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Abstract

Dopamine-based reward and learning mechanisms have been suggested to contribute to

placebo effects. However, the exact role of dopaminergic neurotransmission in their genera-

tion and maintenance is still unclear. This study aimed to shed light on the causal role of

dopamine in establishing positive treatment expectations, as well as on the magnitude and

duration of their effect on pain. To this end, we used an established placebo analgesia para-

digm in combination with 2 opposing pharmacological modulations of dopaminergic tone,

i.e., the dopamine antagonist sulpiride and the dopamine precursor L-dopa which were both

applied in an experimental, double-blind, randomized, placebo-controlled trial with a

between-subject design in N = 168 healthy volunteers. The study medication successfully

altered dopaminergic tone during the conditioning procedure. Contrary to our hypotheses,

the medication did not modulate the formation of positive treatment expectation and placebo

analgesia tested 1 day later. Placebo analgesia was no longer detectable on day 8 after con-

ditioning. Using a combined frequentist and Bayesian approach, our data provide strong evi-

dence against a direct dopaminergic influence on the generation and maintenance of

placebo effects. Further exploration of the neurochemical mechanisms underlying placebo

analgesia remains paramount in the quest to exploit these effects for optimal treatment

outcomes.

Trial registration: ClinicalTrials.gov German Clinical Trials Register, ID:

DRKS00029366, https://drks.de/search/en/trial/DRKS00029366.

Introduction

Placebo effects are an individual’s psychophysiological response to contextual information and

associated expectations to treatments that are physically and pharmacologically inert. The

strength of placebo effects varies considerably among and within individuals depending on
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contextual factors, prior experiences of treatment benefit, and expectations regarding the treat-

ment [1,2]. The effects and mechanisms of expectation have been best characterized in the

field of experimental pain and placebo analgesia (PA), i.e., the pain relief following the admin-

istration of an inert treatment and/or the expectation that a potent analgesic substance is being

administered [3,4]. Experimentally, this expectation is typically generated by combining verbal

suggestions and learning processes by surreptitiously lowering pain stimulus intensities during

a conditioning phase.

The brain systems and neurochemical pathways underlying PA have been studied exten-

sively over the past 2 decades. Converging evidence from functional magnetic resonance imag-

ing (fMRI), electroencephalography (EEG), and positron emission tomography (PET) studies

indicates that PA is associated with changes in nociceptive processing, including alterations at

the level of the spinal cord [5], thalamus, and cortical brain areas related to nociception and

pain [6–8]. However, the effect sizes of this influence on brain areas implicated in nociception

are considerably smaller than their underlying behavioral effects [9]. This points towards pro-

cesses other than inhibition of bottom-up nociceptive signaling and most likely involves

changes in affective and evaluative mechanisms [10,11]. In line with this view, PA has been

linked to both the top-down activation of descending pain modulatory pathways but also

intracortical mechanisms, driven by limbic and paralimbic regions.

At the neurochemical level, the endogenous opioid system has been shown to play a critical

role in PA, as indicated by behavioral and fMRI studies using the opioid antagonist naloxone

and PET studies using in vivo receptor binding approaches with opioidergic ligands (for

review, see [7]). However, neither the engagement of descending pain modulatory pathways

nor the involvement of opioids can so far fully explain PA.

Instead, there is growing evidence for a role of non-opioidergic neurotransmitter systems

in PA [12–14]. In particular, dopamine-based reward mechanisms appear to contribute to pla-

cebo responses [13,15–18]. A pioneering study using PET imaging found that dopamine (DA)

signaling in the nucleus accumbens (NAc) increased during the anticipation of analgesia fol-

lowing the administration of a placebo treatment. The signal strength was proportional to the

individuals’ PA response. Interestingly, PA also correlated positively with NAc activation dur-

ing anticipation of monetary reward in the same individuals. Further, interindividual differ-

ences in PA have been linked to dopamine-related personality traits and gray matter density in

the ventral striatum [19]. These and related findings suggest a key role for the mesolimbic

reward system in PA.

First efforts to elucidate the significance of dopaminergic signaling to analgesia have tar-

geted dopaminergic neurotransmission pharmacologically during the test phase of PA para-

digms. We demonstrated that blocking D2/D3 receptor activity with the antagonist

haloperidol specifically reduced placebo-related activity in the striatum but did not affect the

magnitude of PA at the behavioral level [14]. Similarly, in a study with patients suffering from

neuropathic pain, PA was influenced neither by haloperidol nor the DA precursor L-dopa

[20]. While the findings of both studies render a direct analgesic role of dopamine unlikely,

they suggest an involvement of the dopaminergic system in other processes inherently linked

to PA, such as the acquisition of positive treatment expectation induced by positive prior treat-

ment experiences, or the inherent reward associated with experiencing pain relief. In this view,

DA may affect PA through a modulatory influence during the learning phase of PA. We previ-

ously tested if increasing dopaminergic tone using L-dopa during the conditioning of PA

could boost PA in the later test phase [10]. Although the study hints at an enhancing effect of

L-dopa on the acquisition of conditioned PA, particularly in women, this finding was difficult

to interpret as our experimental manipulation failed to induce robust PA independent of the

dopaminergic manipulation. Strikingly, recent evidence from clinical populations suggests
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that the intake of L-dopa together with the non-steroidal anti-inflammatory drug naproxen

can serve to prevent the transition from acute to chronic back pain [21]. The mechanistic basis

of this effect could be rooted in the same principle of enhancing the reward system during the

experience of analgesia, which we propose for conditioned PA.

Taken together, despite clear evidence for the involvement of mesolimbic DA signaling in

PA, its exact functional role and contribution to the development of positive treatment expec-

tation and PA is still poorly understood. Deciphering the neuropharmacological foundations

of PA could be of direct clinical relevance, as it enables the development of active DA-enhanc-

ing interventions to boost placebo components in pain treatments or to reduce placebo effects

via DA inhibition in clinical randomized controlled trials, where they hamper the assay sensi-

tivity to detect novel therapeutic targets.

To investigate the general contribution of DA in the acquisition of positive treatment expec-

tation and its subsequent effect on pain in a proof-of-concept manner, we employed an estab-

lished experimental paradigm of conditioned PA in combination with 2 pharmacological

manipulations of dopaminergic signaling in the brain using a randomized, placebo-controlled,

double-blind design. We allocated N = 168 healthy participants to either receive a single dose of

the D2 receptor antagonist sulpiride, the DA precursor L-dopa, or an inactive control prior to

the conditioning phase of the PA paradigm. Expectation of analgesia and its effect on experi-

mental heat pain was assessed in the conditioning session and in 2 test sessions on days 2 and 8.

For statistical analyses, we applied classic frequentist statistics as well as Bayesian analyses.

This hybrid approach allowed us to present well-known frequentist, p-value–based metrics to

compare the results with those of previous studies and meta-analyses, and to additionally

quantify the evidence using the framework of Bayesian inference, which is increasingly

embraced as a method of reporting evidence in the field of neuroscience. Particularly, we

implemented Bayesian parameter effect analyses to complement frequentist results for param-

eter significance and effect size. Further, Bayesian hypothesis testing enabled us to rate the

strength of evidence in favor of or against our proposed hypotheses on a continuous scale by

using the Bayes factor (BF), which allowed us to discriminate evidence of absence from

absence of evidence. Combining both frequentist and Bayesian approaches is recommended as

a pragmatic and powerful way to report and communicate scientific evidence [22].

In this study, we focused on 3 hypotheses (1 main and 2 exploratory hypotheses):

Main hypothesis (1): Pharmacologic manipulation of DA signaling during the experience of

pain relief associated with the placebo treatment in the conditioning session modulates the

magnitude of PA. To address this main hypothesis, we checked for interaction effects

between medication (L-dopa versus sulpiride versus inactive pill) and our experimental con-
dition (placebo cream versus control cream) in test session 1 (day 2).

Exploratory hypothesis (2): (a) PA persists up to day 8, as indicated by a significant main effect

of our experimental condition (placebo cream versus control cream) on day 8. (b) Pharma-

cological manipulation of DA signaling during conditioning affects the persistence of PA

on day 8. In this analysis, we tested the longevity of the PA in our experiment and probe

putative long-term effects of the pharmacological dopaminergic modulation applied during

conditioning.

Exploratory hypothesis (3): DA-manipulation during conditioning alters the establishment of

treatment expectation. We propose that treatment expectation is formed in a DA-depen-

dent way during the experience of a positive treatment effect (conditioning session). We

thus hypothesize that the (anti)dopaminergic medication influences the acquisition of
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treatment expectation during the conditioning session as measured by the change in expec-

tation ratings before conditioning and before the test session of PA (see Fig 1B).

Methods

Ethics and participants

The study protocol was approved by the ethics committee of the University Hospital Essen

(19-8858-BO), and the study was preregistered at the German Clinical Trials Register (https://

www.drks.de, ID: DRKS00029366) before study start. All experiments were conducted in

Fig 1. (A) Upper panel. The experiment takes place on 3 days with the conditioning on day 1, test session 1 on day 2, and test session 2 on day 8.

Participants are treated with 2 identical creams with the PLC introduced as “analgesic cream” and the CTR as inactive sensory control cream. The location of

the control (gray area) and placebo (blue area) site on the left volar forearm is pseudo-randomized. Painful heat stimulus intensity levels are individualized to

correspond to target ratings of 40, 60, and 80 on a 101-point VAS with endpoints marked not painful and unbearably painful. Lower panel. Trial timing.

Each trial consists of 5 phases: ITI with the flanker task, anticipation phase, pain stimulus, short pause, and pain intensity rating. The ITI has a random

duration of 15–25 s. The anticipation phase begins when the white crosshair turns red, indicating that a painful stimulation is about to follow. After a variable

delay time, the painful heat stimulus (duration 20 s) is administered, and 3–7 s after the end of the heat stimulation participants provide pain intensity ratings

using a VAS. (B) Experimental schedule. Double-blind and random allocation of participants to one of the 3 medication groups: sulpiride (SUL), L-dopa

(DOPA), or inactive control (INA). Differential pharmacokinetic profiles require a staggered pill intake at 2 different time points where the SUL group takes

an active pill (sulpiride 400 mg) at time point one, and the DOPA group takes an active pill (levodopa/carbidopa 100/25 mg) at time point 2. For the INA

group, pills at both time points are inactive. Treatment expectation at 4 different time points (EXPECT), and efficiency ratings of the placebo manipulation

(EFFECT) are measured at three time points via the GEEE. CTR, control; ITI, inter-trial interval; PLC, placebo; VAS, visual analogue scale.

https://doi.org/10.1371/journal.pbio.3002772.g001
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accordance with the Declaration of Helsinki. Healthy participants aged 18 to 40 years were

recruited and were told that the study investigates the influence of a DA-targeted pharmaco-

logical intervention on pain processing and modulation.

At an initial, standardized structured telephone interview, participants were screened for

exclusion criteria. Exclusion criteria were the presence of any acute or chronic somatic or

mental diseases, including several chronic pain conditions, abuse of illegal substances or alco-

hol, regular use of medication (except thyroid medication, allergy medication, occasional use

of over-the-counter analgesics, and contraception), hypersensitivity, contraindications, allergy,

or intolerance to any ingredients of the study medication; pregnancy or breastfeeding; and/or

insufficient German language proficiency. Participants must not have taken part in studies

using investigational drugs within the past 3 months and shall refrain from eating 2 h prior to

the experimental sessions. Written voluntary informed consent was obtained before any exper-

imental procedures began. Participants were tested for recent drug use (including THC, opi-

ates, and amphetamines) using a commercially available urine test (Diagnostik Nord,

Schwerin, Germany). Women were further tested for pregnancy using a urine pregnancy test.

Participants received 220 € as compensation for study participation.

Sampling plan

The power calculation of this study was aimed to best address our main hypothesis 1 for fre-

quentist statistics. We determined the sample size to detect even small effects of our pharmaco-

logical modulation on PA. The calculated sample size was simultaneously utilized for a fixed-

N-approach for Bayesian effect analysis and hypothesis tests [23].

Previous studies have reported medium to large effects of pharmacological interventions

that acted directly on PA. For example, pharmacologically blocking opioidergic transmission

with naloxone exhibited a large effect in decreasing PA (d = 0.69 [6]). In regard to the DA sys-

tem, the work from Scott and colleagues [13] suggests a medium to large contribution of dopa-

minergic transmission to the formation of PA, since DA activity in the NAc explained PA well

(r = 0.5, R2 = 25%). Yet, it remains to be investigated whether an active pharmacologic manip-

ulation during the conditioning phase can exert similarly large effects on PA. The sample size

for our study is, therefore, powered to even detect a small effect (Cohen’s d of 0.3) of medica-
tion on PA. Importantly, our study design is especially suited to detect any dopamine-depen-

dent modulatory effects, since L-dopa and sulpiride act on dopaminergic transmission in

opposing directions, expanding the range of possible observable effects (boosting versus block-

ing) on PA.

The total sample size needed to detect a significant effect in a repeated-measures analyses of

variance (rmANOVA) with f = 0.15 (corresponding to Cohen’s d = 0.3), an alpha-error proba-

bility of 5% (p = 0.05), and a power of 1-ß = 0.9 is N = 144 (calculated with G*Power [24]).

Assuming a reasonable drop-out-rate of about approximately 10%, we aimed for a total of

N = 165 participants (55 per group).

The power of the remaining exploratory hypothesis tests is dependent on this predeter-

mined sample size.

Design

The study employed a mixed, randomized, controlled, double-blind factorial group design

with the between-subject factor medication (L-dopa versus sulpiride versus inactive pill) and

the within-subject factors experimental condition (placebo versus control). The study included

a prior intervention (conditioning procedure) and 2 assessment time points of PA (day 2 and
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day 8). Participants were randomly assigned to one of the 3 medication groups according to a

randomized list created with R version 4.3.2 (R Core Team; 2023).

Experimental procedure

For a comprehensive overview about the experimental procedure, see Fig 1.

We used a well-established placebo heat pain paradigm with a prior conditioning session

[6,8,25–27]. Experiments took place on 3 separate days, with the conditioning session on day

1, the first test session on day 2, and the second test session on day 8. Fig 1B gives a detailed

overview of the experimental schedule. The placebo treatment consisted of a skin cream that

was introduced to participants as a local analgesic containing the pharmacologically active

agent lidocaine, while it was de facto inert (hidden placebo). A chemically identical cream was

described to the participants as a “control cream” that served as inactive sensory control. Heat

pain stimuli were delivered using an ATS-thermode (30 × 30 mm, Pathway System, Medoc,

Israel).

Day 1. At the first visit, participants were told that (a) the study investigates the influence of

established medications that intervene with the brain’s dopaminergic system on the efficiency

of an established local analgesic cream; (b) the perceived pain intensity to painful heat stimuli

is measured on skin that has been treated with the analgesic cream (= actual deceptive placebo

condition) or a control cream (= control condition); and (c) double-blind allocation to one of

the 3 medication groups, L-dopa (levodopa/carbidopa 100/25 mg), sulpiride (sulpiride 400

mg), or inactive pill (99.5% mannitol, 0.5% siliciumdioxide) is performed randomly at equal

chances for each group (33.3%) (for literal translation of the verbal placebo manipulation, see

supplementary information S1 Text). L-dopa is a naturally occurring dopamine precursor that

can pass the blood–brain barrier to get metabolized into active DA in the brain. It is well

known as a treatment for Parkinson’s disease. In contrast, the D2 receptor antagonist sulpiride,

an antipsychotic agent used for treating psychosis and schizophrenia, was applied to block

dopaminergic neurotransmission. The drug dosages used in this study have proven in the past

to effectively alter dopamine-related behavior by increasing dopaminergic tone after adminis-

tration of 100 mg of L-dopa [28–30] or decreasing dopaminergic signaling with 400 mg sulpir-

ide [12,31–33].

The medication intake was timed for plasma drug levels to peak right at the beginning of

the conditioning phase. Due to the differential pharmacokinetic profiles, this requires a stag-

gered pill intake at 2 different time points as depicted in Fig 1B (sulpiride: maximum plasma

concentration after 180 min; L-dopa after 60 min [34–36]). Pills were prepared by an

unblinded third person who was not involved in the study according to the randomization list

and were handed out in non-transparent cups with lids in order to maintain double-blinding

for the experimenter and participant. Ratings for treatment expectation (EXPECT) concerning

pain perception via the Generic Rating for Treatment pre-Experiences, Treatment Expecta-

tions, and Treatment Effects Scale (GEEE, a screening tool that allowed for the general assess-

ment and quantification of patients’ treatment expectations and their effects on clinical

outcomes [37]), state variables of anxiety and depression (State-Trait-Anxiety-Depression-

Inventory State (STADI State) [38]), and symptoms of drug side effects (Generic Assessment

of Side Effects in Clinical Trials (GASE) [39]) were assessed once before and once after medi-

cation intake, prior to conditioning. Since this study was part of a large collaborative research

effort investigating treatment expectation in different experimental settings (https://treatment-

expectation.de/en/), participants were asked to complete a battery of various additional psy-

chological questionnaires at the beginning of day 1 after the briefing procedure. These data

were not included for primary analyses of this study but were used for exploratory
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investigations and/or as control variables. These questionnaires consisted of state and trait psy-

chological questionnaires and pain-related cognitions as well as pretreatment experiences (see

supplementary information S1 Text for details and references). All questionnaires were pre-

sented and assessed using the open-source survey tool LimeSurvey (LimeSurvey GmbH, Ham-

burg, Germany).

After the second pill intake, when both drugs were already expected to rise to their peak

and effective plasma concentration, participants underwent a calibration procedure on one of

5 pseudo-randomized skin locations on the left volar forearm, each outlined by a standardized

marker (Fig 1A) and used for later conditioning and testing. First, the individual heat pain

threshold was determined using the method of limits [14,40]. Subsequently, one practice trial

plus a pseudo-random sequence of 20 heat pain stimuli with varying temperatures (−1.5 ˚C–

+3.5 ˚C around the participants’ individual heat pain threshold) were applied as tonic heat

pain stimuli for 20 s each. These stimuli were each rated for pain intensity on a 0 to 100 visual

analogue scale (VAS) with anchors (0 = not painful to 100 = unbearably painful). Subsequently,

individual target temperatures were calculated using linear regression: VAS 40 for light pain,

VAS 60 for moderate pain, and VAS 80 for strong pain. VAS scales and crosshairs during pain

stimulation were presented on a monitor and behavioral data were recorded using Presenta-

tion software (Version 22.0, Neurobehavioral Systems, Berkeley, California, USA). Participants

were instructed not to talk during the experimental session and to maintain fixation at the

crosshair at the center of the screen. Although previous studies showed no effect of the aug-

mentation or blockade of dopaminergic signaling on heat [14,20,41], and the time point of the

calibration procedure sufficiently accounts and controls for any acute effect of the pharmaco-

logical modulations of thermal pain sensitivity, we assessed thermal pain thresholds using the

method of limits [14,40] prior to the pharmacological modulation and immediately before the

calibration session to allow for a direct assessment of drug effects on pain sensitivity.

Next, the placebo and control creams were applied on 2 skin locations that were distinct

from the site that had been used for the calibration. The site allocation was pseudo-randomized

across participants. A subsequent waiting period of 20 min was proclaimed to serve as the time

for the analgesic cream to take effect. For conditioning, blocks of 15 heat pain stimuli were

applied each to the control (Fig 1A, outlined in gray) and the placebo (outlined in blue) site.

To induce the experience of a treatment effect, a lower temperature, corresponding to an indi-

vidual pain intensity of VAS 40, was applied to the placebo site, mimicking a potent analgesic

effect of the cream, while an intensity of VAS 80 was used at the control site. Participants were

unaware of this manipulation as they were told that the same temperature is used for each

stimulus and location. Each stimulus was rated on the VAS right after stimulus presentation at

the end of every trial (see Fig 1A for details on the trial timing). Prior to each block, partici-

pants rated their current state of arousal and anxiety. Block order was pseudo-randomized.

At the end of day 1, efficiency rating of the placebo cream (EFFECT) and the Positive and

Negative Affect Schedule (PANAS) [42] was obtained and a blood sample for determining

serum concentration of prolactin (Central Laboratory, Department of Research and Educa-

tion, University Hospital Essen) and L-dopa (MVZ Dr. Eberhard & Partner Dortmund GbR)

were taken to confirm the efficiency of the pharmacological manipulation. We decided to vali-

date effective modulation of dopaminergic tone by assessing common physiological measures

of modulation. To monitor an effective blockade of D2 receptors by sulpiride, we exploited the

D2 receptor-dependent release of the protein prolactin in the pituitary [43]. Inhibition of D2

receptors in the pituitary leads to a quick surge in prolactin serum levels. This has been shown

for a single-dose intake of sulpiride as well as other antipsychotic drugs that target the D2

receptor. For the L-dopa group, we determined L-dopa in the blood, as we and others did

before to check effective serum levels for pharmacologic manipulation [10,30].
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Days 2 and 8. In the test sessions, PA effects were tested. The placebo cream and the control

cream were applied on the 2 skin locations that were distinct from the site that has been used

for the calibration and conditioning and remained on the skin for 20 min. STADI State and

EXPECT for the analgesic effect were obtained. The first heat stimulus presented in a session is

often rated as disproportionately painful due to the novelty of the stimulus, which may elicit a

startle response that aggravates pain perception. To avoid systematic errors and to prevent a

compromised credibility of placebo treatment caused by the heightened sensibility to the first

stimulus, we mimicked a repeated heat pain threshold determination on both sites, with a tem-

perature rise time of 1.0 ˚C/s on the control site and 0.7 ˚C/s on the placebo site in order to

keep the illusion of weaker perceived pain at the treated site [14]. Then, the test session was

performed in blocks of 14 trials per condition in pseudo-randomized order with heat stimuli

of 20 s duration. While participants were told that the same temperatures as during condition-

ing were applied, we in fact stimulated at a fixed temperature corresponding to VAS 60 in both

conditions. Again, stimuli were rated for pain intensity after each trial. At the end of the test

sessions, an EFFECT rating was obtained.

Analysis plan

All proposed hypotheses were tested using frequentist statistics (F-statistics of 3 × 2 rmA-

NOVA, stating p-values). The interpretation of our results was determined by frequentist sta-

tistics. To complement frequentist analyses and expand interpretability of results, Bayesian

metrics were calculated and reported (BF for parameter inclusion, estimated marginal means

of posterior distributions for parameters and contrasts, credible intervals, BF for hypothesis

testing). All analyses were conducted using R. Successful induction of PA is indicated by a

main effect of experimental condition, with lower pain ratings for the placebo than the control

condition. Details can be inspected in the Design Table (Table 1).

Frequentist analysis. Hypothesis 1. To examine the main research question of whether

DA signaling during the experience of pain relief influences the establishment of PA, a mixed

rmANOVA with the factors medication (L-dopa versus sulpiride versus inactive pill) and

experimental condition (placebo versus control) was fitted to compare the dependent variable

(pain ratings during test session 1 on day 2) across the medication groups. To address this

main hypothesis, we checked for interaction effects between the medication and the experimen-
tal condition (see Fig 2). A significant interaction effect was followed by post hoc tests.

Hypothesis 2. (a) To test the hypothesis that PA persists up to day 8, we examined the main

effect of experimental condition on the dependent variable, i.e., pain ratings during test session

2 on day 8. (b) The influence of dopamine signaling during the conditioning phase on the per-

sistence of PA up to day 8 is expressed by the interaction of the factors medication (L-dopa ver-

sus sulpiride versus inactive pill) and experimental condition (placebo versus control), parallel

to the model of hypothesis 1 (see Fig 3).

Hypothesis 3. To examine the hypothesis that treatment expectation is influenced by medi-

cation, we fitted a mixed 3 × 2 rmANOVA with the factors medication (L-dopa versus sulpiride

versus inactive pill) and rating time point in respect to the pharmacological intervention (pre

conditioning versus post conditioning). The dependent variable treatment expectation corre-

sponds to the EXPECT score and was measured just before the conditioning session on day 1

and just before the test session on day 2 (see Fig 4).

These 3 hypotheses were followed up by further exploratory analyses, e.g., regarding the

temporal dynamics of effects, the potential modulatory influences exerted by the medication

over time, as well as changes in expectation.
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Table 1. Design table.

Question Hypothesis Sampling plan (e.g., power

analysis)

Analysis plan Interpretation given to

different outcomes

Observed outcome

(1) Does DA

signaling during the

experience of

positive treatment

effects modulate PA?

H1. Pharmacologic

manipulation of DA signaling

during the experience of pain

relief associated with the

placebo treatment in the

conditioning session modulates

PA.

Sample size estimation was

calculated to meet requirements for

sufficient power in frequentist

analysis. At an expected effect size of

pharmacological manipulation

(Cohen’s d of 0.3), the total sample

size recommended for rmANOVA

in G*Power with an alpha error

probability of 0.05 and a power of 1-

ß = 0.9 is n = 144. Considering a

dropout rate of approximately 10%,

we aimed to include a total of

N = 165 subjects (55 per group).

Bayesian Inference was conducted

using the fixed-n-approach of

N = 165 as determined by

frequentist sample size estimation.

This number is deemed sufficiently

large to generate a meaningful Bayes

Factor to inform about the strength

of evidence for and against our

hypothesis.

Frequentist analysis:
Two-way rmANOVA with

medication group (sulpiride vs. L-

dopa vs. inactive pill) and

experimental condition (placebo

vs. control) to compare pain

ratings on day 2.

Bayesian Analysis:
Bayesian repeated-measures

ANOVA comparing models with

medication group (sulpiride vs. L-

dopa vs. inactive pill) and

experimental condition (placebo

vs. control) to define the evidence

for or against the inclusion of

model terms to model pain

ratings on day 2 (BFincl). JASP’s

default priors were used (Cauchy

distribution with r scale for fixed

effects = 0.5 and r scale for

random effects = 1).

Frequentist analysis:
An F-test determined

significance of variance

explained by the specified

factors in the ANOVA. For

the interaction effect:

- p > 0.05: reject H1

- p < 0.05: reject H0.

Post hoc Bonferroni–

Holm corrections were

applied for multiplicity-

adjusted pairwise

comparisons if F-statistic

yields significant results.

Effect sizes were quantified

using partial eta squared ηp
2:

- ηp
2 = 0.01: small effect

- ηp
2 = 0.06: medium

effect

- ηp
2 = 0.14: large effect

Bayesian Analysis:
BFincl

- >100: Extreme

evidence for inclusion/H1.

- 30–100: Very strong

evidence for inclusion/H1

- 10–30: Strong

evidence for inclusion/H1

- 3–10: Moderate

evidence for inclusion/H1

- 1–3: Anecdotal

evidence for inclusion/H1

- 1/3–1: Anecdotal

evidence against inclusion/

for H0

- 1/10–1/3: Moderate

evidence against inclusion/

for H0

- 1/30–1/10: Strong

evidence against inclusion/

for H0

- 1/100–1/30: Very

strong evidence against

inclusion/for H0

- <1/100: Extreme

evidence against inclusion/

for H0

Frequentist analysis:
Significant main

effect of experimental

condition (F(1,151) =

8.29, p = 0.004, ηp
2 =

0.05)

No main effect of

medication group (F
(2,151) = 0.64, p = 0.53,

ηp
2 = 0.01)

No interaction between

medication and

experimental condition

(F(2,151) = 0.35,

p = 0.71, ηp
2< 0.01).

- p > 0.05: H1 is

disconfirmed

Bayesian analysis:
The BFincl of

experimental condition

is 4.32.

The BFincl of medication

group is 0.17.

The BFincl of the

interaction between

experimental condition

and medication group is

0.06.

- BF = 1/30–1/10:

Strong evidence against

inclusion/for H0

(Continued)
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For all frequentist analyses, within- and between-group differences were tested at a two-

tailed alpha level of 0.05 with Bonferroni–Holm corrections for post hoc multiple compari-

sons. Effect sizes were calculated using partial eta squared (ηp2).
Bayesian inference. The results of the rmANOVAs were complemented with Bayesian

statistics by Bayesian hierarchical regression modeling and calculating the inclusion Bayes

Table 1. (Continued)

Question Hypothesis Sampling plan (e.g., power

analysis)

Analysis plan Interpretation given to

different outcomes

Observed outcome

(2) Does DA

signaling during the

experience of pain

relief influence the

persistence of PA?

H2. Pharmacologic

manipulation of DA signaling

during conditioning affects the

persistence of PA up to 6 days

after test session 1 (day 8).

The sample size for this analysis was

determined by the analysis of H1.

Frequentist analysis:
Two-way rmANOVA with

medication group (sulpiride vs. L-

dopa vs. inactive pill) and

experimental condition (placebo

vs. control) to compare pain

ratings on day 8.

Bayesian analysis:
Bayesian repeated-measures

ANOVA comparing models with

medication group (sulpiride vs. L-

dopa vs. inactive pill) and

experimental condition (placebo

vs. control) to define the evidence

for or against the inclusion of

model terms to model pain

ratings on day 8 (BFincl). JASP’s

default priors were used (Cauchy

distribution with r scale for fixed

effects = 0.5 and r scale for

random effects = 1).

The interpretation of

different outcomes relies on

the same specifications as

shown for H1.

Trend for effect of

experimental condition

(F(1,150) = 3.19,

p = 0.08, ηp
2 = 0.02)

No main effect of

medication group (F
(2,150) = 0.33, p = 0.71,

ηp
2< 0.01).

No interaction between

medication and

experimental condition

(F(2,151) = 1.05,

p = 0.35, ηp
2 = 0.01).

- p > 0.05: H2 is

disconfirmed

Bayesian analysis:
The BFincl of

experimental condition

is 0.38.

The BFincl of medication

group is 0.11.

The BFincl of the

interaction between

experimental condition

and medication group is

0.04

- BF = 1/30–1/10:

Strong evidence against

inclusion/for H0

(3) Does DA

signaling during the

experience of pain

relief alter treatment

expectation?

H3. DA-manipulation during

conditioning differentially alters

the establishment of treatment

expectation.

The sample size for this analysis was

determined by the analysis of H1.

Frequentist analysis:
A two-way rmANOVA with

medication group (sulpiride vs. L-

dopa vs. inactive pill) and rating

time point (pre conditioning vs.

post conditioning) to compare the

EXPECT scores between groups.

Bayesian analysis:
Bayesian repeated-measures

ANOVA comparing models with

medication group (sulpiride vs. L-

dopa vs. inactive pill) and rating

time point (pre conditioning vs.

post conditioning) to define the

evidence for or against the

inclusion of model terms to

model EXPECT scores (BFincl).

JASP’s default priors were used

(Cauchy distribution with r scale

for fixed effects = 0.5 and r scale

for random effects = 1).

The interpretation of

different outcomes relies on

the same specifications as

shown for H1.

Significant main effect

of experimental

condition (F(1,149) =

20.11, p < 0.001, ηp
2 =

0.12).

No main effect of

medication group (F
(2,149) = 1.44, p = 0.24,

ηp
2 = 0.02).

No interaction between

medication and

experimental condition

(F(2,149) = 0.38,

p = 0.68, ηp
2< 0.01).

- p > 0.05: H3 is

disconfirmed

Bayesian analysis:
The BFincl of rating time

point is 512.31.

The BFincl of medication

group is 0.19.

The BFincl of the

interaction between

rating time point and

medication group is

0.07

- BF = 1/30–1/10:

Strong evidence against

inclusion/for H0

https://doi.org/10.1371/journal.pbio.3002772.t001
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factor (BFincl), which states the evidence for or against the inclusion of the different predictors

(inclusion BF, BFincl) to model pain ratings. Effect sizes of parameters and contrast posteriors

are given as estimated marginal means and credible intervals (based on equal-tailed interval).

In addition, Bayesian hypothesis testing is conducted to quantify the evidence in favor of or

Fig 2. Hypothesis 1. Group design (A) and potential effects on pain ratings of day 2 for the main hypothesis 1 (B).

https://doi.org/10.1371/journal.pbio.3002772.g002

Fig 3. Hypothesis 2a and 2b. Group design (A) and hypothesized effects on pain ratings of day 8 for hypothesis 2a and 2b (B).

https://doi.org/10.1371/journal.pbio.3002772.g003

Fig 4. Hypothesis 3. Group design (A) and hypothesized effects on EXPECT ratings before and after the conditioning session (B).

https://doi.org/10.1371/journal.pbio.3002772.g004
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against the proposed hypotheses (BF of the alternative hypothesis over the point null hypothe-

sis, BF10).

Hypothesis 1. To address Hypothesis 1, 5 candidate models that include the analysis of vary-

ing main effects or interactions will be compared to explain measured pain ratings in test ses-

sion 1 on day 2:

1. medication

2. experimental condition

3. medication + experimental condition

4. medication + experimental condition + medication: experimental condition

5. null model.

BFincl for each main effect and interaction effect were calculated. Since pharmacologic

agents that enhance or block dopaminergic signaling have not shown any direct effects on per-

ceived intensity of acute pain in previous studies [14,20], we deem the model with medication
as the only fixed effect (model 1) as less likely than the others. Hence, prior probabilities for

best model performance were defined to be (1) 0.1; (2) 0.225; (3) 0.225; (4) 0.225; and (5)

0.225.

Hypothesis 2. Five candidate models were compared in their ability to explain pain ratings
in test session 2 on day 8. BFincl for each main effect and interaction effect will be calculated.

Prior probabilities of the different models were equally distributed (0.2 each).

1. medication

2. experimental condition

3. medication + experimental condition

4. medication + experimental condition + medication: experimental condition

5. null model.

Hypothesis 3. We model EXPECT scores and again construct 5 competing models:

1. medication

2. rating time point

3. rating time point + medication

4. rating time point + medication + rating time point: medication

5. null model.

Prior probabilities of the different models were equally distributed (0.2 each).

In all Bayesian models, subject number was included as a random effect term with varying

intercept to account for intraindividual correlation of within-subject measurements and to

reduce variation. Parameter priors were broad normal distributions with μ = 0 and σ = 100,

expressing little prior knowledge about direction and magnitude of effects. The models that

explain the data best for each hypothesis underwent diagnostic tests including analysis of

chains convergence (Ȓ), chains autocorrelation, and effective sample size. Pairwise compari-

sons were conducted by computing contrasts on parameter posteriors. All parameter and con-

trast posterior statistics will be stated with estimated marginal mean and 95% credible intervals

(equal-tailed interval). Lastly, Bayesian hypothesis testing quantified the evidence for our
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hypotheses against the point null hypotheses, expressed as the BF of the alternative hypothesis,

H1, over the null hypothesis, H0 (BF10). For semantic valuation of strength of evidence given

by BF10, we use the commonly applied adjusted Jeffrey’s Scale of Evidence [44] for the inter-

pretation of BF: BF10 > 100: Extreme evidence for H1. BF10 = 30–100: Very strong evidence

for H1. BF10 = 10–30: Strong evidence for H1. BF10 = 3–10: Moderate evidence for H1. BF10 =

1–3: Anecdotal evidence for H1. BF10 = 1/3–1: Anecdotal evidence for H0. BF10 = 1/10–1/3:

Moderate evidence for H0. BF10 = 1/30–1/10: Strong evidence for H0. BF10 = 1/100–1/30: very

strong evidence for H0. BF10 < 1/100: Extreme evidence for H0.

Results

Results are reported as mean ± standard error of the mean (SEM), unless stated otherwise. Sta-

tistics related to the hypotheses are explained in detail in the text and visualized in figures,

while the descriptive presentation of the data collected on each study day is presented in tables

and supplemented with ANOVAs testing the explanation of variance by the factor of medica-

tion to illustrate group differences. Note that as these ANOVA statistics are used to describe

our data set and do not represent confirmatory tests, uncorrected p-values are reported. They

were not preregistered in the Stage 1 protocol of this registered report.

Since the preparation of our Stage 1 manuscript, the JASP software (JASP Team, 2024, ver-

sion 0.18.3) for Bayesian analysis has gained popularity in psychology and neuroscience due to

its user-friendly interface and accurate Bayesian techniques. In choosing JASP, we aimed to

improve the transparency, comprehensibility, and reproducibility of our Bayesian analyses.

JASP’s ability to perform a Bayesian ANOVA and its efficient computation of model-averaged

results, including inclusion Bayes factors and marginal posterior distributions, matched our

analytical objectives. To accommodate JASP, we slightly modified our original analysis plan.

As preregistered, we evaluated the predictive performance of 5 models, from simple to com-

plex, to calculate the posterior probability of the inclusion of model terms (BFincl) to quantify

the evidence for or against each of our 3 hypotheses (see “Bayesian inference” of Stage 1). We

followed JASP’s default priors (Cauchy distribution with r scale for fixed effects = 0.5 and r

scale for random effects = 1) for parameter estimation, reflecting minimal prior assumptions.

As originally intended, we report inclusion Bayes factors (BFincl) and estimated marginal

means and 95% credible intervals of model-averaged posteriors.

Sample description

We enrolled N = 168 participants in our study (see Table 2 for participant characteristics), and

14 participants (8.3%) had to be excluded due to protocol violations or disruption during test-

ing: abnormal ECG: 2, positive for SARS-CoV2: 2, positive drug test: 3, prior medication

intake: 1, non-compliance to fasting rule: 1, distraction by nearby construction noise: 3, tech-

nical issues: 1, recent participation in another study on pain and placebo: 1. The final sample

size was n = 154. Except for 1 participant (group SUL, male) who missed day 8, all participants

completed the entire experimental schedule.

Conditioning session

Before reporting the hypotheses tests, we describe the conditioning procedure and baseline

measurements used in all groups, providing evidence for the validity of our paradigm to test

our hypotheses. These descriptions were not preregistered in Stage 1.

Pain sensitivity and treatment expectations at baseline. At baseline, the 3 medication
groups did not differ in terms of pain sensitivity (heat pain threshold, HPT) or positive expec-

tations towards the placebo treatment (Table 3). Participants received either L-dopa
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(Levodopa/Carbidopa-neuraxpharm 100/25 mg, neuraxpharm), sulpiride (Dogmatil 400 mg,

Sanofi), or inactive pills only according to their allocated group. To minimize potential

unblinding by pill appearance, inactive pills matching the appearance of L-dopa and sulpiride

were given at the respective time points of the staggered pill intake (matching L-dopa: P-Tab-

lets white 7 mm Lichtenstein, Winthrop; matching sulpiride: Placebo Tablets oval white 17 × 8

mm, Caesar & Loretz GmbH). HPT after drug intake, calibrated temperatures, and average

pain ratings on the control site during conditioning were comparable between groups, indicat-

ing that medication alone did not induce any immediate analgesic or hyperalgesic effects (see

Table 3).

Table 2. Participant characteristics.

Group: all INA DOPA SUL Group difference

Enrolled 168 55 56 58 -

Final sample 154 51 53 50 (49 completed day 8) -

Sex (% female) 57.8% 51.0% 58.5% 64.0% (65.3% on day 8) -

Age (in years) 24.8 ± 0.3 25.4 ± 0.5 24.8 ± 0.6 24.1 ± 0.4 F = 1.60, p = 0.21, ηp
2 = 0.02

BAS (Behavioral Activation System)-Reward 16.3 ± 0.2 16.4 ± 0.3 16.0 ± 0.3 16.4 ± 0.3 F = 0.73, p = 0.47, ηp
2 = 0.01

BAS-Drive 12.5 ± 0.2 12.5 ± 0.3 12.5 ± 0.2 12.5 ± 0.3 F = 0.02, p = 0.97, ηp
2< 0.01

BAS-Fun 11.9 ± 0.1 12.0 ± 0.2 12.1 ± 0.3 11.7 ± 0.3 F = 0.64, p = 0.53, ηp
2 = 0.01

BIS (Behavioral Inhibition System)-Score 19.8 ± 0.3 20.5 ± 0.5 19.5 ± 0.5 19.5 ± 0.5 F = 1.41, p = 0.25, ηp
2 = 0.02

STADI Trait Anxiety 18.4 ± 0.4 19.6 ± 0.8 17.7 ± 0.7 17.9 ± 0.7 F = 2.03, p = 0.14, ηp
2 = 0.03

STADI Trait Depression 17.4 ± 0.4 17.8 ± 0.7 17.4 ± 0.7 17.0 ± 0.7 F = 0.31, p = 0.73, ηp
2< 0.01

PCS (Pain Catastrophizing) 18.6 ± 0.7 19.0 ± 1.3 18.3 ± 1.3 18.7 ± 1.3 F = 1.00, p = 0.91, ηp
2< 0.01

Metrics are given as mean ± SEM. Group effects are calculated using ANOVAs.

https://doi.org/10.1371/journal.pbio.3002772.t002

Table 3. Baseline measurements and results of the conditioning session.

Group: all INA DOPA SUL Group effect

HPT baseline (˚C) 44.9 ± 0.2 44.7 ± 0.5 45.0 ± 0.4 45.1 ± 0.3 F = 0.28, p = 0.76, ηp
2< 0.01,

HPT after medication (˚C) 43.9 ± 0.2 43.8 ± 0.4 43.8 ± 0.4 44.2 ± 0.3 F = 0.49, p = 0.61, ηp
2 = 0.01

Temp. VAS 40 (˚C) 44.7 ± 0.1 44.6 ± 0.2 44.6 ± 0.2 44.9 ± 0.1 F = 1.29, p = 0.28, ηp
2 = 0.02

Temp. VAS 60 (˚C) 45.4 ± 0.1 45.3 ± 0.2 45.3 ± 0.2 45.6 ± 0.1 F = 0.88, p = 0.42, ηp
2 = 0.01,

Temp. VAS 80 (˚C) 46.1 ± 0.1 46.0 ± 0.2 46.0 ± 0.2 46.2 ± 0.1 F = 0.51, p = 0.61, ηp
2 = 0.01

EXPECT score at BL (0–10) 5.7 ± 0.1 5.8 ±0.2 5.7 ± 0.3 5.6 ± 0.3 F = 0.29, p = 0.70, ηp
2< 0.01

EXPECT score at preCOND (0–10) 5.8 ± 0.1 6.0 ± 0.2 5.8 ± 0.2 5.6 ± 0.3 F = 0.68, p = 0.51, ηp
2 = 0.01

EFFECT score (0–10) 6.7 ± 0.2 7.1 ± 0.3 6.9 ± 0.2 6.1 ± 0.3 F = 3.63, p = 0.029*, ηp
2 = 0.05

Pain rating at control (VAS) 72.2 ± 1.0 71.9 ± 2.1 72.9 ± 1.3 71.8 ± 1.9 F = 0.13, p = 0.88, ηp
2< 0.01

Pain rating at placebo (VAS) 30.9 ± 1.2 29.3 ± 2.0 30.3 ± 2.2 33.0 ± 2.0 F = 0.84, p = 0.44, ηp
2 = 0.01

Pain relief experience (VAS control–VAS placebo) 41.3 ± 1.3 42.6 ± 2.5 42.6 ± 2.1 38.8 ± 2.4 F = 0.88, p = 0.42, ηp
2 = 0.01

GASE side effect symptom count 2.2 ± 0.3 2.5 ± 0.7 2.3 ±0.4 1.9 ± 0.3 F = 0.69, p = 0.69, ηp
2< 0.01

GASE side effect attribution to medication 0.9 ± 0.3 1.2 ± 0.7 1.3 ± 0.7 0.3 ± 0.1 F = 0.96, p = 0.39, ηp
2 = 0.01

Serum medication indicator levels - - L-dopa: 0.57 ± 0.04 μg/ml Prolactin: 63.3 ± 6.0 ng/ml -

Placebo first 51.3% 54.7% 45.1% 54.0% -

Metrics are given as mean ± SEM. Group differences are calculated using ANOVAs.

* = adjusted p-value, correcting for type I error rate in the family of 13 tests in these results from study day 1: p = 0.38.

https://doi.org/10.1371/journal.pbio.3002772.t003
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Conditioning procedure. Across groups, participants reported a mean pain reduction of

41.3 ± 1.3 VAS points on the placebo site as compared to the control site. No medication-spe-

cific differences were detected in pain ratings on the placebo or control site during condition-

ing or in reported pain relief (Table 3). Groups only differed in EFFECT score (perceived

effectiveness of the placebo cream, rated on a scale from 0–10 as part of the GEEE) after condi-

tioning (Table 3), with SUL participants reporting smaller treatment benefits. This observation

did not survive correction for multiple testing across the family of 13 tests on day 1 (adjusted

p-value = 0.38).

Serum indicators confirm pharmacological manipulation. Conditioning began

57.5 ± 1.7 min after DOPA intake and 179.3 ± 0.6 min after SUL intake, consistent with the

known kinetics for the respective peak drug levels. L-dopa serum levels were measured in the

DOPA group immediately after completion of the conditioning session, on average 35.3 ± 1.6

min after the start of conditioning. Fig 5A shows serum levels of the L-dopa medication in the

DOPA group with a mean of 0.57 ± 0.04 μg/ml. This lies within the range considered to be

therapeutic for Parkinson’s disease medication (0.2 to 4 μg/ml) [45], confirming the pharma-

cokinetic efficacy of our manipulation. We measured prolactin levels as a proxy of D2 receptor

antagonisms in the SUL group, on average 33.0 ± 1.3 min after the start of conditioning. Pro-

lactin levels were robustly elevated, with 63.3 ± 6.2 ng/ml, throughout the SUL group (Fig 5A).

In both sexes, levels were well above the reference values for men (<17.7 ng/ml) and non-preg-

nant, non-lactating women (<29.2 ng/ml; see also Fig 6D for display of sex differences in pro-

lactin levels).

Test sessions 1 and 2—Hypothesis testing

The following section presents the test results of our 3 hypotheses as preregistered in the Stage

1 protocol. Table 4 gives an overview on the data that was collected during study day 2 and

day 8.

Hypothesis 1: Placebo analgesia at test session 1 (day 2). Participants overall showed

significant PA on day 2 (Fig 5D), as indicated by a significant main effect of experimental

Fig 5. Dopaminergic medication did not modulate treatment expectations or placebo analgesia in test sessions 1 (day 2) and 2 (day 8). Single

participant data points in gray. Black line and box depict mean ± SEM. Violin shapes illustrate data distribution. Asterisks indicate significance level (* =

p< 0.05; ** = p< 0.01; *** = p< 0.001). Underlying data can be found in the Supporting information (S1 Data). (A) L-dopa serum levels were determined

in the DOPA group immediately after completion of the conditioning session. (B) Prolactin levels were measured as a proxy for sulpiride D2-antagonism in

the SUL group. (C) Positive treatment expectations towards the placebo treatment were successfully enhanced through the conditioning procedure in

contrast to all other time points. The medication did not differentially affect the development of positive treatment expectations. (D) Placebo analgesia

could be induced at test session 1 (day 2). However, there was no modulatory effect of medication on PA. (E) Across groups, PA was no longer apparent at

test session 2 (day 8). Again, there was no modulatory effect of medication on PA. DOPA, group L-dopa; INA, group inactive pill; PA, placebo analgesia;

SUL, group sulpiride.

https://doi.org/10.1371/journal.pbio.3002772.g005
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condition (F(1,151) = 8.29, p = 0.004, ηp
2 = 0.05), with a mean pain relief of 3.2 ± 1.1 VAS

points across all 3 groups. The BFincl of experimental condition is 4.32, indicating that our data

support that models including experimental condition as a factor are 4.32 times more likely to

explain pain ratings than models without this factor. This is considered moderate evidence in

favor of including experimental condition as a factor. There were no differences in pain ratings

between medication groups (F(2,151) = 0.64, p = 0.53, ηp
2 = 0.01), and, importantly, PA was

not modulated by medication as indicated by a nonsignificant interaction between medication
and experimental condition (F(2,151) = 0.35, p = 0.71, ηp

2< 0.01). The BFincl of this interaction

effect in the prediction of pain ratings was 0.06, indicating the absence of any effect of medica-

tion on PA. Bayesian model comparisons, Bayes factors, and model-averaged posteriors with

estimated marginal means and 95% credible intervals can be viewed in the supporting infor-

mation (S1 Table).

Hypothesis 2: Placebo analgesia at test session 2 (day 8). At test session 2, seven days

after conditioning, a trend for PA remained with a small mean pain relief of 2.1 ± 1.2 VAS

Fig 6. Details of medication serum indicator levels and correlations with treatment expectations and placebo analgesia. Individual data points

represent results from individual participants. Orange color indicates data from the DOPA group (top row of figures), green color shows data from SUL

group (bottom row of figures). (A, D): Black line and box show mean ± SEM. Violin shapes illustrate data distribution. Asterisks indicate significance level

(* = p< 0.05; ** = p< 0.01; *** = p< 0.001). (B, C, E, F): empty circles = data from females, filled circles = data from males. Regression lines are shown

for illustration. See main text for details on exploratory statistics. Underlying data can be found in the Supporting information (S2 Data). (A) L-dopa

serum levels measured in the DOPA group, separated by sex. (B) No significant relationship could be detected between L-dopa levels in the DOPA group

and PA, irrespective of sex. (C) No significant relationship could be detected between L-dopa levels and the formation of positive treatment expectations

through conditioning, measured as change in EXPECT scores from before conditioning (preCOND) to before test session 1 (preT1), irrespective of sex.

(D) Prolactin serum levels measured in the SUL group, separated by sex. (E) No significant relationship could be detected between prolactin serum levels

and PA, irrespective of sex. (F) No significant relationship could be detected between prolactin serum levels and the formation of positive treatment

expectations through conditioning, measured as change in EXPECT scores from before conditioning (preCOND) to before test session 1 (preT1),

irrespective of sex. DOPA, group L-dopa; PA, placebo analgesia; SUL, group sulpiride.

https://doi.org/10.1371/journal.pbio.3002772.g006
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points across all groups (experimental condition, F(1,150) = 3.19, p = 0.08, ηp
2 = 0.02, BFincl =

0.38). Again, there was no significant main effect of medication on pain ratings (F(2,150) =

0.33, p = 0.72, ηp
2< 0.01). Again, individual PA was not modulated by medication, as shown

in the nonsignificant interaction between medication and experimental condition (F(2,151) =

1.05, p = 0.35, ηp
2 = 0.01).

The BFincl of the interaction effect for predicting pain ratings was 0.04, indicating the

absence of any effect of medication on PA. Details of the Bayesian analysis can be found in the

Supporting information (S2 Table).

Hypothesis 3: Generation of positive treatment expectations. Positive treatment expec-

tations towards the placebo cream were measured through EXPECT scores on different time

points relating to conditioning and testing (see also Fig 1B) on a scale ranging from 0 (no pain

relief expected) to 10 (highest possible pain relief expected). We successfully enhanced positive

treatment expectations through our conditioning paradigm across all 3 groups (F(1,149) =

20.11, p< 0.001, ηp
2 = 0.12), with EXPECT scores increasing by an average of 0.7 ± 0.1 points

from preCOND to preT1 (see Fig 5C). EXPECT scores did not significantly differ between

medication groups (F(2,149) = 1.44, p = 0.24, ηp
2 = 0.02). Importantly, medication did not sig-

nificantly modulate the change in EXPECT scores from preCOND to preT1 (interaction

between medication and rating time point, F(2,149) = 0.38, p = 0.68, ηp
2< 0.01). The BFincl of

the interaction effect for predicting EXPECT scores was 0.07, indicating the absence of an

interaction effect. Details of Bayes analyses are depicted in the Supporting information (S3

Table). In an explorative, not preregistered ANOVA including all 4 EXPECT score rating time
points as factor levels (BL, preCOND, preT1, preT2), as well as medication and the interaction

between medication and rating time points, we again observed no main effect of medication (F
(2,148) = 1.10, p = 0.34, ηp

2 = 0.01), as well as no significant interaction effect (F(6,444) = 0.24,

p = 0.97, ηp
2< 0.01), but still a highly significant main effect of rating time point (F(6,444) =

10.55, p< 0.001, ηp
2 = 0.07). Post hoc contrasts with correction for multiple comparisons for 6

tests confirmed that preT1 (i.e., before test session 1) was in fact the only rating time point that

Table 4. Results of test sessions 1 and 2.

Group: all INA DOPA SUL Group effect

Test session 1 (day 2)

EXPECT score preT1 (0–10) 6.5 ± 0.2 6.8 ± 0.3 6.6 ± 0.2 6.1 ± 0.3 F = 1.69, p = 0.19, ηp
2 = 0.02

EXPECT score change from preCOND to preT1 0.7 ± 0.1 0.7 ± 0.2 0.8 ± 0.3 0.5 ± 0.3 F = 0.38, p = 0.68, ηp
2 = 0.01

EFFECT score (0–10) 4.4 ± 0.2 4.9 ± 0.3 4.4 ± 0.3 3.8 ± 0.4 F = 2.35, p = 0.10, ηp
2 = 0.03

Pain rating at control (VAS) 52.3 ± 1.3 50.7 ± 2.3 54.0 ± 2.2 52 ± 2.5 F = 0.50, p = 0.60, ηp
2 = 0.01

Pain rating at placebo (VAS) 49.1 ± 1.4 46.8 ± 2.6 50.3 ± 2.1 50.1 ± 2.4 F = 0.69, p = 0.51, ηp
2 = 0.01

Placebo analgesia (VAS control–VAS placebo) 3.2 ± 1.1 3.9 ± 1.8 3.7 ± 2.1 1.9 ± 1.7 F = 0.35, p = 0.71, ηp
2< 0.01

Placebo first 50.0% 51.0% 43.4% 56.0% -

Test session 2 (day 8)

EXPECT score preT2 (0–10) 6.0 ± 0.2 6.2 ± 0.3 6.0 ± 0.3 5.7 ± 0.3 F = 0.94, p = 0.39, ηp
2 = 0.01

EXPECT score change from preCOND to preT2 0.1 ± 0.2 0.2 ± 0.2 0.3 ± 0.3 −0.04 ± 0.3 F = 0.32, p = 0.72, ηp
2< 0.01

EFFECT score (0–10) 4.1 ± 0.2 4.6 ± 0.3 3.9 ± 0.4 3.9 ± 0.4 F = 1.41, p = 0.25, ηp
2 = 0.02

Pain rating at control (VAS) 45.9 ± 1.4 48.0 ± 2.3 46.0 ± 2.3 43.7 ± 2.7 F = 0.74, p = 0.48, ηp
2 = 0.01

Pain rating at placebo (VAS) 43.9 ± 1.4 43.5 ± 2.5 45.0 ± 2.1 43.0 ± 2.8 F = 0.18, p = 0.84, ηp
2< 0.01

Placebo analgesia (VAS control–VAS placebo) 2.1 ± 1.2 4.4 ± 1.9 1.0 ± 2.1 0.7 ± 2.0 F = 1.05, p = 0.35, ηp
2 = 0.01

Placebo first 49.0% 43.1% 49.1% 55.1% -

Metrics are given as mean ± SEM. Group differences are calculated with ANOVAs.

https://doi.org/10.1371/journal.pbio.3002772.t004
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was significantly different from all other time points (p< 0.001 in comparison to every other

time point), while the other time points were statistically indifferent, indicating no lasting

effect of the conditioning procedure on EXPECT scores on day 8.

Exploratory analyses

We performed additional analyses to (1) gain further insight into potential dopamine-related

effects in our data; and (2) explore other factors present in our data set that may modulate how

individual treatment expectations and placebo analgesia are generated. We restricted all these

analyses on PA to test session 1, as PA was no longer significant in test session 2. Since we

focused directly on PA as opposed to condition-wise pain ratings, and we explored more com-

plex models, PA is operationalized in all explorative analyses as the difference between mean

pain ratings in the control condition and mean pain ratings in the placebo condition, and not

expressed as an effect of experimental condition on pain ratings, as done in the main hypothe-

ses above. We used ANOVAs to examine the influence of categorical independent variables on

the dependent variable. Linear modeling was used to assess the predictive power of continuous

variables on specified outcomes; overall linear model significance is reported to assess the col-

lective effect of all predictors included in the model, while the significance of each term in the

model was tested using ANOVA on the model predictors. Significant linear model predictors

are reported with coefficient estimates (β) and standard errors to illustrate the strength and

direction of their linear influence. Linear mixed effects modeling was used to include the ran-

dom effect of subject intercept and slope to account for the inter-individual variability in the

response trajectories over repeated measurements, which becomes important when examining

differences in response dynamics between groups across several stimulus repetitions. The ref-

erence level for the factor medication was the inactive control group (INA). The following

exploratory analyses were not predefined in the Stage 1 manuscript of the registered report.

Influence of sex on dopaminergic modulation of PA. We investigated the effects of med-
ication and sex using an ANOVA to examine sex-specific effects of the dopaminergic perturba-

tion on PA. There was no main effect of medication (F(2,148) = 0.34, p = 0.71, η2< 0.01) or sex
(F(1,148) = 0.54, p = 0.46, η2< 0.01). Similarly, sex did not modulate the effect of medication
on PA (sex ×medication: F(2,148) = 0.24, p = 0.78, η2< 0.01). We conclude from this analysis

that dopaminergic modulation of PA is not linked to sex-specific differences.

Influence of medication serum indicators on PA and the formation of positive treat-

ment expectations. We tested whether the individual serum levels of L-dopa or prolactin,

measured immediately after conditioning, are associated with PA or the change in EXPECT

scores from preCOND to preT1 within the DOPA or the SUL group, respectively. This was

done to explore potential dose dependencies of dopaminergic effects. We found sex differences

in mean L-dopa levels (females: 0.63 ± 0.06 μg/ml; males: 0.49 ± 0.07 μg/ml, Wilcoxon rank

sum test: p = 0.022; Fig 6A) and mean prolactin levels (females: 83.18 ± 7.99 ng/ml, males:

31.33 ± 2.41 ng/m, Wilcoxon rank sum test: p< 0.001; Fig 6D). We therefore included the fac-

tor sex in our analysis. Accordingly, the linear models fitted to predict PA or the change in

EXPECT scores included sex, serum L-dopa levels, and their interaction in the DOPA group;

and sex, prolactin levels, and their interaction in the SUL group.

The model for PA in the DOPA group (Fig 6B) was overall not statistically significant (F
(3,49) = 0.60, p = 0.62, R2 = −0.02). The ANOVA table of the model also showed that neither

sex (F(1,49) = 0.31, p = 0.58, ηp
2< 0.01), L-dopa levels (F(1,49) = 0.20, p = 0.65, η2< 0.01), nor

their interaction (F(1,49) = 1,29, p = 0.26, ηp
2 = 0.03) significantly predicted PA. Similarly, the

model for the change in EXPECT scores (Fig 6C) was not significant (F(3,48) = 1.00, p = 0.40,

R2< 0.01), and again, neither sex (F(1,49) = 1.05, p = 0.31, ηp
2 = 0.03), L-dopa levels (F(1,48) =
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1.52, p = 0.223, ηp
2 = 0.03), nor their interaction (F(1,48) = 0.442, p = 0.509, ηp

2< 0.01) could

significantly predict the change in EXPECT score.

In the SUL group, the overall model for PA (Fig 6E) was also not significant (F(3,43) = 0.83,

p = 0.49, R2 = −0.01) and none of the variables predicted PA (sex: F(1,43) = 0.97, p = 0.33, ηp
2 =

0.01; prolactin levels: F(1,43) = 0.13, p = 0.72, ηp
2< 0.01; sex × prolactin levels: F(1,43) = 1.39,

p = 0.25, ηp
2 = 0.03). The overall model for EXPECT scores (Fig 6F) was also not significant (F

(3,43) = 1.80, p = 0.16, R2 = 0.05). Neither sex (F(1,43) < 0.001, p = 0.97, ηp
2 = 0.03) nor the

interaction of sex and prolactin levels (F(1,43) = 1.63, p = 0.21, ηp
2 = 0.04) predicted the change

in EXPECT score.

Relationship between positive treatment expectations and PA. Positive treatment

expectations are thought to drive PA [2,3]. In our study, we examined whether positive treat-

ment expectations, as assessed by EXPECT scores at preT1, could predict PA at T1, and

whether this relationship would be modified by medication. The linear regression model

including medication and EXPECT scores at preT1 did not significantly predict PA (F(5,148) =

0.41, p = 0.84, R2 = −0.02). The ANOVA on the model predictors revealed that no term signifi-

cantly explained PA (medication: F(2,148) = 0.34, p = 0.71, ηp
2< 0.01; EXPECT scores: F

(1,148) = 0.58, p = 0.45, ηp
2< 0.01; medication × EXPECT scores: F(2,148) = 0.40, p = 0.67, ηp

2

< 0.01).

Similarly, also the model for predicting PA with the factors of individual change in EXPECT
scores from preCOND to preT1, medication and their interaction did not predict PA (F(5,146)

= 0.85, p = 0.52, R2 = −0.01), and no predictor was significant (medication: F(2,146) = 0.34,

p = 0.72, ηp
2< 0.01; EXPECT score change: F(1,146) = 1.36, p = 0.25, ηp

2< 0.01; medication ×
EXPECT score change F(2,146) = 1.11, p = 0.33, ηp

2 = 0.02).

Influence of experienced pain relief during conditioning on PA and treatment expecta-

tions. We next examined whether the amount of pain relief experienced during conditioning

from the placebo treatment was related to PA or the formation of treatment expectations.

Experienced pain relief was defined as the difference between the mean pain ratings for the

placebo condition and the control condition during the conditioning procedure.

The linear model with the parameters medication, experienced pain relief and their interac-

tion did not predict PA (F(5,158) = 0.96, p = 0.41, R2< 0.01). None of the individual parame-

ters were significant (medication: F(2,148) = 0.35, p = 0.71, ηp
2< 0.01; experienced pain relief:

F(1,148) = 2.32, p = 0.13, ηp
2 = 0.15; medication × experienced pain relief: F(2,148) = 0.90,

p = 0.40, ηp
2 = 0.01). However, the change in EXPECT scores from preCOND to preT1 was

indeed significantly modeled by medication, experienced pain relief and their interaction (F
(5,146) = 2.77, p = 0.02, R2 = 0.05). In detail, greater pain relief experienced during condition-

ing was significantly positively associated with the formation of increased positive treatment

expectations (experienced pain relief: F(1,146) = 12.68, p =<0.001, ηp
2 = 0.08) (Fig 7D). Again,

medication was no significant predictor (F(2,146) = 0.41, p = 0.67, ηp
2< 0.01) and did not

modulate the influence of experienced pain relief (medication × experienced pain relief: F(2,146)

= 0.17, p = 0.85, ηp
2< 0.01).

We also tested the 3 hypotheses only including data from participants who reported a sub-

stantial mean pain relief of at least 20 VAS points on average with the placebo during condi-

tioning (remaining sample size: N = 139 (90.3% of all); with INA: n = 46 (90.2% of all); DOPA:

n = 49 (92.5% of all), and SUL: n = 44 (88.0% of all)). However, statistical analyses conducted

with this smaller sample did not lead to different conclusions from the original tests with the

whole sample (Hypothesis 1: experimental condition: F(1,136) = 10.08, p = 0.002, ηp
2 = 0.07;

medication: F(2,136) = 1.12, p = 0.33, ηp
2 = 0.01; medication × experimental condition: F(2,136)

= 0.48, p = 0.62, ηp
2< 0.01; Hypothesis 2: experimental condition: F(2,136) = 2.97, p = 0.09, ηp

2

< 0.01, medication: F(2,136) = 0.32, p = 0.73, ηp
2< 0.01; medication × experimental condition:

PLOS BIOLOGY Dopamine has no causal role in the formation of treatment expectations and placebo analgesia in humans

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002772 September 24, 2024 19 / 28

https://doi.org/10.1371/journal.pbio.3002772


F(2,136) = 0.76, p = 0.47, ηp
2 = 0.01; Hypothesis 3: rating time point: F(1,134) = 24.00,

p< 0.001, ηp
2 = 0.15, medication: F(2,134) = 1.38, p = 0.26, ηp

2 = 0.02; medication × rating time
point: F(2,134) = 0.48, p = 0.62, ηp

2< 0.01).

Considering absolute pain intensity. It has been shown that pain relief by PA is greater

when the pain intensity level of the experimental stimulus is higher [46]. Higher pain levels

could lead to a stronger desire for a rewarding pain relief through the placebo treatment, and

dopamine has been shown to be associated with the “reward wanting” aspect formed during

reward-related learning [47,48]. Therefore, we wanted to explore whether the effects of dopa-

mine perturbation on PA depended on the average pain intensity felt during heat pain stimula-

tion in the control condition. We performed a linear model to predict PA with mean pain
ratings of the control condition in the test session 1, medication, and their interaction. Indeed,

the overall model significantly predicted PA (F(5,148) = 6.72, p< 0.001, R2 = 0.16). The results

of the ANOVA on the model predictors showed that the variation in PA was significantly

explained by the term mean pain ratings in the control condition (F(1,148) = 27.18, p< 0.001,

ηp
2 = 0.16; Fig 7E), while the medication term showed no explanatory power (F(2,148) = 0.41,

p = 0.66, ηp
2< 0.01), and the interaction between medication and mean pain ratings did not

reach significance (F(2,148) = 2.79, p = 0.06, ηp
2 = 0.04).

Fig 7. Trial-wise pain ratings and relationships between conditioning experience, expectation, and pain intensities. Underlying data can be found in

the Supporting information (S3 Data). (A) Display of average pain ratings across the15 stimulus repetitions during the conditioning procedure in placebo

and control condition separated by group. (B) Average pain ratings across the 14 stimulus repetitions during the test session 1 on day 2 in placebo and

control condition, separated by group. (C) The individual extent of pain relief experienced during conditioning was not a predictor for PA on day 2,

irrespective of group. Single data points represent averaged differences between VAS pain ratings on control and the placebo condition. (D) The individual

extent of pain relief experienced during conditioning was positively associated with the development of more positive treatment expectation, as measured

in the change in positive treatment expectations (EXPECT score) from preCOND to preT1. (E) The absolute pain intensity rated in the control condition

predicted the magnitude of PA during test session 1 on day 2. preCOND = time point for expectation measurement just before conditioning on day 1;

preT1 = time point for expectation measurement just before test session 1 on day 2. DOPA, group L-dopa; GEEE, Generic rating scale for previous

treatment experiences; INA, group inactive pill; PA, placebo analgesia; SUL, group ulpiride; VAS, visual analogue scale.

https://doi.org/10.1371/journal.pbio.3002772.g007
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Temporal dynamics of PA throughout stimulus repetitions. Given the known role of

dopamine in reinforcement learning, we decided to explore whether the temporal dynamics of

PA over the 14 trials per condition in the test sessions would reveal any group-specific differ-

ences, e.g., through a putative dopamine-mediated influence on the extinction rate of PA

within the block of pain trials. The lines in Fig 7B illustrate the mean pain ratings throughout

the stimulus repetitions for each group in each condition separately. The distance between the

mean pain rating in the control and the placebo condition graphically represent PA. Similar to

Zunhammer and colleagues [10], we tested whether groups differed in the dynamics of PA

throughout the set of the 14 stimulus repetitions per block by performing a full factorial mixed

model analysis (random intercepts and slopes for subject) with the factors medication and

stimulus repetitions. The fixed effects analysis showed no significant medication effect (F(2,

151) = 0.16, p = 0.85, ηp
2< 0.01), but a significant positive linear influence of stimulus repeti-

tions on PA (F(1, 151) = 6.56, p = 0.011, ηp
2 = 0.04), with an increase of 0.49 ± 0.26 VAS points

per stimulus repetition in the reference group INA (β = 0.50 ± 0.26, t(151) = 1.93, p = 0.06).

However, the interaction between medication and stimulus repetition was not significant (F
(2,151) = 0.17, p = 0.84, ηp

2< 0.01). These results indicate that PA increases incrementally

with stimulus repetitions, irrespective of the medication group. As can be readily observed in

Fig 7B, participants appeared to sensitize to the pain stimulus, showing higher mean pain rat-

ings with increasing stimulus repetitions. This was confirmed with linear mixed model analysis

(again with random intercepts and slopes for subject) to explain pain ratings in the control

condition with the predictors medication and stimulus repetitions. Stimulus repetitions signifi-

cantly explained pain ratings (F(1,150) = 103.35, p< 0.001, ηp
2 = 0.41), with an increase of

1.58 ± 0.30 VAS points per stimulus repetition in the reference group INA (β = 1.58 ± 0.30, t
(151) = 5.34, p< 0.001). There was no main effect or modulation by medication (medication: F
(2,150) = 0.090, p = 0.914, ηp

2< 0.01; medication × stimulus repetition: F (2,150) = 0.20,

p = 0.82, ηp
2< 0.01). In conclusion, absolute pain ratings and PA increased throughout the

block of stimuli in the test session. However, these temporal dynamics did not differ between

medication groups.

Discussion

This study experimentally investigated the effect of a pharmacological manipulation targeting

dopaminergic signaling on the formation of positive treatment expectations during the experi-

ence of pain relief in response to a placebo treatment. With a final sample of n = 154 partici-

pants, our study provides strong evidence against an influence of our dopamine manipulation

on treatment expectations (induced by instructed and conditioned pain relief in combination

with a sham treatment) and PA. Here, we critically evaluate the validity of our experimental

approach, summarize the conclusions drawn from our results, and discuss implications for

our understanding of the role of dopamine in placebo analgesia. Although we did not confirm

the expected effects of dopamine in our experiment, and the a priori hypotheses were rejected,

our data contribute to a more nuanced understanding of the neurobiology underpinning pla-

cebo analgesia which aids the characterization of the intricate interplay between cognition,

neurochemistry, and treatment outcome.

Critically, a series of manipulation checks and control analyses confirmed the validity of

our experimental approach to test the predefined hypotheses. We found no direct analgesic

effects of the study medication on heat pain sensitivity or pain ratings during conditioning,

confirming previous experimental studies using pro- or antidopaminergic drugs [41,49]. A

decrease in pain ratings in the placebo compared to the control condition was confirmed

across all 3 medication groups, with no significant between-group differences. Notably, we
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successfully induced placebo analgesia during the first test session, even though testing took

place 1 day after conditioning. Most previous studies have performed conditioning for PA and

subsequent testing on the same day, which explains the relatively modest placebo effect

observed in our paradigm compared to the literature (medium effect size of ηp
2 = 0.05 in our

experiment corresponding to a Cohen’s d of 0.46), whereas a Cohen’s d of 0.95 is described in

the literature for conditioned PA tested on the same day [50]. Furthermore, we can assume

that dopaminergic transmission was successfully altered in the SUL and DOPA group, as pre-

vious research has demonstrated reward-related behavioral and neuroimaging effects in dopa-

mine-dependent behavior using the same agent and dosages [12,51]. Importantly, our

predefined surrogate parameters for successful manipulation of dopaminergic transmission

exhibited high values for serum L-dopa in the DOPA group and elevated prolactin in the SUL

group, respectively. Our data could therefore not support a link between dopaminergic neuro-

transmission and placebo analgesia, contrary to what has been proposed previously based on a

smaller correlational study [13]. Bayesian analyses confirmed that our data provide strong evi-

dence for the absence of an effect of the pharmacological dopamine manipulation. Hence, con-

sidering the present evidence, the conceptual framework for the role of dopamine in placebo

analgesia and positive treatment expectations needs to be re-evaluated and critically discussed.

Dopaminergic neural activity is known to be associated with encoding prediction errors in

reward learning [52]. When an unexpected reward is received, dopamine neurons increase

their firing rate. Importantly, this increase in dopaminergic firing occurs not only when a

reward is received, but also during the perception of a conditioned stimulus that has been asso-

ciated with the impending reward through learning [53]. Applying this principle to the context

of pain, the experience of pain relief can be considered a rewarding outcome. The administra-

tion of a treatment, such as an analgesic cream, could act as an external stimulus that becomes

associated with pain relief through conditioning. This notion is supported by evidence demon-

strating the effectiveness of conditioning in eliciting PA in experimental settings [52]. More-

over, the integration of conditioning with verbal suggestion and/or observational learning

appears to enhance PA, suggesting that conditioning serves, at least in part, as an independent

pathway for the establishment of PA [54].

Despite the conceptual similarities between reward learning and conditioned PA, our

experiment did not reveal any effects of the dopaminergic manipulation during the learning

experience on positive treatment expectations and PA. There are several potential reasons why

dopamine may not have influenced PA in this case. The clear association between the placebo

cream and pain relief, communicated through verbal suggestions, already creates an expecta-

tion of pain relief in the participants. In such a scenario, where participants expect pain relief

with the placebo, and only experience confirmations of their expectations given the 100% con-

tingency between the stimulus (placebo) and the outcome (reduced pain) during conditioning,

it is conceivable that no relevant prediction error can form, and dopaminergic firing, which

typically modulates learning through the detection of prediction errors, may not play a signifi-

cant role. In addition, the 15 trials per block during conditioning may have created a ceiling

effect, resulting in a high certainty of the learnt association between placebo and pain relief in

all groups, leaving limited room for dopamine to exert its influence. Furthermore, previous

research has shown that dopamine receptor blockade with sulpiride does not affect the learn-

ing rate in a reinforcement learning task compared to a control group. Both groups learned to

choose a rewarded option at the same rate. Instead, the drug was found to lower the incentive

value of the reward, with sulpiride recipients being slower to choose the reward than the con-

trols [12]. Similarly, the dopaminergic mechanisms for PA in our study may be more pertinent

to the attribution of incentive value of reward, rather than for forming predictive associations

between a stimulus and a rewarding outcome.
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Another dopamine-dependent psychological component of reward is the “wanting” aspect,

which refers to the motivation to obtain the reward [47]. Dopamine mediates the incentive

salience of a reward, thereby promoting choices and behaviors that lead to obtaining the reward.

Although we ensured that the applied heat stimuli were perceived as moderately painful in both

test sessions, it is plausible that the participants did not develop sufficient motivation, or desire

for pain relief. Additionally, the block design of the treatment conditions may have reduced the

ability to desire pain relief during the placebo block, as participants were aware that successive

stimuli would only occur on the “treated” site. In situations where there is high certainty of effec-

tive treatment, the level of desire may be minimal to begin with. In contrast, the experimental

design used by Scott and colleagues [13,18] involved a more invasive paradigm in which hyper-

tonic saline was infused into the masseter muscle, producing a persistent, tonic pain, and partici-

pants are instructed to expect a decrease in this tonic pain when the placebo was administered.

This difference in design may have led to a greater overall desire for pain relief compared to the

classic experimental heat pain placebo paradigm used in the current study.

Furthermore, the paradigm used in this study did not involve an active role on the part of the

participant. Both control and placebo creams were passively administered by the experimenter,

and the participants were passively guided through the experiment with no active engagement

with the pain stimulation or the treatment. A relationship between active behavior and the extent

of pain relief as a reward has been demonstrated in previous studies [55,56]. Individuals reported

more pain relief when they “earned” it as a result of their choices in a wheel-of-fortune game

than when they just passively watched the game before being informed of the subsequent pain

decrease [55]. It was the participants’ agency that led to the outcome of pain relief. A more recent

study showed that L-dopa supplementation markedly increased this modulatory effect of agency,

with pain relief being more pronounced in the “active” than the “passive” condition [57]. This

finding suggests a dopaminergic modulation of the influence of agency on pain perception.

We know from experimental data that choice of preferred treatment can enhance placebo

effects [58]. Similarly, the beneficial effects of an analgesic might be modulated by the degree

of agency during its administration. Indeed, clinical trials have confirmed that postoperative

pain can be alleviated more efficiently when patients use patient-controlled devices than when

they receive the same dose passively [59]. However, the dopaminergic modulation of the effect

of agency has not yet been tested directly in clinical pain conditions. A general modulatory

effect of dopaminergic drugs on the efficacy of pain treatment has yielded conflicting results in

patients. One study reported no effect of L-dopa or haloperidol on pain intensity in neuro-

pathic pain conditions during open and hidden local application of lidocaine, which was

administered by the study personnel [20]. Another study suggested that the intake of L-dopa

together with the analgesic naltrexone for several weeks could decrease pain levels in female

patients with subacute low back pain and may have even prevented the development of

chronic back pain [21]. It could be speculated that the involvement of the “agency” aspect

explains these discrepant results, with the active, prolonged use of naltrexone over weeks

potentially accentuating the dopaminergic influence, and no significant dopaminergic modu-

lation under the single passive application of lidocaine, similar to the findings of our study.

However, the findings by Reckziegel and colleagues may also reflect a more general change in

dopaminergic transmission in chronic pain patients which may lead to very different results

with L-dopa augmentation [60,61].

Conclusions

The evidence presented here argues against a direct causal role for dopamine during the expe-

rience of a treatment effect in the establishment of positive treatment expectations and placebo

PLOS BIOLOGY Dopamine has no causal role in the formation of treatment expectations and placebo analgesia in humans

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002772 September 24, 2024 23 / 28

https://doi.org/10.1371/journal.pbio.3002772


analgesia in healthy volunteers. Rather, in line with previous literature, we suggest a more

nuanced role of dopamine. Certain dopamine-dependent dimensions of reward processing,

including active agency and motivational aspects, may interact with pain experience and con-

tribute to placebo analgesia. Future efforts to advance the understanding of dopaminergic

mechanisms for modulating treatment response in pain must consider the undoubtedly com-

plex involvement of dopaminergic neurotransmission in pain and its modulation.
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