCC) sample (section 

‘CancerousLiver’) were profiled. (Column 1) Cells in physical locations (x, y coordinates). 

Color denotes cell type. Spatial mapping of CD3D (Column 2), HSPA1A (Column 4, Row 

1/3/5), and HSPA1B (Column 3, Row 1/3) expression in T cells (note that, the HCC data 

does not include HSPA1B). (Column 2, Row 2/4/6) A zoom-in view of a representative 

area of their corresponding images in Column 1 showing lymphocyte aggregates enriched 

with T cells. (Column 3, Row 2/4/6) a zoom-in view of their corresponding images in 

Column 2 showing subcellular localization of CD3D, HSPA1B, and/or HSPA1A transcripts. 

(Column 4, Row 2/4/6) a further zoom-in view of their corresponding images in Column 

3 showing co-localization of CD3D, HSPA1B, and/or HSPA1A transcripts in the same 

cells. Cell segmentation was done by the original study60. The outlines of cell nuclei 

were determined based on DAPI staining and the cell boundaries were determined based 

on morphology markers for membrane (for example, CD298) combined with a machine 

learning approach60.
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Extended Data Fig. 8. Co-mapping of TSTR cells and hypoxia-related gene expression using 
spatial transcriptomics.
(Top row) Mapping of TSTR cells (in red) on the histology image based on corresponding 

spatial transcriptomics data generated from the same tissue section. (Rest of the rows) spatial 

co-mapping of TSTR cells (in red) and hypoxia-related gene expression (in blue, the darker 

the color, the higher the level of gene expression) in the same regions as shown in the 

top row. BRCA, breast cancer; CSCC, cutaneous squamous cell carcinoma; GAC, gastric 

adenocarcinoma; ccRCC, clear cell renal cell carcinoma; LUAD, lung adenocarcinoma.
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Extended Data Fig. 9. Pan-cancer detection of TSTR cells and Co-mapping of TSTR cells and 
hypoxia-related gene expression using spatial transcriptomics.
Extra representative tissue sections of 4 cancer types are shown. (Top row) H&E stained 

tissue images. (Second row) Mapping of T cells and (third row) the TSTR cells on the 

same histology images (GAC, BRCA, ccRCC, CSCC) or a high-magnification image 

(ccRCC). GAC, gastric adenocarcinoma; BRCA, breast cancer; ccRCC, clear cell renal 

cell carcinoma; CSCC, cutaneous squamous cell carcinoma. (Rest of the rows) spatial 

co-mapping of TSTR cells (in red) and hypoxia-related gene expression (in blue, the darker 

the color, the higher the level of gene expression) in the same regions as shown in the top 

row.
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Extended Data Fig. 10. The workflow of TCellMap.
a) Schematic view of the bioinformatic flow of TCellMap, created with BioRender.com. b) 

Leave-one-out cross-validation of the performance of TCellMap using scRNA-seq datasets 

included in this study. Scatter plot showing the accuracy (ACC) of T cell state prediction. A 

total of 24 scRNA-seq datasets with ≥5,000T cells were selected (x axis), and the prediction 

accuracy was calculated by comparing T cell states automatically assigned for 32 states of 

the 5 major cell types using the reference maps with that manually annotated by this study. 

The size of the bubble corresponds to the number of T cells in each scRNA-seq dataset. c) 

Visualization of the output of TCellMap. Four scRNA-seq datasets that were not included in 

original data collection of this study were used as the query datasets. UMAP views of CD8 

(top) and CD4 (bottom) T cells mapped in each query dataset. Cell clusters are color coded 

in the same way as in Fig. 2a (CD8 T cells map) and Fig. 3a (CD4 T cell map). LUAD, lung 

adenocarcinoma; CRC, colorectal carcinoma; HCC, hepatocellular cell carcinoma; HNSC, 

head and neck cancer. The gene expression count matrices were downloaded from the Gene 

Expression Omnibus (GEO) database and the accession codes (GSE#) are labeled for each 

dataset. Further details of each query dataset are provided in the Supplementary Table 16.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

A detailed description of data availability including data sources and accession numbers 

of the scRNA-seq datasets included in the original data collection was provided in 

Supplementary Tables 1 and 2. In this study, we utilized 10 newly generated scRNA-

Chu et al. Page 32

Nat Med. Author manuscript; available in PMC 2024 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



seq datasets (labeled as “in-house” Supplementary Tables 1, column I). Specifically, 

the AML dataset31 can be downloaded from the European Genome-Phenome Archive 

(EGA) database under the accession number EGAD00001007672. The lung cancer (LC_1) 

dataset can be downloaded from EGA under the accession number EGAS00001005021. 

The lymphoma dataset (LN_2)23 can be downloaded from EGA under the accession 

number EGAS00001006052. The scRNA-seq data generated on PBMC samples from 

healthy donors (PBMC_3) can be downloaded from EGA under the accession number 

EGAD00001006994. The GBM datasets can be downloaded from the Gene Expression 

Omnibus (GEO) database under the accession number GSE222522. The breast cancer 

(BRCA_2) dataset, the lung cancer (LC_5) dataset, the ovarian cancer (OV) dataset, and 

the STAD dataset can be downloaded from GEO under the accession number GSE222859. 

The scRNA-seq data generated on reactive lymph nodes from healthy donors (LN_1)23 

can be downloaded from GEO under the accession number GSE203610. For the six 

scRNA-seq datasets generated from patients who received ICB therapy, their data accession 

numbers, references, and detailed clinical information are provided in Supplementary Table 

15. Specifically, the dataset generated by Yost et al.18 can be downloaded from GEO 

under the accession number GSE123814. The dataset generated by Liu et al.44 can be 

download from GEO under the accession number GSE179994. The dataset generated by 

Caushi et al.63 can be downloaded from GEO under the accession number GSE173351. 

The dataset generated by Zhang et al. can be downloaded from GEO under the accession 

number GSE169246. The dataset generated by Bi et al.62 can be downloaded from 

the single cell portal of Broad Institute under the accession number SCP1288. The 

dataset generated by Bassez et al.48 can be downloaded from EGA under the accession 

number EGAS00001004809. For the four scRNA-seq datasets used as a demonstration of 

TCellMap, their data accession numbers and references are provided in Supplementary 

Table 16. The CosMx SMI datasets generated on NSCLC60 and HCC samples can 

be downloaded from https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-

dataset/. For Visium spatial transcriptomics datasets used in this study, the expression count 

matrices for the BRCA study79 can be downloaded from https://github.com/almaan/her2st. 

The melanoma Visium data81 can be downloaded from https://www.spatialresearch.org/

resources-published-datasets/doi-10-1158-0008-5472-can-18-0747/. The CSCC Visium data 

can be obtained from GEO under the accession number GSE144240. The ccRCC Visium 

data82 can be obtained from GEO under the accession number GSE175540. The LUAD 

Visium data68 can be obtained from EGA under the accession numbers EGAS00001005021. 

Further information and requests should be directed to and will be fulfilled by the 

corresponding author Dr. Wang (LWang22@mdanderson.org). All requests for data and 

materials will be promptly reviewed by The University of Texas MD Anderson Cancer 

Center to verify if the request is subject to any intellectual property or confidentiality 

obligations. Any data and materials that can be shared will be released via a Material 

Transfer Agreement.
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Figure 1. Pan-cancer analysis of T cells - data collection and major T cell types.
a) Schematic depicting the study design (created with BioRender.com). We used 17 

published and 10 in-house datasets. Detailed information on cohorts and samples is provided 

in Supplementary Tables 1 and 2. b) Bar graphs showing summary statistics for the number 

of cells, samples, and subjects collected by organ (left) and their tissue compositions (right). 

Tissue color codes are consistent with panel a. c) Pie chart depicting the cellular frequencies 

of the 6 major T cell types in all analyzed samples. d) Bar graphs displaying relative cellular 

fractions of the 6 major T cell types across various cohorts of the four main tissue groups. 

In our study, the analyzed metastatic tumors were biopsies taken from metastases. BM, 

bone marrow; LN, lymph node; PBMC, peripheral blood mononuclear cell. For uninvolved 

normal tissues and metastatic tumors, their corresponding organs/sites of sample collection 

are labeled. Cancer types are labeled using the TCGA study abbreviations.
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Figure 2. Transcriptional diversity of CD8 T cells.
a) The UMAP view of 14 CD8 T cell clusters. b) Marker gene expression across defined 

T cell clusters. Bubble size is proportional to the percentage of cells expressing a gene 

and color intensity is proportional to average scaled gene expression. c) Bubble plot and 

d) ridge plot showing key marker gene expression between the two CD8 T cell clusters. e) 
Heatmap illustrating expression of 19 curated gene signatures across CD8 T cell clusters. 

Heatmap was generated based on the scaled gene signature scores. f) Expression of 4 

representative gene signatures selected from e). g) Monocle 3 trajectory analysis of CD8 

T cell differentiation revealing three main divergent trajectories. Cells are color coded for 

their corresponding pseudotime. h) Two-dimensional plots showing expression scores for 

3 representative gene signatures in cells of paths 1 (blue), path 2 (yellow), and path 3 
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(pink), respectively, along the inferred pseudotime. i) UMAP view of CD8 T cell states 

(left) and cell density (right) displaying CD8 T cell distribution across 4 main tissue groups. 

Downsampling was applied, and 11,592 cells were included for each group. High relative 

cell density is shown as bright magma. j) Distribution of CD8 T cell states across tissue 

groups. Top bar plot showing the relative proportion of cells from 4 different tissue types 

for each CD8 T cell subset. Heatmap showing tissue prevalence estimated by Ro/e. k) 
Box plots showing cellular fractions of three CD8 T cell subsets across tissue groups. 

Each dot represents a sample. Pie charts displaying tissue composition. H, normal tissues 

from healthy donors; U, tumour adjacent uninvolved tissues; P, primary tumour tissues; and 

M, metastatic tumour tissues. The one-sided Games-Howell test was applied to calculate 

the p values between tissue types (sample number n = 20, 51, 156, 39), followed by 

FDR (false discovery rate) correction. FDR adjusted p-value: *≤0.05; **≤0.01; ***≤0.001, 

****≤0.0001. For CD8_c1, p = 7.27e-10 (H vs. P), p = 4.21e-6 (H vs. M), p = 2.84e-4 

(U vs. M), p = 8.38e-4 (P vs. M). Boxes, median ± interquartile range; whiskers, 1.5× 

interquartile range.
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Figure 3. The landscape of CD4 T cells.
a) UMAP view of 12 CD4 T cell clusters. b) Bubble plot showing marker gene expression 

across defined clusters. More marker genes are shown in Extended Data Fig. 3a and a list 

of the top 50 most significant DEGs are provided in Supplementary Table 5. c) Heatmap 

displaying expression of 16 curated gene signatures (as listed in Supplementary Table 6) 

across CD4 T cell clusters. d) UMAP view of CD4 T cell states (top) and cell density 

(bottom) demonstrating CD4 T cell distribution across 4 tissue groups. Downsampling was 

applied, and 10,703 cells were included for each group. High relative cell density is shown 

as bright magma. e) Distribution of CD4 T cell states across different tissues. (Top) bar plot 

showing the relative proportion of cells from 4 tissue types and (bottom) heatmap showing 

tissue prevalence estimated by Ro/e. f) Box plots comparing cellular fractions of three 
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CD4 T cell subsets across tissue types. Each dot represents a sample. Pie charts displaying 

tissue composition. The one-sided Games-Howell test was applied to calculate the p values 

between those 4 tissue types (sample number n = 20, 53, 158, 39), followed by FDR 

correction. FDR adjusted p-value: * ≤0.05; **≤0.01; ***≤0.001, ****≤0.0001. For CD4_c1, 

pHvsP = 4.08e-13, pHvsM = 4.03e-6, pUvsP = 4.08e-13, pUvsM = 4.03e-16. For CD4_c3, 

pUvsP = 4.05e-4, pUvsM = 0.021. For CD4_c0, pHvsM = 0.002, pUvsP = 0.023, pUvsM = 

9e-8, pPvsM = 8.06e-5. Boxes, median ± interquartile range; whiskers, 1.5× interquartile 

range. g) UMAP plot of seven CD4 Treg subclusters (left) and (right) ridge plots displaying 

the distribution of inferred pseudotime across Treg subclusters. h) Marker gene expression 

across Treg subclusters. The complete list of significant DEGs is provided in Supplementary 

Table 7. i) UMAP plot of five CD4 Tfh subclusters (left) and (right) ridge plots illustrating 

the distribution of inferred pseudotime across Tfh subclusters. j) Marker gene expression 

across Tfh subclusters. A list of significant DEGs is provided in Supplementary Table 8.
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Figure 4. Transcriptional similarity and co-occurrence patterns of T cell subsets and correlations 
with genomic, molecular, and pathological features.
a) The dendrogram on the left displays transcriptional similarity among 31 T cell subsets. 

The computed Euclidean distance matrix was used for unsupervised hierarchical clustering 

analysis, which revealed 4 major “branches” that are colored (from bottom to top) in black, 

green, orange, and cyan, respectively. The heatmap on the right shows the expression of 

6 curated gene signatures across T-cell clusters. The heatmap was generated based on the 

scaled gene signature scores. IFN, IFN response; stress, stress response; Exh, exhaustion; 

CTL, cytotoxicity; Act/Eff, activation/effector function. b) T cell state co-occurrence in 

primary tumours (left) and metastatic tumours (right). Sample-level Spearman correlation 

analysis was performed based on cluster frequencies of 31 non-proliferative T cell subsets. 

Positive co-occurrence patterns are in ‘warm’ color, and negative co-occurrence patterns 

are in ‘cold’ color. Color intensity is proportional to the Spearman correlation coefficient. 

Asterisks indicate the statistical significance based on FDR-adjusted two-sided p-values. c) 
Correlation with genomic, molecular, and pathological features in 16 scRNA-seq cohorts 

across 8 cancer types with corresponding information available, and d) the CPI1000+ 

cohorts. The heatmap in c) displays the distribution of T cell states across different 

cancer types and subtypes, as estimated by Ro/e. FL, follicular lymphoma; LBCL, large 

B cell lymphoma; iCCA, intrahepatic cholangiocarcinoma; NS, never smoker; S, smoker. 

Chu et al. Page 43

Nat Med. Author manuscript; available in PMC 2024 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cancer types are labeled using the TCGA study abbreviations. The heatmap in d) 
illustrates correlations with TMB and additional mutation quality characteristics as well 

as known biomarkers of ICB therapy response (Litchfield et al.). The size of the square 

is proportional to statistical significance (FDR-adjusted two-sided p-value) and the color 

intensity is proportional to the Spearman correlation coefficient (rho). An annotation of the 

abbreviations is listed on the right.
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Figure 5. Detection of TSTR cells in situ using multiple different spatial profiling approaches.
a) Detection of HSPA1B expression in peritumoral lymphocytes in a melanoma lymph-node 

(LN) metastasis by RNAscope. (i) H&E of the sample at low magnification (40x, scale 

bar 200 μm), with high-magnification (400x, scale bar 20 μm) areas showing H&E and 

RNAscope on melanoma cells (ii & iii) and peritumoral lymphocytes (iv & v) demonstrating 

that both tumor cells and peritumoral lymphocytes express HSPA1B RNA. No tissue section 

replicate was available for this sample. b) Detection of TSTR cells in an NSCLC sample 

by CosMx. A representative tissue section (Lung 5–2) is shown. Two consecutive tissue 

sections of Lung 5–2 are presented in Extended Data Fig. 7. (i) Cells in physical locations 

(x, y coordinates). Color denotes cell type. Spatial mapping of CD3D (ii), HSPA1A (iii), 

and HSPA1B (iv) expression in T cells (the same area as i). (v) A zoom-in view of a 

representative area of (i) showing two lymphocyte aggregates. (vi) a zoom-in view of (v) 

showing subcellular localization of CD3D, HSPA1A, and HSPA1B transcripts. (vii) a zoom-

in view of (vi) showing co-localization of CD3D, HSPA1A, and HSPA1B transcripts. c) 

Pan-cancer detection of TSTR cells by spatial transcriptomics. Representative tissue sections 

of 6 cancer types are shown. (top row) H&E stained tissue image. (middle row) Mapping 

of T cells and (bottom row) the TSTR cells on the same histology image (Melanoma, GAC, 

LUAD) or a high-magnification image (BRCA, CSCC, ccRCC). BRCA, breast cancer; 

CSCC, cutaneous squamous cell carcinoma; GAC, gastric adenocarcinoma; ccRCC, clear 

cell renal cell carcinoma; LUAD, lung adenocarcinoma. d) Co-mapping of TSTR cells and 
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hypoxia-related gene expression by spatial transcriptomics in a LUAD sample (section 14C) 

as shown in c). (first on the left) Mapping of TSTR cells (in red) on the same image as shown 

in c). The black curve outlines the two tumor areas. (the remaining images on the right) 

Spatial co-mapping of TSTR cells (in red) and hypoxia-related gene expression (in blue, the 

darker the color, the higher the level of gene expression) on the same capture area.
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Figure 6. Significant enrichment of CD4/CD8 TSTR cells following ICB therapy across cancer 
types, primarily, in non-responsive tumors.
a, e, i, k) Description of the cohort, patients, and samples (created with BioRender.com). 

a-d) The BCC cohort. b) Enriched CD4/CD8 TSTR cells in non-responsive (NR) tumors. 

c) Significantly higher expression of HSPA1A (all p values < 2.2e-16) and d) HSPA1B 
in CD4 and CD8 T cells from NR vs. responsive (R) tumors, and at post (vs. pre)-ICB 

timepoint. Pre, pre-ICB; Post, post-ICB treatment (For CD4 T, pNR_Pre-vs-Post = 1.16e-11, 

pPost_R-vs-NR = 2.16e-8. For CD8 T, pNR_Pre-vs-Post < 2.2e-16, pPost_R-vs-NR = 1.33e-10). e-h) 
The NSCLC cohort. f) Enriched CD4/CD8 TSTR cells in NR tumors during ICB treatment. 

g) Significantly higher expression of HSPA1A and h) HSPA1B in CD4/CD8 T cells from 

NR vs. R tumors on ICB treatment, and in LN-met vs. primary tumors at pre-ICB timepoint. 

TN, treatment naïve; On, on-ICB treatment; LN-Met, lymph node metastasis (For CD4 T, 
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pPre_Primary-vs-LN-Met < 2.2e-16, pLN-Met_R-vs-NR = 6.89e-12. For CD8 T, pPre_Primary-vs-LN-

Met = 3.07e-10, pPost_R-vs-NR = 8.29e-12). i-j) The advanced RCC cohort from Bi et al. 
j) Enriched CD4/CD8 TSTR cells from tumors exposed to ICB treatment, and enriched 

CD4 TSTR cells in NR tumors post-ICB treatment. k-n) The resectable NSCLC cohort. 

l) Enriched CD8 TSTR cells in tumors from patients with no major pathological response 

(non-MPR) post-ICB treatment among MANA-specific CD8 T cells. (m) Significantly 

higher expression of HSPA1A (all p values < 2.2e-16) and n) HSPA1B in CD8 T cells in 

tumors from non-MPR patients compared to those from MPR patients post-ICB treatment, 

among MANA-specific CD8 T cells (all p values < 2.2e-16). MPR, defined as < 10% viable 

tumor at the time of surgery; MANA, mutation-associated neoantigens. MANA-specific 

CD8 T cells were identified using the MANA functional expansion of specific T cells 

(MANAFEST) assay. Viral (EBV and influenza)-specific T cells were identified using the 

viral functional expansion of specific T cells (ViralFEST) assay, as described in the original 

study. For c), d), g), h), m), and n), two-sided Welch’s t-test was applied to calculate p 

values: (****p≤0.0001), followed by FDR correction.
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