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Abstract

The functioning of the human heart relies on complex electrical and communication systems that coordinate cardiac con-
tractions and sustain rhythmicity. One of the key players contributing to this intricate system is the K;z2.1 potassium ion
channel, which is encoded by the KCNJ2 gene. K;z2.1 channels exhibit abundant expression in both ventricular myocytes and
Purkinje fibers, exerting an important role in maintaining the balance of intracellular potassium ion levels within the heart.
And by stabilizing the resting membrane potential and contributing to action potential repolarization, these channels have
an important role in cardiac excitability also. Either gain- or loss-of-function mutations, but also acquired impairments of
their function, are implicated in the pathogenesis of diverse types of cardiac arrhythmias. In this review, we aim to elucidate
the system functions of K;z2.1 channels related to cellular electrical signaling, communication, and their contributions to
cardiovascular disease. Based on this knowledge, we will discuss existing and new pharmacological avenues to modulate
their function.
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Introduction

The term “inward rectification" was first introduced in 1949
to describe a phenomenon where ion channels preferentially
allow potassium current to flow into the cell rather than
out of it even with an opposite driving force (Katz 1949;
Nichols and Lopatin 1997). This current was described as
an “inward rectifier potassium current (Ix,)”. The chan-
nels which produce the current are currently known as
inward-rectifier potassium (K;z) channels (Li and Dong
2010; Lopatin and Nichols 2001). Since their discovery,
detailed knowledge on these channels accumulated. Expres-
sion patterns were established, rectification mechanisms
deciphered, and the molecular structure is now resolved.
Functional Iy, channels (Kjz2.1, K\z2.2, and Kz2.3) were
found by patch clamp in nearly all the cardiac myocytes
(Anumonwo and Lopatin 2010). K;z2.1 is predominantly
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expressed in Purkinje fibers and human ventricular cardio-
myocytes, K;z2.2 shows a lower degree of expression when
compared with K;z2.1 in ventricles, and K;z2.3 exists rela-
tively more in the human atria (Anumonwo and Lopatin
2010). Kjg2.2 or K z2.3 subunits can form heterotetramers
with K;z2.1 to modulate I, (Cui et al. 2021; Panama et al.
2007, 2010; Zobel et al. 2003). Cardiac Iy, is mainly com-
posed of K;z2.1 and K;z2.2 heterotetramers (Zobel et al.
2003). K;g2.2 subunits contributed more strongly to the
single-channel conductance but with a significantly shorter
opening time when compared with K;z2.1 (Panama et al.
2010). Channels that contain 2 or more K;z2.2 subunits
showed similar conductance with homomeric Kz2.2 chan-
nels (Panama et al. 2010). When one K;32.3 subunit was
added to a Kjz2.1 channel, the activation kinetics slowed by
approximately threefold, with greater slowing when more
K|g2.3 subunits were subsequently added (Panama et al.
2007). The inward rectification behavior mainly results
from pore blocking by intracellular substances, such as
magnesium ions (Mg>*) and polyamines (Baronas and
Kurata 2014; Ishihara et al. 2009). I, acts in concert with
many other ion channels and some forms of co-regulation
at the cell biological level is present.
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Kg2.1 channels play important roles in maintaining cells'
resting membrane potential (RMP), regulating cell excitabil-
ity, and participating in various physiological processes (Cui
et al. 2021; Dhamoon and Jalife 2005; Li and Yang 2023;
Reilly and Eckhardt 2021). Dysfunctional K;z2.1 channels
will disrupt the hearts normal electrical activity, leading
to irregular heart rhythms and potentially life-threatening
arrhythmias (Crotti et al. 2020; Reilly and Eckhardt 2021;
Van Der Schoor et al. 2020; Zangerl-Plessl et al. 2019).
This review focuses on the importance of K;z2.1 channels
in mediating cellular electrical signaling, cell communi-
cation, and their involvement in cardiovascular diseases.
Now, the gained knowledge impacts our understanding of
Kig2.1 pharmacology and provides new insights for their
drug-design.

Kig2.1 cellular electrical signaling
Structure of the K,32.1 channel

The first complete K|z2.1 channel sequence, encoded by the
KCNJ2 gene, from the mouse, was cloned in 1993 (Kubo
et al. 1993). Nearly thirty years later, the first cryo-electron
microscopy derived structure of the human Kz2.1 channel
was presented (Fig. 1a, b) (Fernandes et al. 2022a, b). Kz2.1
channels are formed by an interaction of four Kyz2.1 proteins
and contain both a transmembrane domain (TMD) and a
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Fig.1 Structure of the Ki2.1 channel. a and b Side view of the human
Kg2.1 atomic structure fitted in the cryo-EM map (Fernandes et al.
2022a, b) (reproduced with approval of the original authors). (¢) Sche-
matic representation of the Kz2.1. D172, E299, and E224 are poly-
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cytoplasmic domain (CTD) (Fernandes et al. 2022b). The
TMD of each protein is composed of 2 transmembrane heli-
ces M, and M, separated by a selectivity filter, containing
the K*-channel signature sequence (T-X-G-Y/F-G). Addi-
tionally, there are two short helical components known as
the slide helix and the pore helix, along with the M, and
M, (Fig. 1b) (Fernandes et al. 2022b). The CTD is com-
posed of the amino (NH,)- and carboxy (COOH)-terminal
regions located on the cytoplasmic side forming a long inner
vestibule that serves as an extension of the channel pore
(Fernandes et al. 2022b; Lu et al. 1999). Around the mem-
brane face of the CTD, an intrinsically flexible loop named
“G-loop” exists which forms the narrowest portion of the
ion conduction pathway (Fig. 1b) (Fernandes et al. 2022b;
Hibino et al. 2010). Along the TMD and CTD, there are
many channel activator and inhibitor binding sites that inter-
fere with the open and closed state of the channel and serve
the function of Kjz2.1 as an inward rectification potassium
channel (Hibino et al. 2010). Some of these sites might serve
as targets in drug development.

Physiological functions of Kz2.1 channels
and the cardiac action potential

Kig2.1 channels play a vital role in mediating cellular elec-
trical signaling in various tissues, including the cardiovascu-
lar system (De Boer et al. 2010a). In resting cardiomyocytes,
the potassium equilibrium potential, Ek, is slightly more
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amine binding sites which are negatively charged. D172 has a strong
binding affinity with polyamines, while E299 and E224 show a weak
binding affinity with polyamines
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negative than the resting membrane potential. Therefore,
at the level of resting membrane potential, Kjz2.1 channels
exhibit a certain outward current. This outward current can
clamp the membrane potential at a more negative level,
which helps to stabilize the resting membrane potential and
regulate excitability. This outward current tends to zero after
further depolarization because of the inward rectification
(Hibino et al. 2010). The lack of outward conductance of
Ik, at positive potentials permits maintenance of a positive
membrane potential established by several depolarizing cur-
rents (Hibino et al. 2010; Kubo et al. 1993; Lopatin and
Nichols 2001). Then time dependent closure of depolarizing
channels and concomitant opening of voltage-gated potas-
sium channels allows a rapid efflux of K* ions, leading to
a repolarization (Grider et al. 2023). Kz2.1 channels play
a role in the terminal phase of the cardiac action potential
(AP) (Reilly and Eckhardt 2021). When the membrane
potential starts to become more negative again, the Kjz2.1
channels gradually recover their conductance (Hibino et al.
2010). This recovery allows a relatively large outward flow
of potassium ions to pass through K;z2.1 channels which
contributes to shortening of the cells’ action potential dura-
tion (APD) (Hibino et al. 2010). During these phases in

4
/

the repolarization process, the Ix,; inward current compo-
nent will prevent a repolarization overshoot. Hence, the Iy,
current contributes to the normal duration of the AP and
stability of the resting membrane potential (Fig. 2). The
I, activity helps to maintain the heart's normal electrical
activity and reduces the likelihood of arrhythmias. Loss- or
gain-of-function mutations or acquired dysregulation of the
channel lead to various pathological conditions, these muta-
tions may impair the channel's ability to properly open or
close, resulting in modified ion conductance and disrupted
cellular excitability.

Opening and closing mechanisms of Kz2.1 channels

Kir2.1 channels exhibit unique opening and closing mecha-
nisms that regulate their activity and play a crucial role in
cellular physiology. The channel opening and closing mecha-
nisms of Kjz2.1 channels involve various factors, including
membrane voltage, intracellular polyamines, lipids, modula-
tory proteins, several cations, and others (Hibino et al. 2010).

At membrane potentials negative to the reversal potential
(Ek), the channels exhibit a high open probability, facilitating
the influx of potassium ions (Anumonwo and Lopatin 2010;
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Fig.2 A typical example of Ig, recording in a KWGF cell and its
effect on AP. KWGEF cells are Human embryonic kidney (HEK)-293
cells that stably express C-terminal GFP (Green fluorescent protein)-
tagged murine K;z2.1 (De Boer et al. 2006; Li et al. 2023). a Ik, cur-
rent/voltage (I/V) relationship showing a reversal potential at approxi-
mately -85 mV and strong rectification at voltages between -60

and + 30 mV. The current above the X-axis is the outward component,
and the current below the X-axis is the inward component. The dotted
line represents the I-V curve without the rectification. b Contribution
of Iy, to the cardiac AP. Temporal changes in Iy, could determine the
duration of AP (APD), as it blocks during the depolarization phase
and increases in the final repolarization phase
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Dhamoon and Jalife 2005; Li and Dong 2010). Conversely, the
channels undergo pore block at membrane potentials positive
to the voltage threshold, resulting in closure and diminished
ion conductance (Anumonwo and Lopatin 2010; Dhamoon
and Jalife 2005; Li and Dong 2010). The driving force behind
ion movement is determined by a combination of an electrical
and potassium gradient over the plasma membrane (Gadsby
2009). Changes in membrane potential due to depolarization
or hyperpolarization led to alterations in the electric driving
force (membrane potential Vm—reversal potential Ek), the
altered electric driving force works on the chemical driving
force, subsequently influencing K* ion movement in or out
of the cell. Therefore, it can be explained that even though
Kiz2.1 channels are not voltage-gated by itself, they can still
be influenced by the membrane potential.

Kig2.1 channels exhibit a constant permeability when the
inward or slightly outward potassium driving force is pre-
sent. However, when the driving force becomes significantly
outward, K* permeability declines rapidly. The mechanism
underlying this driving force-induced permeability change
primarily involves the blockage of outward potassium cur-
rent by intracellular Mg?* or polyamines such as spermine
and spermidine (Ficker et al. 1994; Ishihara et al. 2009;
Nichols and Lee 2018). These positively charged substances
bind to negatively charged amino acids within the pore of
the Kjz2.1 channel, thereby reducing the conductance of
outward currents (Fujiwara and Kubo 2006). Early studies
showed that Mg>* dependent I, block is the cause of inward
rectification, but increasing amount of studies now proved
that spermine is the main factor responsible for inward
rectification, followed by spermidine, putrescine and then
Mg2+ (Anumonwo and Lopatin 2010; Ficker et al. 1994;
Kubo 1996; Lopatin et al. 1994; Nichols and Lee 2018).
This K;z2.1 channel block occurs in a two-step process. The
initial step, which is weakly voltage-dependent, involves the
entry and interaction of polyamines into the Kz2.1 chan-
nel pore (Anumonwo and Lopatin 2010; Nichols and Lee
2018). This interaction occurs at a specific site of nega-
tively charged amino acids (E224 and E299) located in the
C-terminus of the channel (Fig. 1¢) (Anumonwo and Lopatin
2010; Kubo and Murata 2001; Nichols and Lee 2018). The
subsequent step, which is more strongly voltage-dependent,
involves the movement of polyamines to a deeper binding
site, in the TMD, at the D172 residue (Fig. 1c) (Anumonwo
and Lopatin 2010; Kubo and Murata 2001). During mem-
brane hyperpolarization, the time-dependent activation of
strong inward rectifiers reflects the exit of polyamines from
the pore (Ishihara et al. 1996; Ishihara and Ehara 2004).

Kir2.1 channels engage in interactions with diverse
regulatory proteins, including protein kinase A (PKA),
protein kinase C (PKC), and Phosphatidylinositol-4,5-
bisphosphate (PIP,) (D'avanzo et al. 2010; Karschin 1999;
Reilly and Eckhardt 2021; Trum et al. 2020; Xie et al. 2008).
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For example, an earlier study showed that the open probability
of a recombinant Kjz2.1 and K;z2.3 is inhibited by both PKA
and PKC mediated phosphorylation (Karschin 1999). PIP,,
a crucial lipid constituent of the plasma membrane, acts as a
positive modulator of K;z2.1 channels by binding to specific
sites within the channel structure, thereby regulating the
channel and enhancing its open probability (D'avanzo et al.
2010; Fernandes et al. 2022b; Li et al. 2015; Ruddiman et al.
2023; Xie et al. 2008).

Regulation of I, by different cations

Three physiological relevant cations, i.e. K*, Na*, Ca**, and
the poisonous Ba* are well known to affect the Kiz2.1 chan-
nel function (Anumonwo and Lopatin 2010; Bhoelan et al.
2014; Hibino et al. 2010). Elevating the concentration of
extracellular K* ([K*],) tends to enhance Iy, (Chang et al.
2010; Ishihara 2018; Kubo 1996; Liu et al. 2011). For the
inward component, this is easy to explain since a higher
[K+]O increases the chemical driving force for K* flow into
the cells. But with regard to the outward component, several
hypotheses have been raised. Some researchers think that
the elevated [K+]0 activates the channel, allowing more K*
flow out of cells, thus interfering with the channel’s open
probability (Pennefather et al. 1992). Some prefer the view
that elevated [K™], weakens the polyamine or Mg**-induced
rectification of the channel so that the peak I, current is
increased (Kubo 1996). Some overturned these two hypoth-
eses, and they proved that the open probabilities of the chan-
nel and spermine-binding kinetics were not interfered when
the [K*], increases at a constant driving force, but the con-
ductance of the channel was increased (Liu et al. 2011). In
addition, some researchers proved that the [K+]0 increase
in I, is not caused by activating the channel but is caused
by physiologically relevant competition from impermeant
extracellular Na* or Ga>* (Chang et al. 2010; Ishihara 2018).
Increased concentrations of extracellular Na* ([Na*]))
reduce the outward Ig; due to pore blocking and surface
charge effect (Chang et al. 2010; Ishihara 2018).

Many studies agree that Iy, is Ca?-sensitive, but the
modulatory effects of Ca** on Iy, are controversial (Nagy
et al. 2011, 2013; Wagner et al. 2009). In some cases, Iy,
was shown to decrease with elevated intracellular or extra-
cellular Ca** ([Ca**],,) (Chang et al. 2010; Fauconnier et al.
2005; Matsuda and Cruz Jdos 1993; Mazzanti and Defelice
1990; Zaza et al. 1998). In ventricular myocytes isolated
from failing rat hearts, Iy;; was observed to decrease because
of the blocking effect by elevated [Ca”]i (Fauconnier et al.
2005). Similar to [Na*],, the increased [Ca**]  was reported
to reduce Iy, by blocking the channel pore and the effect of
altered surface charge (Chang et al. 2010). Calcium/Calm-
odulin-dependent protein kinase II (CaMKII), an enzyme
that relies on elevated [Caz*']i for its activation, regulates
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Ix; (Ma et al. 2021; Nagy et al. 2013; Wagner et al. 2009).
Chronic activation of CaMKII was reported to downregulate
Kiz2.1 mRNA expression and decrease I in a mouse model
(Wagner et al. 2009). In addition, I, also shows an increase
with rising [Ca®*]; in some other cases (Nagy et al. 2011,
2013). For example, Ca** influx during exercise was shown
to increase Iy, (Nagy et al. 2011). Another study showed
that elevated [Ca®*]; results in an increase in I, in isolated
dog ventricular cardiomyocytes, and Ix, was significantly
reduced by inhibiting CaMKII (Nagy et al. 2013). This
[Ca®*];-dependent augmentation of I, shortened the repo-
larization phase of the AP, suggesting that it could serve as
a protective mechanism against cardiac arrhythmias induced
by the calcium overload (Nagy et al. 2013). Therefore, the
influence of Ca’* on Iy, appears to be dependent on the spe-
cific experimental conditions and cellular context, leading
to conflicting findings among studies.

Ba®* is an effective K;z2.1 channel blocker leading to a
decrease in the Iy, current, and this block is both voltage and
time-dependent (Imoto et al. 1987). Blockage is achieved
by a Ba>* ion entering and blocking the pore at the selec-
tivity filter. At more negative membrane potentials, Ba**
has a strong sensitivity to the channel and causes stronger
and more rapid block than when the membrane potential
becomes more positive (Imoto et al. 1987). Cs* and Sr** also
exhibit full inhibitory activity immediately at the beginning
of each application period, but these 2 blockers were shown
less potent than Ba>* (Sanson et al. 2019). A recent study
revealed an additional mechanism of blocking apart from
pore obstruction of external Ba®* and Cs* (Gilles 2022). The
work suggests interaction of the ions to an extracellular side
of the channel. Furthermore, blockage is independent of the
K™ ion flux (Gilles 2022).

Kiz2.1 channels in their cellular context
Channel trafficking

Channel trafficking refers to the process by which channel
proteins are transported to their appropriate cellular des-
tinations within a cell or between different cellular com-
partments (Steele et al. 2007). In general, ion channel traf-
ficking can be divided into forward trafficking (towards the
plasma membrane), backward trafficking (removed from the
plasma membrane), and recycling that couples backward to
forward trafficking mechanisms (De Git et al. 2013; Hager
et al. 2021) (Fig. 3). It is an essential cellular mechanism
that ensures proteins are delivered to the correct location
for their proper function. Proteins are synthesized in the
endoplasmic reticulum (ER), and only properly folded and
assembled channels are exported from the ER to the Golgi
apparatus (Steele et al. 2007). The field of cystic fibrosis,

in which mutations in the affected chloride channels result
often in aberrant channel expression at the plasma mem-
brane, demonstrated the clinical efficacy and specificity of
pharmacological chaperones to restore normal channel func-
tion (Gramegna et al. 2021).

The K;z2.1 protein has an ER export sequence in the
C-terminus (374FCYENEV380, numbers based on human
sequence) and a Golgi export sequence in the N-terminus
(*RSRFVK*) which play a role along the intracellular
forward trafficking route (Hofherr et al. 2005; Ma et al.
2001, 2011; Stockklausner et al. 2001; Stockklausner and
Klocker 2003). Disruption of the **FCYENEV**® motif
(GFPKz2.1-E377/379A) resulted in an accumulation of
Kir2.1 channel proteins in the ER and led to a decrease in its
presence in both the Golgi and the plasma membrane (Ma
et al. 2001; Stockklausner and Klocker 2003). The S369X
mutant led to a premature stop codon at S369, causing a
loss of 59 amino acids in the C-terminal (Doi et al. 2011).
Individuals carrying the S369X mutation will lose the ER
export motif and be diagnosed with Andersen-Tawil syn-
drome (ATS) (Doi et al. 2011). Disruption of the **RSR-
FVK* motif leads to an accumulation of Kz2.1 channel
proteins within the Golgi and causes a significant reduction
of properly folded K;z2.1 anchoring on the cell membrane
(Hofherr et al. 2005; Ma et al. 2011; Stockklausner and
Klocker 2003). This Golgi export sequence can form a rec-
ognition site for the clathrin adaptor proteins (AP-1), thereby
marking K;z2.1 channel proteins for packaging into different
clathrin-coated vesicle (Hofherr et al. 2005; Ma et al. 2011).
Besides the N-terminal sequence, a C-terminal ATS muta-
tion (Kg2.1A314-315) blocks Golgi exit similarly (Ma et al.
2011). The colocalization of this mutant channel with trans-
and cis-Golgi markers suggests that the mutation blocks
channel protein trafficking out of the Golgi (Ma et al. 2011).

Disruptions in protein trafficking can have severe con-
sequences for cellular function and can lead to various dis-
eases. Loss-of-function mutation associated and acquired
disruptions in normal K;2.1 protein trafficking can result
in altered membrane expression of Kjz2.1 channels resulting
in, for example, abnormal repolarization (De Git et al. 2013;
Hager et al. 2021). This can contribute to the development
of ATS and an increased risk of arrhythmias (Hibino et al.
2010). Proper Kg2.1 channel trafficking is also important
in other systems besides the cardiovascular system (Akyuz
et al. 2022; Binda et al. 2018). For example, decreased
expression of K;z2.1 channels in neurons can result in
altered membrane potentials and increased neuronal excit-
ability, these changes can contribute to the development of
epilepsy (Akyuz et al. 2022). In contrast, enhanced expres-
sion of K;z2.1 channels was involved in the autism spectrum
disorder (ASD) (Binda et al. 2018).

Kg2.1 channel trafficking can be regulated by various
signals and factors. Interactions with other proteins can
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Fig.3 Schematic representation of intracellular trafficking pathways
of Kig2.1 channels. Arrows indicate the trafficking routes for Kiz2.1.
ER, endoplasmic reticulum; MVB, multivesicular bodies; AP-1, Gol-

lead to altered trafficking or degradation of the channel.
The hypomorphic K;z2.1A314-315 mutation of the K;z2.1
channel disrupts Golgi trafficking by deficient AP-1 bind-
ing, leading to the development of ATS (Ma et al. 2011). In
the Golgi apparatus, Golgin-97 which belongs to membrane
and cytoskeleton tethers helps capture the K;z2.1-containing
vesicles to Golgi and facilitates Kjz2.1 transport into AP-1
associated vesicles (Hager et al. 2021; Taneja et al. 2018).
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gin-97, GRIF-1, SAP-97, Rac-1, and ESCRT are regulators during
the process of K2.1 proteins trafficking

Even though Golgin-97 is necessary for the forward traffick-
ing of the Kjz2.1 channel proteins, it also mediates the retro-
grade transport of endosomes to the Golgi (Shin et al. 2017).
The y-aminobutyric acid type A receptor interacting factor-1
(GRIF-1) plays a role in the forward trafficking by bind-
ing with the C-terminus of K;z2.1, then promoting the traf-
ficking of vesicles and facilitating the anchoring of Kiz2.1
channel protein on the cell membrane (Grishin et al. 2006;
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Hager et al. 2021). SAP-97 which is a membrane-associated
scaffolding protein, regulates the Nay1.5/Kz2.1 complex,
leading to a decrease in the internalization of Kz2.1 (Mil-
stein et al. 2012). Ras-related C3 botulinum toxin substrate
1 (Racl) showed strong specificity with K;z2.1 channels,
as K\g2.2 and K32.3 channels were not involved in the
regulation by Racl (Boyer et al. 2009). Data suggested that
inhibiting Racl1 resulted in approximately a twofold increase
in K|g2.1 channel expression by interfering with endocyto-
sis, likely via a dynamin-dependent pathway (Boyer et al.
2009). The endosomal sorting complex required for trans-
port (ESCRT) was required for the lysosome-dependent deg-
radation of Kj32.1 in human cells and regulates the level of
Kig2.1 at the cell membrane (Hager et al. 2021; Kolb et al.
2014). Clathrin-mediated endocytosis and late endosomal or
lysosomal activities are also critical for the degradation of
Kir2.1 channels (Jansen et al. 2008; Li et al. 2023; Varkevis-
ser et al. 2013). Our previous study proved that propafenone
causes intracellular accumulations of Kz2.1 most likely by
inhibiting the function of the late endosome (Li et al. 2023).
Intracellular signaling pathways impact the trafficking of
K|g2.1 channels, for example, the Ras-MAPK pathway
modulates the Iy, current by altering the channel density
on the cell membrane (Giovannardi et al. 2002). In addi-
tion, functional actin and tubulin cytoskeleton systems are
crucial for the forward trafficking of Kiz2.1 channels, and in
turn functional membrane expression and anchoring of the
Kir2.1 channel also regulate the actin filament dynamics (Li
et al. 2022; Wu et al. 2020). The initial backward trafficking
depends on a functional dynamin system (Li et al. 2022).

Coregulation of functional pairs

From a physiological viewpoint different ion channels have
to coordinate their activity, for example to generate proper
action potential characteristics. To this end, several ion
channels are found to make functional pairs, also referred
to as channelosomes (Gutierrez et al. 2024). Sodium inward
current (Iy,) and Ig, current are two important ionic currents
that control the ventricular excitability (Varghese 2016). Strong
evidence showed the existence of reciprocal modulations
between Nay1.5 and Kjz2.1 channels (Dago et al. 2022;
Goversen et al. 2016; Li et al. 2021b; Macias et al. 2022;
Matamoros et al. 2016; Milstein et al. 2012; Perez-Hernandez
et al. 2018; Ponce-Balbuena et al. 2018; Utrilla et al. 2017,
Varghese 2016). Kjz2.1 and Nay, 1.5 channels physically interact
and form the macromolecular complexes (Kz2.1- Nay1.5
channelosomes) during transportation from sarcoplasmic
reticulum (SR) to Golgi, and then trafficking together to the
cell membrane (Gutierrez et al. 2024; Ponce-Balbuena et al.
2018). Nay 1.5 channel proteins can reduce the internalization
of Kjz2.1 channel proteins to promote the channel presence at
the cell membrane (Milstein et al. 2012). Trafficking defects in

the Nay, 1.5 channel will cause a decreasing Iy, in addition to
I\, (Perez-Hernandez et al. 2018; Reilly and Eckhardt 2021).
Similarly, trafficking defects of Kz2.1 lead to a down-regulation
of Nay 1.5 expression and current density (Macfas et al. 2022).
Increased expression of Nay 1.5 channels concurrently induces
the upregulation of the Kz2.1 channel expression (Milstein
et al. 2012). In a human in vitro cardiomyocyte myocardial
infarction model, a decreased Nay1.5 and K;z2.1 protein
expression accompanied by reductions in Iy, and Ig, was
observed, and functional expression of both channels could
be restored by liver-derived fibroblast growth factor 21 (Li
et al. 2021b). The reciprocal modulation between K;z2.1 and
Nay, 1.5 relies on a specific C-terminal PDZ-binding domain
located in Kz2.1 and a PDZ-like binding domain located
at the N-terminus of the Nay 1.5 channel (Matamoros et al.
2016). Dysfunction of Nay 1.5 and K;z2.1 channelosomes is
associated with severe cardiac diseases, such as ATS, Short QT
syndrome type 3 (SQT3), Brugada syndrome and Duchenne
muscular dystrophy (Gutierrez et al. 2024). However, the effect
of K|g2.1 channel expression on Nay 1.5 channels remains
controversial and might be stimulus specific. For example, our
previous study demonstrated that propafenone enhances the
expression level of Kiz2.1 channel proteins without interfering
with Nay 1.5 channel expression (Li et al. 2023; Milstein et al.
2012). Another study that is inconsistent with the reciprocity
modulation demonstrates that in synapse-associated protein-97
(SAP-97) knockout mouse cardiomyocytes, I, was decreased
but I, was not altered (Gillet et al. 2015).

Gap junctions are specialized structures that allow direct
communication and electrical coupling between cells, which
is critical for synchronized activity in tissues like the heart
(Gao et al. 2015). Gap junctions facilitate the conduction of
APs from one myocyte to another (Veeraraghavan et al. 2014).
Functional gap junctions exist of connexin proteins (Zhang
et al. 2018). The major gap junction connexin between ven-
tricular cardiomyocytes is Connexin-43 (Cx-43) (Gao et al.
2015). Some studies demonstrated that the expression levels of
Cx-43 and K2.1 channel proteins altered synchronously after
treatment (Lee et al. 2015; Qian et al. 2021; Raad et al. 2021;
Zhang et al. 2018, 2013b). For example, the expression levels
decreased in model rat myocardial tissues and were elevated
after pretreatment with pinocembrin (Zhang et al. 2018). The
relationship between Cx-43 and K;z2.1 channels probably lies
in their contribution to the overall electrical behavior of car-
diac tissues. A study transfected the gene of Kz2.1 channel
(KCNJ2), Nay1.5 channel (SCN5A), and the Cx-43(GJAI)
in HEK-293 T cells proved that overexpression of Cx-43
in these transfected cells shows enhanced intercellular cou-
pling and permits rapid AP propagation (Kirkton and Bursac
2011). Another study transfected varying ratios of Kjz2.1 and
bacterial sodium channel (NayD) with and without Cx-43
in cells, found more Ca®* responses were generated in cells
expressed with Cx-43 (Thomas and Hughes 2020). Cx-43 is a
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Ca’*-dependent channel, and Iy, is also Ca**-sensitive (Lurtz
and Louis 2007; Nagy et al. 2011). In this perspective, perhaps
Ca’* is the bridge between K;z2.1 and Cx-43. However, in
some cases of human AF, the K|z2.1 channel expression and
I, current were increased without interfering with the locali-
zation and expression of the Cx-43 (Girmatsion et al. 2009).
These different alterations may suggest an overlapping regula-
tory pathway between the channel of K;z2.1 and Cx-43.

Kiz2.1 related cardiovascular diseases
and pharmacological avenues

Kir2.1 channel activity directly affects the cardiac electrical
stability of the human heart (Hibino et al. 2010; Li and Dong
2010; Reilly and Eckhardt 2021). The gain-of-function and

loss-of-function of the Kjz2.1 channel can both cause different
kinds of arrhythmias (Hibino et al. 2010). Some of the muta-
tions on the KCNJ2 gene associated with cardiovascular diseases
are shown in Fig. 4. Besides genetic causes, impaired K;z2.1
channel function resulting from drugs, electrolyte abnormalities,
etc. can also lead to the development of some acquired diseases
(Kim 2014; Maruyama et al. 2011). The following K;z2.1 chan-
nel diseases are associated with the heart.

The Anderson-Tawil syndrome

The Anderson-Tawil syndrome (ATS), characterized by
periodic paralysis, cardiac arrhythmias, and dysmorphic
features, is caused by loss-of-function mutations in the
KCNJ2 gene (Jongsma and Wilders 2001; Perez-Riera et al.
2021). ATS is classified as Long QT Syndrome 7 (LQT7)

G144A/D/S G144D

G146A/D/RISIV

S136F__ E138K/NV
L134F T141P Y145C
ATS sQr V126G T142P
AFA V123G
c122y
H110L

ATS misdiagnosed as CPVT

1 OLgQP 157
C101R
F99S
Del95-98 Del163-164
(gt D172N
Vel Ins177-178
Del91-94
R82W R82Q ;{:gzv ,J 7§Q/T rso8y
186
D78G/Y K187R T05S M307I/V
(‘3’7722 Del188 T305A/NP/S Ta09l
R1891/S R312GH
Del75 N1901 E303K
. Del314-315
T';;?Nﬁ T192A/ Del302 el
T74A L193P VvV302M N318S
D71N/N/Y/A G206D M301K W322C
Y68D R213X Del300-303
R67Q R67Q/W G215D/R G300A/D/V K346T
N216H Del299-301 8360X
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Gs2v R218P/Q/W T400M
R40X S2201
L2225 427
V227F V227F
R5X InsR228 R228X Del271-282 COOH
1 R260P/H

NH,

Fig.4 Representations of disease-associated mutations on K2.1
protein. Loss-of-function mutation associated with ATS (Anumonwo
and Lopatin 2010; Beverley and Pattnaik 2022; Fernlund et al. 2013;
Fukumura et al. 2019; Kimura et al. 2012; Moreno-Manuel et al.
2023; Nguyen et al. 2013; Obeyesekere et al. 2011; Sinkovec et al.
2013; Van Ert et al. 2017; Villar-Quiles et al. 2022; Vivekanandam
et al. 2022; Yim et al. 2021) shown in black, and gain-of-function
mutations associated with SQT (Ambrosini et al. 2014; Deo et al.
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2013; Hattori et al. 2012; Priori et al. 2005), FAF (Xia et al. 2005),
and ASD (Binda et al. 2018) are depicted in green, blue, and brown
font respectively. Loss of function mutations which were misdiag-
nosed as CPVT (Walsh et al. 2022) are in red. “Ins” is for insertion
and “Del” is for deletion. ATS, Anderson-Tawil syndrome; SQT,
Short QT Syndrome; FAF, Familial Atrial Fibrillation; ASD, autism
spectrum disorder; CPVT, Catecholaminergic Polymorphic Ventricu-

lar Tachycardia
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(Tristani-Firouzi et al. 2002). Because it impedes myocel-
lular repolarization, as individuals display an extended QT
interval on their electrocardiograms (ECGs) (Tristani-Fir-
ouzi et al. 2002). But unlike other types of LQTS, it causes
distinct ventricular arrhythmias with a lower susceptibility
to sudden cardiac death, and it also interferes with other
systems in addition to the heart's electrical system (Tristani-
Firouzi et al. 2002). However, subsequent clinical findings
conclude that the Q-U interval is markedly prolonged instead
of the QT interval, so some researchers prefer to name this
disease ATS type 1 (AST1) rather than LQT?7 (Adler et al.
2020; Delannoy et al. 2013; Moreno-Manuel et al. 2023;
Nguyen et al. 2013; Zhang et al. 2005b). An LQTS-specific
genetic study from 2020 shows that the evidence to classify
ATS as LQTS is limited (Adler et al. 2020). ATS1 is a rare
autosomal dominant inherited disorder that accounts for 60%
of the ATS incidence (Veerapandiyan et al. 2018). ATS2
which is caused by the mutation of KCNJ5, coding for a G
protein-activated inward-rectifier channel, accounts for 15%,
the remaining ATS cases are not yet linked to a genetic vari-
ant (Kokunai et al. 2014; Perez-Riera et al. 2021).

ATS shares some phenotypes with the catecholaminergic
polymorphic ventricular tachycardia (CPVT) (Le Tanno et al.
2021; Nguyen and Ferns 2018). Mutations (G144D, T305S,
R67Q, V227F, R82W) in the KCNJ2 gene were identified in
individuals who had the clinical phenotype features of CPVT
(Kalscheur et al. 2014; Kimura et al. 2012; Tester et al. 2006).
However, a gene curation expert panel (GCEP) deemed that
KCNJ2 gene mutations scored with limited evidence as single
gene causes for CPVT and classified the KCNJ2 gene as
“disputed” (Walsh et al. 2022). The GCEP prefers that these
KCNJ2 mutations were more accurately corresponded to a
cardiac-restricted expression of ATS (Walsh et al. 2022).

There are no standardized treatment methods or guidelines
for ATS (Moreno-Manuel et al. 2023). Medication manage-
ment such as beta-blockers or anti-arrhythmic drugs may be
prescribed to help control abnormal heart rhythms and cal-
cium channel blockers may be used to manage the potassium
imbalances that can occur in ATS1 (Kostera-Pruszczyk et al.
2015; Perez-Riera et al. 2021; Sansone and Tawil 2007). For
specific symptoms, like periodic paralysis caused by low
serum potassium levels, daily potassium supplementation
will be beneficial (Statland et al. 2018). The elevated serum
potassium level also benefits patients who suffer a long QT
interval at the same time (Sansone and Tawil 2007). Because
of the rarity of ATS (1: 500,000-2,000,000), it is very dif-
ficult to collect sufficient patients for clinical trials (Barron-
Diaz et al. 2020). Therefore, animal models or cell models
of ATS are highly desirable. Even though various treatments
have been reported in the medical literature, they seldom
target Kjz2.1 channels. Class 1c antiarrhythmic drugs like
flecainide and propafenone together with beta-blockers are
used to treat ATS1 (Barajas-Martinez et al. 2011; Delannoy

et al. 2013). Interestingly, flecainide and propafenone have
direct drug-channel interactions with the K;z2.1 channel by
binding with Cysteine 311 (Cys311), thereby increasing Iy,
current by reducing the binding affinity of polyamine (Cabal-
lero et al. 2010; Gomez et al. 2014). However, the efficacy
of these two drugs was controversial in the clinical setting
(Barajas-Martinez et al. 2011; Bienias et al. 2018; Junker
et al. 2002; Nguyen and Ferns 2018). Researchers have been
exploring various compounds and approaches that modulate
the activity of K|z2.1 channels, aiming to find out some poten-
tial therapeutic methods. Zacopride was originally used as an
antiemetic agent, but its effects on the cardiovascular system
were getting noticed (Smith et al. 1989). Zacopride acts as a
Kir2.1 channel opener leading to hyperpolarization, shorten-
ing the APD, and suppressing aconitine, acute ischemic and
reperfusion-induced arrhythmias in rat (Liu et al. 2021, 2012;
Zhai et al. 2017). Unfortunately, the Zacopride work is still
hampered by a case of scientific misconduct (Korte and Van
Der Heyden 2017). The small-molecule drug BGP-15 was
reported to stabilize the I, current amplitude after cells suf-
fered PIP, depletion (Handklo-Jamal et al. 2020a). BGP-15
probably can regulate the level, availability, or localization of
PIP,, thereby stabilizing the open state of the K;z2.1 chan-
nel (Handklo-Jamal et al. 2020a). Tetramisole was shown to
increase the I, current by facilitating the forward trafficking
of the Kjz2.1 channel, deactivation PKA signaling, and restor-
ing the Ca”* balance (Liu et al. 2022). A desmosome protein
Plakophilin 4 (PKP4) was reported as an IK; up regulator
by BiolD and patch clamp analysis (Park et al. 2020). These
potential K;z2.1 positive modulators of Iy, (AgoKirs (Van
Der Schoor et al. 2020)) are interesting candidates and start-
ing points in generating pharmacotherapy to relieve or resolve
symptoms of ATS (Table 1).

Short QT syndrome type 3

Short QT syndrome (SQTS) is a rare genetic disorder char-
acterized by an abnormally short QT interval on the ECG,
indicating a shortening of the depolarization-repolarization
cycle for each heartbeat (Dewi and Dharmadjati 2020).
The shortened QT interval can disrupt the heart's normal
electrical activity, potentially leading to cardiac events, and
increasing the risk of life-threatening arrhythmias, such as
ventricular fibrillation and sudden cardiac arrest (Dewi and
Dharmadjati 2020; Hancox et al. 2023; Kim et al. 2021).
Schwartz's score helps in diagnosing SQTS and its subtypes
(Dewi and Dharmadjati 2020). There are now 6 subtypes of
SQTS recognized, including SQTS3, which is associated
with a gain-of-function mutation in the KCNJ2 gene (Dewi
and Dharmadjati 2020). The first reported mutation site is
at amino acid 172, mutated from aspartic acid to asparagine
(D172N) (Priori et al. 2005). D172 is an important binding
site for polyamines, therefore the D172N substitution in the
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Table 1 Drugs and compounds modifying Kz2.1 carried Iy,

S.no Drug/compound Effects on Iy

Working mechanism

in clinical References

use

Reduce the binding affinity of poly- Yes

(Gomez et al. 2014; Hii et al. 1991)

AgoKirs
1 Propafenone Ixro.1 ECso 12 nM
amine by direct bind with Cys311
on the K;z2.1 channel
2 Flecainide Ixir2.1 ECsy 0.4 pM

Reduce the binding affinity of poly- Yes

(Basza et al. 2023; Caballero et al. 2010)

amine by direct bind with Cys311
on the Kz2.1 channel

3 Zacopride Ik, 28—40 pM Associate with CaMKII, PKA No (Elnakish et al. 2017; Liu et al. 2021;
Signalling Zhang et al. 2013a)
BGP-15 Ig, 30-45% at 50 uyM Presumed PIP, interference No (Handklo-Jamal et al. 2020b)
5 Tetramisole Ix; ECs; approx. 10 uM Facilitate K{z2.1 channel forward ~ Yes (Liu et al. 2022; Thienpont et al. 1969)
trafficking, deactivation PKA
signalling, restoring the Ca?*
balance
AntaKirs
6 Carvedilol Ixiro.1 IC50>50 M Presumed PIP, interference Yes (Ferrer et al. 2011; Turco et al. 2023)

7 Quinidine

Ixiro.1 ICso approx.290 pM  Prevent re-entry associated with the Yes
heterozygous D172N condition;

(Koepple et al. 2017; Li et al. 2021a;
Luo et al. 2017a)

Pore block and PIP, interference

8 Quinacrine Ixiro 1 ICso 65 pM

ence
9 Chloroquine I, IC5, 0.69 M
ence

10  Gambogic acid  Igg, IC50 4.8 pM

Direct pore block and PIP, interfer-  Yes
Direct pore block and PIP, interfer-  Yes

Change the K* channel membrane  No
microenvironment, pore block

(Lopez-Izquierdo et al. 2011a)

(Martinez et al. 2020; Noujaim et al.
2010)

(Scherer et al. 2017; Zaks-Makhina et al.
2009)

and PIP, interference

11 Mefloquine Ixra.1 IC50>30 pM Presumed PIP, interference Yes (Lopez-Izquierdo et al. 2011b; Ter Kuile
et al. 1995)
12 ML-133 Ixiro1 IC50 1.8 pM Reduce K* conductance No (Sanson et al. 2019; Wang et al. 2011)

13 Pentamidine Ixiro.1 IC50 170 nM

Pore block, interacting with E224,  Yes

(De Boer et al. 2010b; Smith et al. 1991)

D259, E299
14 PA-6 Ixro 1ICs0 12-15 1M Pore block, interacting with E224 ~ No (Takanari et al. 2013)
and E299
15  Tamoxifen Ixro.1 IC50 0.93 pM presumed PIP, interference Yes (Ponce-Balbuena et al. 2009; Wibowo
et al. 2016)
16  Thiopental Ixro.1 ICso approx. 30 pM Presumed PIP, interference and Yes (Bellante et al. 2016; Lopez-Izquierdo
potential R218 interaction et al. 2010)

KCNJ2 gene (gain-of-function mutation) can lead to abnor-
mal functioning of Kz2.1 channels, increasing the outward
current and subsequently inducing a shortened QT interval
(Anumonwo and Lopatin 2010; Du et al. 2021; Priori et al.
2005). The KCNJ2 gain-of-function mutations M301K and
E299V were found in an 8-year-old girl and an 11-year-old
boy, respectively (Deo et al. 2013; Hattori et al. 2012). Both
showed extremely short QT intervals together with parox-
ysmal atrial fibrillation (AF) (Deo et al. 2013; Hattori et al.
2012). Another SQTS3-related gain-of-function mutation
K346T was reported in 2014 (Ambrosini et al. 2014). F58S
was reported as a gain-of-function mutation of Kz2.1 in
2018, the increased I, decreased the neuro excitability and
shorted the heart QT interval at a borderline level so that the
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patient was only diagnosed as an autism spectrum disorder
(ASD) (Binda et al. 2018).

The first SQTS was reported in 2000 and SQT3 was first
described in 2005. Since, specific treatment of SQTS is still
poorly defined (Gussak et al. 2000; Priori et al. 2005; Rudic
et al. 2014). The implantable cardioverter defibrillator ICD)
is used as the first-line therapy in SQTS but with an increased
risk of inappropriate shock (Dewi and Dharmadjati 2020).
The Class Ia antiarrhythmic drug quinidine is regarded as
the most effective pharmacological therapy in SQTS patients
(Dewi and Dharmadjati 2020; Hancox et al. 2023; Rudic et al.
2014). Quinidine can prolong the APD of the ventricular cells,
increase the effective refractory period (ERP), and reduce
the susceptibility of ventricular tissues associated with SQT3
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(Luo et al. 2017a). In addition, chloroquine (CQ) prolongs the
APD by reducing I, and probably other repolarizing currents
(Ixp Ip), which may be a potential agent for SQT3 treatment
in the future (Luo et al. 2017b; Szendrey et al. 2021; Wagner
et al. 2010). On a longer time-scale, CQ application results
in lysosomal accumulation of Kz2.1 proteins (Jansen et al.
2008). More specific I, inhibiting drugs (AntaKirs) may find
a place in SQT3 pharmacotherapy.

Familial atrial fibrillation

AF is characterized by an irregular and often accelerated
heart thythm with a high risk of stroke, heart failure, and
various other complications related to the heart and currently
affects over 33 million individuals worldwide (Al-Khatib
2023; Wijesurendra and Casadei 2019). Several known
risk factors are high blood pressure, sleep disorders, diabe-
tes, obesity, chronic lung diseases, coronary artery disease,
congenital defects, etc. (Benjamin et al. 2021; Buch et al.
2003; Christophersen and Ellinor 2016; Chugh et al. 2014,
Lau et al. 2017). Between 5 and 15% of patients with AF
have a familial predisposition, and there are many mutations
related to Familial Atrial Fibrillation (FAF) (Christophersen
and Ellinor 2016; Darbar et al. 2003). Xia et al. first analyzed
the distribution of the KCNJ2 gene in relatives of Chinese
patients with FAF in 2005 (Xia et al. 2005). The mutation
V931 was found in all 30 unrelated kindreds, whereas none
was abnormal in 420 unrelated healthy Chinese individuals
(Xia et al. 2005). Electrophysiologic studies also confirmed
the increase of the outward currents generated by V93I-
Kir2.1 channels The enhanced activity of K;z2.1 channels
resulted in a shorter APD, leading to the development of AF.
However, in a recent study, one V93I carrier shows an evident
QT prolongation, which indicates that its clinical appearance
is not so consistent (Zaklyazminskaya et al. 2022).

The treatment and prevention of AF was summarized by
Al-Khatib (Al-Khatib 2023). Ongoing studies have explored
gene therapy approaches aimed at restoring normal Kz2.1
channel functions. MicroRNA-26 (miR-26) was downregu-
lated in KCNJ2-upregulated AF animals and patients, and
the knockdown, inhibition, or binding-site mutation of miR-
26 enhanced the expression of KCNJ2, establishing that
KCNJ2 is a miR-26 target (Luo et al. 2013). Long noncod-
ing RNA TCONS-00106987 (IncRNA TCONS-00106987)
was reported to increase the expression of the K;z2.1 chan-
nel proteins in rabbit models by endogenously competing
with miR-26, suggesting that the mutual regulation between
IncRNA and miRNA can be a potential therapeutic target
for AF (Du et al. 2020). The pentamidine analogue PA-6
(Table 1) was presented as a specific I, inhibiting compound
able to terminate AF in a goat model of recently induced AF,
but not in patient dogs with long-lasting AF (Ji et al. 2017a,
b; Szatmari et al. 2018).

Acquired diseases associated with disturbed Kz2.1
channel functioning

Besides genetic diseases, altered Kz2.1 channel function or
expression levels can also contribute to, or at least associate
with, the development of some acquired diseases. Upregula-
tion of Iy, was found to be involved in chronic atrial fibrilla-
tion (Dobrev et al. 2002; Zhang et al. 2005a). Many studies
(clinical, animal, and computer simulation) have demon-
strated that the weakening of Iy, which contributes to AP
prolongation, is an important mechanism contributing to
the development of arrhythmias in heart failure (Akar et al.
2005; Husti et al. 2021; Jian et al. 2022; Kaab et al. 1996;
Li et al. 2004). Decreased Iy, was also associated with myo-
cardial infarction, hypotrophy, and reperfusion arrhythmias
(Aimond et al. 1999; Li et al. 2019; Liu et al. 2021; Roman-
Campos et al. 2009). Correction of K;z2.1 channel function
by pharmacologic or other molecular means will be benefi-
cial in alleviating these diseases. However, the safety of the
Ik, modulators should never be eliminated. First, since in
the heart lengthening or shortening the APD duration may
lead to life-threatening arrhythmias. Secondly, Kjz2.1 chan-
nels have many functions in other organ systems and tissues
which should not be compromised by efforts to normalize
Kig2.1 function in the heart. This latter safety issue is likely
a bigger problem in acquired than in genetically originated
diseases.

Future development of K|z2.1 pharmacology

With advancements in understanding the role of the Kiz2.1
channel in various diseases, there may be an increased focus
on developing targeted therapies that modulate the activity
of the channel. This could involve the design of K specific
drugs and targeted gene therapy. The Kz drugs should tar-
get K;z2.1 channels to enhance (AgoKir) or inhibit K|z2.1
(AntaKir) function without further interactions, depending
on the therapeutic goal.

Drugs targeting PIP,

PIP, acts as a signaling molecule and as indicated above is
involved in the modulation of the K;z2.1 channels, i.e. the
presence of PIP, in the cell membrane is necessary for stabi-
lizing the open state of K;z2.1 channels (D'avanzo et al. 2010;
Xie et al. 2008). When the affinity between PIP, and Kz2.1
channels is reduced, K;z2.1 channels tend to lose function,
leading to changes in membrane potential and cellular excit-
ability (Donaldson et al. 2003; Xie et al. 2008). PIP, binding
affinity also determines the sensitivity of other K;z2.1 modu-
lators like pH, PKC, and Mg?* (Du et al. 2004; Gada and
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Logothetis 2022). Many studies have shown that the mutation
defects affecting PIP, binding constitute a major pathogenic
mechanism of ATS (Choi et al. 2007; Cruz et al. 2023; De Los
Monteros et al. 2022; Donaldson et al. 2003; Handklo-Jamal
et al. 2020a, b; Lopes et al. 2002; Tan et al. 2013). Develop-
ing drugs that enhance PIP,-Kz2.1 channel interaction and
thereby activate I, to alleviate ATS will be promising. In
this direction, the small molecular BGP-15 (Table 1) showed
increased PIP, sensitivity in ATS variants (Handklo-Jamal
et al. 2020a). A recent computer simulation study showed that
the severity of the ATS mutation directly correlates with the
electrostatic forces of the transmembrane PIP, binding region
(De Los Monteros et al. 2022). This may point to a way to
relieve arrhythmias by neutralizing the positive charge in the
Kig2.1 channel pore. By contrast, excessive Kz2.1 channel
activity can also be corrected by blocking PIP, mediated acti-
vation of the channel (Lopez-Izquierdo et al. 2011b; Ponce-
Balbuena et al. 2009; Ruddiman et al. 2023). Drugs target-
ing PIP,, and more specifically the PIP, dependent K;z2.1
activity, will be an interesting pharmacotherapeutic option for
patients who suffer from diseases caused by abnormal Kz2.1
activities like ATS.

Drugs interfering with channel trafficking

Disruptions and enhancement in channel trafficking can lead
to alterations in K;z2.1 ion channel expression on the cell
surface, which can lead to diseases like ATS, and SQT3
(Ambrosini et al. 2014; Bendahhou et al. 2003). In the con-
text of drug development, targeting channel trafficking rep-
resents a potential strategy to modulate ion channel activity
to treat certain channelopathies or other related disorders.
There are various ways that drugs can interfere with chan-
nel trafficking, including promoting or inhibiting channel
forward or backward trafficking, modulating intracellular
accumulation, regulating endocytosis and recycling, and
so on. The proteins mentioned in Fig. 3 (Golgin-97, AP-1,
GRIF-1, SAP-97, ESCRT) are necessary for the forward
trafficking, backward trafficking, or recycling of the K;z2.1
channel. Drugs that specifically interfere with these proteins'
function with respect to their role in Kz2.1 trafficking, may
indirectly help to correct the function of abnormal Kz2.1
channel function. For example, tetramisole showed a high
selective affinity with the K;z2.1 channel and increased Iy,
one of its mechanisms is promoting K;z2.1 forward traffick-
ing through the upregulation of SAP-97 (Liu et al. 2022).

Drugs enhancing K* conductance
The potassium conductance of the Kz2.1 channel is primar-

ily determined by its structure and the arrangement of spe-
cific amino acids within the channel pore (Fernandes et al.
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2022b). Drugs that enhance the conductance of the Kz2.1
channel can increase its preference for K¥, potentially allow-
ing more K* to pass through while blocking or restricting
the movement of other ions. Potassium channel openers are a
class of drugs that have the potential to increase the conduct-
ance of K*. This increase in I, may benefit patients who
suffer from ATS or HF in the future.

Some other specific channel agonists or inhibitors

There are several K;z2.1 modulators, or at least compounds
that include K;z2.1 modulatory behavior amongst other
properties. For example, propafenone, flecainide, aldoster-
one, sildenafil, etc. (Alexandre et al. 2015; Caballero et al.
2010; Gomez et al. 2014; Iijima et al. 2023). These com-
pounds probably will generate a lot of side effects due to
their multifunctional characteristics if they work as Kjz2.1
modulators. The promising modulators will specifically
target the channel without interfering with other channels.
Studies showed that zacopride can promote Iy, without
interfering with voltage-gated Na™ current, L-type Ca>*
current, transient outward K™ current, sustained outward
K* current, delayed rectifier K* current, and current gener-
ated through Na*™—Ca®* exchanger and Na*™—K* pump (Lin
et al. 2020; Liu et al. 2012). Gambogic acid is a specific,
slow K{z2.1 inhibitor by changing the K* channel membrane
microenvironment (Zaks-Makhina et al. 2009). ML-133 was
reported as a potent specific Kjg2.x inhibitor, reducing K*
conductance through the channel by interfering with D172
and 1176 on the M2 segment of the channel (Wang et al.
2011). A study in 2019 showed that the Hill coefficient of
ML-133 is 2.6 (> 1) meaning that ML133 probably has a
cooperative mechanism of action which is still unknown
(Sanson et al. 2019). Drugs increasing or decreasing the
binding affinity of polyamines or Mg** can also be utilized
for future therapeutic purposes. The discovery of specific
Kig2.1 modulators provides a path for functional studies of
Ik ;. More “next generation” Kz channel modulators which
are both potent and specific are needed, to achieve this,
employing high-throughput screening of small-molecule
libraries and utilizing medicinal chemistry (structure-based
drug design) will help (Weaver and Denton 2021).

Nutrigenomics

People have used food and plants as medicines since ancient
times, as they know that food and the environment can
interfere with an individual’s health conditions (Sales et al.
2014). The emergence of the field of nutrigenomics, which
combines genomic science with nutrition, is a direct con-
sequence of elucidating the interactions between genes and
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nutrients (Sales et al. 2014). Understanding this interaction
process could lead to the prescription of specific diets for
each individual. Nutrigenomics is a relatively new field in
regulating K channels, specific diets or variations in nutri-
ent conditions have the potential to influence the expression
or function of K channels in tissues (Ferreira et al. 2023).
Diets rich in cholesterol have been associated with increased
membrane cholesterol content, which resulted in a decreased
function of Kg2.1 channels (Ferreira et al. 2023; Yuan and
Hansen 2023). Diets rich in phosphoinositide or inositol like
liver, grains, and legumes could increase the expression level
and functions of Kz2.1 channels by altering the levels of
PIP, in cells through the metabolite process (Ferreira et al.
2023). Diets rich in salt interfere with potassium handling,
and even though no nutrition-related factors are reported in
patients of ATS, special diets that are low in carbohydrates
and Nat were recommended for some cases (Ferreira et al.
2023; Welland et al. 2021). Diets rich in polyamines like
cheese, meat, vegetables, etc. show prominent cardioprotec-
tive and neuroprotective effects (Madeo et al. 2018; Munoz-
Esparza et al. 2019). Diets rich in Mg>* like vegetables, nuts,
seeds, etc. are necessary in some cases, as chronic Mg2+
deficiency could downregulate the expression of the K 2.1
channel and cause a reduction of I, (Al Alawi et al. 2018;
Shimaoka et al. 2020). The coupling between nutrient and
Kir channels is complex and can involve multiple mecha-
nisms, more investigations are needed in this field.

Gene therapy

KCNJ2 mutations could cause AST, SQT3, FAF, and maybe
some other diseases not currently detected. Gene analysis is
already used in part of the cardiovascular diseases workup, it
helps to make more accurate diagnoses (Di Toro et al. 2019;
Vivekanandam et al. 2022; Xia et al. 2005). Developing
gene therapy techniques allows for the direct manipulation
of Kg2.1 channel expression or activity in specific tissues.
Gene therapy helps to replace the mutant DNA with the
wild-type DNA, leading to a normal function of the K2.1
channel.

Conclusions

The functional Kz2.1 channel helps to stabilize the resting
membrane potential and regulate the excitability of the heart.
This channel plays important roles in the maintenance of
normal heart rhythm and cell communication. All patients
who suffered similar symptoms related to the KCNJ2 gene
should be offered a genetic diagnosis, that might further
assist in individualized treatment. The development of drugs
or gene therapy targeting the K;z2.1 channel is a complex

and challenging process. Further research and clinical inves-
tigations are necessary to fully understand the complete
range of diseases or conditions associated with the Kz2.1
channel.
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