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Abstract

Prostate cancer (PCa) is the most prevalent cancer affecting American men. Castration-resistant prostate cancer (CRPC) can emerge
during hormone therapy for PCa, manifesting with elevated serum prostate-specific antigen levels, continued disease progression,
and/or metastasis to the new sites, resulting in a poor prognosis. A subset of CRPC patients shows a neuroendocrine (NE) phenotype,
signifying reduced or no reliance on androgen receptor signaling and a particularly unfavorable prognosis. In this study, we incorporated
computational approaches based on both gene expression profiles and protein–protein interaction networks. We identified 500 potential
marker genes, which are significantly enriched in cell cycle and neuronal processes. The top 40 candidates, collectively named CDHu40,
demonstrated superior performance in distinguishing NE PCa (NEPC) and non-NEPC samples based on gene expression profiles. CDHu40
outperformed most of the other published marker sets, excelling particularly at the prognostic level. Notably, some marker genes
in CDHu40, absent in the other marker sets, have been reported to be associated with NEPC in the literature, such as DDC, FOLH1,
BEX1, MAST1, and CACNA1A. Importantly, elevated CDHu40 scores derived from our predictive model showed a robust correlation with
unfavorable survival outcomes in patients, indicating the potential of the CDHu40 score as a promising indicator for predicting the
survival prognosis of those patients with the NE phenotype. Motif enrichment analysis on the top candidates suggests that REST and
E2F6 may serve as key regulators in the NEPC progression.
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Introduction
Prostate cancer (PCa) is the most common cancer among Amer-
ican men, with an estimated 288 300 new diagnoses projected
for 2023 [1]. Treatments of PCa include surgery, radiotherapy,
chemotherapy, hormone therapy, and immunotherapy. However,
the development of castration-resistant prostate cancer (CRPC)
during hormone therapy poses a significant challenge. CRPC is
characterized by sustained high serum prostate-specific antigen
(PSA) levels, ongoing disease progression, and potential metasta-
sis to the new sites, leading to a poor prognosis [2–4]. Most CRPC
tumors still depend on androgen receptor (AR) signaling, and
therefore, the use of current androgen-signaling inhibitors (ASIs)
such as enzalutamide (ENZ) and abiraterone can offer temporary
relief from resistance [5]. However, a subset of the CRPC patients
exhibited neuroendocrine (NE) phenotype with diminished or

absent reliance on AR signaling and a dismal prognosis [6–8].
The most lethal subtype of this disease, however, has similar ini-
tial symptoms comparable to CRPC and hence lacks appropriate
unique identification markers. NE PCa (NEPC) biopsy samples also
often exhibit in mixed histology, posing formidable challenges on
accurate diagnosis and appropriate treatments [9].

Thus, developing accurate diagnosis and imaging tools for
NEPC is the crucial first step in effectively managing the disease.
Numerous studies have attempted to identify the most frequently
overlapping markers for NEPC patients including delta-like ligand
3 (DLL3), with high expressions exclusively in CRPC-NE cells [10].
A clinical trial is in progress at Memorial Sloan Kettering Cancer
Center to evaluate DLL3 PET imaging in patients with small
cell lung cancer (SCLC) and NEPC (NCT04199741). Additional
immunohistochemistry (IHC) of canonical NEPC marker genes,
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Table 1. Data sets used in this study.

Data set Data type Number of samples Reference (PMID or link to the datasets)

Total NEPC Non-NEPCa

WCM NEPC 2016 [6] Bulk RNA-seq 49 15 34 PMID: 26855148
PRAD SU2C 2019 [14] Bulk RNA-seq 232 22 210 PMID: 31061129
GSE32967 [15] Microarray 22 14 8 PMID: 22156612
GSE149091 [16,17] Bulk RNA-seq 4 1 3 PMID: 32531951, PMID: 32512818
GSE59984 [18] Microarray 14 2 12 PMID: 29757368
PRAD TCGA Bulk RNA-seq 498 0 498 https://www.cancer.gov/tcga
Asberry et al. 2022 [19] scRNA-seq 4 3 1 PMID: 36382181
Dong et al. 2020 [20] scRNA-seq 5 4 1 PMID: 33328604

aNon-NEPC represents PCa samples collected in studies that were not recognized as NEPC.

such as CHGA, SYP, NCAM1, ENO2, AR, and KLK3, can be used to
clinically identify NEPC samples [11], however, the IHC of these
markers may not always be directly applicable [12]. Given the
feasibility of gene expression profiles with the development of
next-generation sequencing (NGS) technologies, an alternative
option is to identify NEPC based on the expression levels and/or
other information of gene markers, exploring marker genes
beyond the six canonical NEPC markers (Supplementary Table S1
available online at http://bib.oxfordjournals.org/).

Despite these efforts, protein–protein interactions (PPIs) have
not yet been considered in the selection of NEPC biomarkers in
these reports. PPIs are known to form a fundamental network
and are integral to almost all biological processes, the alteration
of which contributes to disease progression. In our study, we
incorporated aberrant gene expression and the PPI information by
applying the method of using knowledge in network (uKIN) [13]
for PPI analysis to explore biomarkers effectively distinguishing
NEPC from all of the PCa samples. Our approach facilitates the
identification of robust biomarkers associated with NEPC, unveil-
ing novel markers not previously reported as NEPC biomarkers
by traditional methods. The top 40 marker genes, denoted as
CDHu40, exhibited a remarkable accuracy in predicting NEPC
and demonstrated a strong correlation with patient survival.
Taken together, our results highlight the potential significance of
CDHu40 as a prognostic indicator for NEPC.

Methods
Gene expression data sets used in this study
Eight data sets with defined NEPC samples were selected in
this study (Table 1). NEPC WCM 2016 and PRAD SU2C 2019
were used for the training and validation sets. Three data sets,
GSE32967, GSE149091, and GSE59984, were downloaded from
the Gene Expression Omnibus (GEO) database being used as
independent test sets on our model. To our knowledge, samples
in prostate adenocarcinoma (PRAD) from the The Cancer Genome
Atlas Program (TCGA) (PRAD TCGA) were all primary tumors that
had barely NEPC cases. So, PRAD TCGA was used as a negative
control to estimate the false positives of the NEPC samples by
different marker gene sets.

The expression value of samples in GSE32967 was retrieved
using getGEO function. Gene expressions in GSE149091 and
GSE59984 were downloaded from the Supplementary file section
in the GEO entry. The expression values were standardized
before feeding to the prediction model. Transcript per millions
(TPM) expression value of samples in Lundberg et al. [21] were
downloaded from the repository provided in the paper with
log2 transformation for further analysis. Two more scRNA-seq
data sets, Asberry et al. [19] and Dong et al. [20], were used to

test our model at the single cell level. Specifically, raw counts
were downloaded from GSE215943 and GSE137829, respectively.
Cells with unique gene counts over 8000 or having >10%
mitochondrial genes were filtered out. The gene expression levels
were normalized by total expression of the cell, multiplied by a
scaling factor 10 000, and then transformed using log2. Samples
were integrated using FindIntegrationAnchors [22]. After scaling
the integrated data, the first 30 principal components from
principal component analysis were used to cluster the cells
by a shared nearest neighbor (SNN) modularity optimization–
based clustering algorithm. The algorithm first calculates k-
nearest neighbors and constructs the SNN graph. Then, the
modularity function was optimized to determine clusters using
the Louvain algorithm. UMAP (Uniform Manifold Approximation
and Projection for Dimension Reduction) visualizations were
performed with Seurat package. The NE phenotype of cell clusters
was derived according to the expression levels of canonical
marker genes. For scRNA-seq data analysis, if genes of interest
had missing expression data in cells, we assume that the data are
missing at random and assign them an expression value of 0 in
model construction and prediction.

Identification of differentially expressed genes
Messenger RNA (mRNA) gene expression profiles from the first
two datasets in Table 1, NEPC WCM 2016 [6] and PRAD SU2C
2019 [14], were retrieved from cBioportal [23,24], followed by log2

transformation. Limma [25] was used to identify differentially
expressed genes (DEGs) with the cutoffs of False Discovery Rate
(FDR) < 0.05 and |log2FC| > 1 between NEPC and non-NEPC sam-
ples for two datasets, respectively, given the sample information
from the above datasets. The average amplitude of log2FC from
the comparisons in the two datasets were used as the input of the
analysis of association of NEPC genes.

Inference of neuroendocrine prostate
cancer–associated genes using knowledge in
network
Genes associated with a particular disease usually target a limited
number of pathways and are often clustered together in the
network. Therefore, propagating disease relatedness within the
network is an effective approach for identifying disease-related
genes. Unlike other network analysis methods, uKIN [13] leverages
prior knowledge of disease-associated genes to guide random
walks on a known physical PPI network starting from poten-
tial disease-associated genes identified through differential gene
expression analysis. Specifically, weights for all genes in the PPI
network were derived by injecting fluid originating from known
disease-associated genes, influencing the random walk. Higher
weights indicate greater likelihood of the gene transitioning to
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Table 2. Primers used for qPCR.

Gene Forward primer Reverse primer

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC
AR GACGACCAGATGGCTGTCATT GGGCGAAGTAGAGCATCCT
ASCL1 CCCAAGCAAGTCAAGCGACA AAGCCGCTGAAGTTGAGCC
ENO2 AGCCTCTACGGGCATCTATGA TTCTCAGTCCCATCCAACTCC
SYP CTCGGCTTTGTGAAGGTGCT CTGAGGTCACTCTCGGTCTTG
CHGA TAAAGGGGATACCGAGGTGATG TCGGAGTGTCTCAAAACATTCC
DDC TGGGGACCACAACATGCTG TCAGGGCAGATGAATGCACTG
BEX1 GCAGTAAACAGTCTCAGCATGG GGCTCCCCTTTATTAGCAACTT
HGFAC GTGTGCCACAACTCACAACTA GGTCCTGGGTATTGGAGCA
MAST1 TCTCTGGACCGCGCTTTCTA TGAGGCTTTTCCGATTACTGGT
CACNA1A CGCTTCGGAGACGAGATGC TGCGCCATTGACTGCTTGT
FOLH1 CCATTAGGGTTACCAGACAGGC CCCTGCATACTTGTTGTGGC
CPNE4 ATGAGCAACATTTATGAGTCCGC CTGCCCATGAGACTGCATCT
RBP4 AGGAGAACTTCGACAAGGCTC GAGAACTCCGCGACGATGTT
ALB TGCAACTCTTCGTGAAACCTATG ACATCAACCTCTGGTCTCACC
FGB AGTGATTCAGAACCGTCAAGAC CATCCTGGTAAGCTGGCTAATTT
FGG TTATTGTCCAACTACCTGTGGC GACTTCAAAGTAGCAGCGTCTAT
NCAM1 GGCATTTACAAGTGTGTGGTTAC TTGGCGCATTCTTGAACATGA

neighboring genes within the network. Ultimately, the accumu-
lated fluid at each gene after the random walk processing is
represented by its score. In our study, the uKIN [13] was utilized
to discover NEPC-related genes strongly associated with the six
canonical NEPC marker genes commonly used to clinically iden-
tify the NEPC sample: AR, PSA (KLK3), CHGA, SYP, CD56 (NCAM1),
and NSE (ENO2) [11], which were adopted as seeds in the uKIN
analysis. The PPI information was retrieved by physical interac-
tion in the StringDB [26]. DEGs between NEPC and non-NEPC
samples were considered as new information related to NEPC to
guide the random walk. The amplitudes of gene expression fold
changes (FCs) in log2 scale (|log2FC|) between NEPC and non-NEPC
were added as the weights of genes for the uKIN analysis. The
parameter α for the uKIN was set to 0.5 as restart probability,
whereas the flow rate, γ , was set to 1.

Logistic regression model for neuroendocrine
prostate cancer classification
Glmnet [27] was used to generate a logistic regression model to
classify NEPC and non-NEPC samples based on marker genes
selected. Optimal parameters of the model are estimated using
cross-validation incorporating elastic net penalty. Beltran et al.
[6] and Abida et al. [14] data were randomly split into training
sets including 28 NEPC and 183 non-NEPC samples and test sets
(9 NEPC and 61 non-NEPC samples). A logistic regression model
was built using cross-validation on the training set. The resulting
model was tested on the test set and the other three independent
GEO test sets (Table 2). The performance of prediction was evalu-
ated based on the area under the precision–recall curve (AUPRC).

Survival analysis
Survival probability was computed using the R function surv-
fit. The pathological grade is an important potential confound-
ing factor affecting survival outcomes, so we adjusted it as a
stratified factor in the baseline hazard using the stratified sur-
vival analysis. Since no stage information was available for the
PRAD SU2C 2019 dataset, we categorized the grade based on the
Gleason score: low grade for the Gleason score of 6, intermediate
grade for the Gleason score of 7, and high grade for the Glea-
son score of 8–10. The significance of the difference in survival
times of different groups was determined by log-rank test by Cox

regression, and the low score group was used as the reference
group to calculate the hazard ratio. The Kaplan Meier (KM) plots
were generated using the ggsurvplot function in the package
survminer [28,29]. The summary of the metadata of the samples
used in survival analysis is shown in Supplementary Tables S2
and S3 available online at http://bib.oxfordjournals.org/.

Functional analysis of top candidate genes
The top 500 NEPC candidate marker genes from our results were
entered into StringDB [26] for visualization. The functional enrich-
ment analysis was performed using The Database for Annotation,
Visualization and Integrated Discovery (DAVID) [30,31] on top 500
genes with increased and decreased expression in NEPC samples,
respectively.

Cell culture
androgen-sensitive human prostate adenocarcinoma cells
derived from the left supraclavicular lymph node metastasis
(LNCaP: CRL-1740) and NCI-H660 (CRL-5813) were purchased from
American Type Culture Collection (atcc.org). The KUCaP13 cell
line was obtained from the laboratory of Shusuke Akamatsu at
Kyoto University [32]. LNCaP and KUCaP13 cells were cultured in
RPMI-1640 medium supplemented with 10% fetal bovine serum
(FBS), 1% penicillin–streptomycin (Pen-Strep), and 1% HEPES. NCI-
H660 cells were cultured in RPMI-HITES medium containing
5% FBS, 0.005 mg/ml insulin, 0.01 mg/ml transferrin, 30 nM
sodium selenite, 10 nM hydrocortisone, 10 nM beta-estradiol,
extra 2 mM L-glutamine, and 1% Pen-Strep. LNCaP was passaged
at a 1:5 ratio every 3–5 days. For NCI-H660 and KUCaP13, half of
the medium was refreshed twice a week and passaged when cell
concentration exceeded 1 × 106 cells/ml. All cell cultures were
incubated at 37◦C with 5% CO2 and assessed for mycoplasma
monthly by The polymerase chain reaction (PCR). All mycoplasma
results were negative.

Gene expression detection by quantitative PCR
(qPCR)
We further validated the expression levels of 17 selected NEPC
markers and GAPDH by qPCR (Table 2) in LNCaP, NCI-H660, and
KUCaP13 cells. Total RNA was extracted from cells with EZ-10
Spin Column Animal Total RNA Miniprep Kit (Bio Basic, BS82312),
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Figure 1. Overlap of NEPC marker genes published by selected literature.

and complementary DNA (cDNA) was synthesized using All-In-
One 5X RT MasterMix (Applied Biological Materials, G592) with
500 ng/μl RNA template, following the respective manufacturer
protocols. cDNA was amplified with 2× SYBR Green qPCR Master
Mix (Bimake, B21202), and qPCR reaction was run on Bio-Rad CFX
Connect system with the following conditions: 95◦C for 10 min,
followed by 40 cycles with 15 s at 95◦C, and 60 s at 60◦C, and a
final dissociation curve step with 15 s at 95◦C, 60 s at 60◦C, and
15 s at 95◦C. Relative FCs for genes tested were calculated using
the ��Ct method [33], normalized to GAPDH and then compared
to LNCaP.

Results
Overlap of published marker gene sets
We searched the literature for published NEPC marker gene
sets mentioned in the introduction, namely, Beltran2016 [6],
Tsai2017 [34], Bluemn2017 [35], Cheng2019 [36], Labrecque2019
[37], Dong2020 [20], Ostano2020 [38], and Sarkar2022 [39], in
addition to six marker genes commonly used for clinical diagnose
of NEPC, CHGA, PSA, NCAM1, ENO2, AR, and KLK3, named as
NEPC canonical marker genes [11] (Fig. 1). The majority of genes
within distinct marker sets tend to be unique or specific to a
particular gene expression dataset employed for identification.
The maximum pairwise overlap was observed for 11 genes
between Beltran2016 and Tsai2017. Even the six canonical NEPC
markers were rediscovered in certain marker gene sets but not
universally across all of them. This lack of consensus in NEPC
markers suggests the intricate nature of biological processes asso-
ciated with NEPC progression and potential biases when simply
comparing gene expression differences for different datasets.

Integration of using knowledge in network
identifies higher confidence neuroendocrine
prostate cancer–related genes
To identify NEPC biomarkers combining different gene expres-
sion datasets while considering PPIs, we utilized uKIN to
pinpoint potential biomarker genes (Fig. 2). Differential analysis
was performed between 15 NEPC and 24 non-NEPC samples

Figure 2. Flow chart of our approach.

(NEPC WCM 2016 dataset) and between 22 NEPC and 210 non-
NEPC samples (PRAD SU2C 2019 dataset), respectively, resulting
in 729 and 894 DEGs based on cutoffs of FDR < 0.05 and |log2FC| >1
for NEPC WCM 2016 and PRAD SU2C 2019 dataset, respectively,
Subsequently, we utilized uKIN, initiating from the six canonical
NEPC markers as seed nodes, supported by PPI networks. We
incorporated the average values of |log2FC| of gene expression
FCs between NEPC and non-NEPC from both NEPC WCM 2016
and PRAD SU2C 2019 datasets as weights to enrich the new
information in the network to guide the random walk and then
rank genes according to their NEPC relatedness. A ranked list of
genes along with their NEPC association scores was provided by
uKIN. The top genes from the uKIN were considered potential
NEPC biomarkers (Supplementary Fig. S1). Next, we derived a
model based on selected top genes and further performed a
functional analysis of top genes from the uKIN.

Selection of top performing gene sets
To assess the effectiveness of identified top potential biomarker
genes from ranked uKIN result in predicting the NEPC phenotype,
we applied elastic net logistic regression to different numbers of
top ranked genes identified by our approach, including top 10,
20, 30, and up to top 100 genes, respectively, aiming to select the
optimal parameters that yield a highly regularized model with
elastic net penalty. The 10-fold cross-validation and 10 repetitions
were taken using the gene expression profiles in the training set
to ensure that the cross-validated error falls within one standard
error of the minimum. We also conducted analysis using Ran-
dom Forests (RFs). However, the overall performance of RFs was
not good as those by the logistic regression. Given the primary
focus of this study is on NEPC biomarker identification, and the
performance of logistic regression is sufficiently high, we did not
perform more detailed comparisons with other algorithms.

Taking into account the balance between the quantity of
marker genes involved and their performance (Fig. 3A), we
chose the top 40 candidate genes, namely, CDHu40, as the gene
set for NEPC biomarkers. The CDHu40 outperformed most of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae471#supplementary-data
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Figure 3. Performance of CDHu40 and other published NEPC marker gene
sets. (A) AUPRC for top uKIN genes from 10 (CDHu10) up to 100 (CDHu100),
where the dashed dot line is average values of AUPRC for two datasets. (B)
Bar plot of AUPRC scores for each gene set. Gene sets were sorted by the
average values (dashed dot line) of AUPRC. (C) NEPC scores of PRAD-TCGA
samples estimated by Bluemn2018, Dong2020, and CDHu40, respectively.

other NEPC marker gene sets listed here, except Bluemn2018
and Dong2020 (Fig. 3B), based on AUPRC scores on both test
datasets and other independent GEO datasets collected in the
study. Supplementary Tables S4 and S5 available online at
http://bib.oxfordjournals.org/ listed other performance metrics
on test and independent GEO datasets.

The CDHu40 score was defined as the NEPC prediction proba-
bility using the elastic net logistic regression model. Additionally,
we computed NEPC scores using two other marker gene sets,
Bluemn2018 and Dong2020, respectively, since both also exhibited
superior performance on two test sets in the study. We calculated
these scores utilizing the gene expression data of PRAD TCGA
(Fig. 3C). In general, CDHu40 scores were notably lower compared
to the scores generated based on Dong2020 and Bluemn2018
gene sets. Some samples exhibited higher scores according to
Dong2020. Given that the PRAD TCGA samples were from pri-
mary PCa tumors that lack an NE phenotype, this suggests that
CDHu40 provides a more accurate representation of the NEPC
phenotype compared to Dong2020 and Bluemn2018, particularly
in terms of minimizing false positive rates.

Except genes of CDHu40 recovered by other marker gene sets
previously mentioned (Fig. 4A), more than a quarter (11 out of 40)
of CDHu40 genes were absent from any of these sets (highlighted
in red in Fig. 4A), although some of them have been investigated
in independent studies. For instance, DDC was reported as a
neuroendocrine marker in various human tumors originating
from NE cells [40]. Prostate-specific membrane antigen (PSMA),
often overexpressed in most prostate adenocarcinoma (AdPC)
cells, serves as a marker for PC and becomes a target for molecular
imaging. The down-regulation of the PSMA gene (FOLH1) in NEPC
samples rendered it a marker capable of distinguishing NEPC from
AdPC, and this suppressed expression of the PSMA gene in NEPC
results in the failure of NEPC identification using PSMA-targeting
imaging [41]. BEX1 was recognized for its involvement in the
tumorigenesis of NE-specific tumors [42–44]. MAST1 played a role
in modulating neuronal differentiation and cell cycle exit through
P27 in neuroblastoma cells [45]. Notably, mutations in CACNA1A
were linked to neuroendocrine dysregulation. [46]. ALB was iden-
tified as an independent risk factor for lymph node metastasis in
gastric NE tumor patients [47]. FGB and FGG, both up-regulated
in duodenopancreatic NE tumors (DPNETs), signified a dediffer-
entiation process in DPNET patients with poor outcomes [48].
Additionally, the fusion of CPNE4 and ACAD11 was identified in NE
samples [49]. The qPCR experiments in three PCa cell lines, LNCaP,
NCI-H660, and KUCaP13, were conducted to test the expression
levels of these novel marker genes in addition to several well-
known NEPC markers (Fig. 4B). The expression changes of most
identified novel marker genes aligned with the predicted either
up- or down-regulation in at least one of the two NEPC cell lines.
Given newly published RNA-seq data for tumor samples [21], we
validated the gene expression changes between NE+ and NE−

samples (Fig. 4C and Supplementary Fig. S2). Most CDHu40 genes
showed consistent up- or down-regulation in AR−NE+ samples as
predicted. These results collectively indicate that many unique
genes in CDHu40 are strongly associated with the NEPC pheno-
type and warrant further in-depth understanding and investiga-
tions.

Figure 4D showcases the expression patterns of these CDHu40
genes by two-way clustering across various independent datasets
with documented NEPC information that were generated by inde-
pendent groups and collected for our study. Discernible are two
major groups of genes, either down-regulated in NEPC samples,
exemplified by AR, KLK3, FOLH1, etc., or up-regulated in NEPC
samples, e.g. CHGA, ENO2, SYP, DDC, BEX1, HGFAC, and others.
However, several subsets of non-NEPC samples were observed
with higher expressions of RBP4, ALB, FGB, FGG, and TTR or
DDC, BEX1, HGFAC, and CHGB (Fig. 4D), which typically show
augmented expression levels in the majority of NEPC samples.
It suggests potential subtypes of certain documented non-NEPC
samples that might come with some NEPC features or were pro-
gressing toward NEPC. Such information may bring new insights
into the molecular mechanisms of the development of NE pheno-
type from PCa.

Validation of CDHu40 score in multiple prostate
cancer datasets
We re-analyzed two sets of previously published scRNA-seq data
[19,20] and subsequently applied the CDHu40 score at the sin-
gle cell level to distinguish NEPC cells from others. Significant
enrichments of cells with higher CDHu40 scores were observed
in clusters 5 and 17, as well as AR− cells in cluster 2 (Fig. 5A)
at Day 14 subjected to ENZ treatment inducing neuroendocrine

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae471#supplementary-data
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Figure 4. CDHu40 genes identified. (A) Overlap of CDHu40 and other marker gene sets in the literature. The left bar shows that marker genes were either
down- or up- regulated in NEPC samples as we identified. Genes marked by asterisks were absent from all other published marker genes compared
here. (B) qPRC validation on 17 selected marker genes in three PCa cell lines, LNCaP, NCI-H660, and KUCaP13. (C) Validation of gene expression changes
(log2FC) by newly published RNA-seq tumor samples with AR and NE features, including both AR+ and AR− samples. (D) Expression profile of CDHu40
genes obtained by different data sets.

differentiation (NED), consistent with the results reported and the
phenotype changes observed in the experiments [19].

Dong et al. [20] published scRNA-seq datasets based on sam-
ples from CRPC patients characterizing the tumor cell diversity
in 2020. Among these patients, four were clinically determined
to have undergone NED. NE cells showed significantly higher
CDHu40 scores compared to non-NE cells (Fig. 5B and C), under-
scoring the robustness of CDHu40 score and strong association of
CDHu40 score with the NEPC phenotype even at the single cell
level.

Strong correlation between CDHu40 and survival
data
Taking the dataset of PRAD SU2C 2019 [14] as another exam-
ple, we evaluated scores estimated by the CDHu40, Dong2020,
and Bluemn2018, respectively, across all NE and non-NE samples
(Fig. 6A–C) to examine these scores with the clinical diagnoses.
CDHu40 scores displayed a significant increase in NE samples
in comparison to non-NE samples, aligning consistently with the
NE phenotype diagnosed by clinicians. More strikingly, by using
CDHu40 as a criterion, the higher CDHu40 score group reports
much worse OS compared with the low CDHu40 score group, with
a hazard ratio (HR) = 3.04 and a statistically significant P-value,
P = .016 (Fig. 6D). The results are calculated using stratified Cox
regression with pathological grade being adjusted as a stratifi-
cation factor. However, no notable difference was observed for
patients classified by higher or lower scores based on Bluemn2018
and Dong2020 (Fig. 6E and F) or generated by other marker sets
(Supplementary Fig. S3).

Similar trends were evident when we tested the PRAD-TCGA
datasets (Supplementary Fig. S4). Patients with augmented

CDHu40 scores encountered significantly (log rank test P = 3.0
× 10−4) shorter disease-free survival times than those with
lower CDHu40 scores (Supplementary Fig. S4A). No remarkable
differences were noted between higher and lower scores identified
by either Bluemn2018 (Supplementary Fig. S4B) or Dong2020
(Supplementary Fig. S4C). These findings indicate the potential of
the CDHu40 score as a promising prognostic indicator of patients
with the NE phenotype. Samples lacking the NE phenotype but
exhibiting higher CDHu40 score can be inferred to be at risk of
developing the NE phenotype based on their CDHu40 scores.

Functional analysis on top 500 candidate genes
We ranked DEGs by adjusted P-value for two datasets, NEPC WCM
2016 and PRAD SU2C 2019, respectively, and then compared
them with the top 500 genes identified by uKIN. Two hundred
twenty-two and 218 out of top 500 uKIN marker genes (44.4%
and 43.6%) were also top 500 DEGs for PRAD SU2C 2019
and NEPC WCM 2016, respectively. However, the correlations
between the uKIN scores and adjusted P-values (in −log10

scale) were not strong (Fig. 7A), indicating that the additional
information from the PPI network significantly influences the
final ranking of selected genes based on the uKIN model.

The biologically functional enrichment analysis was conducted
by using DAVID [30,31] on the genes that were up- and down-
regulated, respectively, in NEPC samples among the top 500 candi-
dates identified in the study. The analysis revealed some biological
processes significantly enriched in up-regulated genes, such as
the generation of neurons, neurogenesis, regulation of neuron
differentiation, and cell cycle (Fig. 7B), in accordance with NE
features observed. Interestingly, genes activated in NEPC samples

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae471#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae471#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae471#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae471#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae471#supplementary-data
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Figure 5. Association between CDHu40 score and NEPC cells from scRNA-seq datasets. (A) Percentage of cells with higher CDHu40 scores in each cluster
recognized by Asberry et al. [19] at Day 14 after NED. The bars represent the significantly (P < .05) higher ratio, whereas the dashed line is the average
percentage of high-CDHu40 score in all cells in the sample. (B) CDHu40 scores for NE cells and non-NE cells. (C) Cells with higher CDHu40 scores were
marked given the patient samples with the scRNA-seq by Dong et al. [20].

enriched for protein activation cascade may suggest their poten-
tial contributions to neurogenesis or cell cycle processes.

Conversely, an enrichment of the AR network in PCa was
observed in down-regulated genes (Fig. 7C), corresponding to the
inhibition of AR expressions in NE samples. Additionally, apoptotic
processes and cell migration were enriched in down-regulated
genes, suggesting that repressed cell migration might affect or
even lead to a shift toward a more vital NE status.

Figure 7D exhibits the PPI network for the top 500 candidate
genes. Among 40 CDHu40 genes, 11 genes serve as hub genes,
being connected with at least five other genes in the network. This
indicates the importance of CDHu40 in establishing connections
among genes, leading to the featured functions of NEPC. Other
hub genes such as CCND1 [50] and CDC25B [51] are associated
with the cell cycle. CDC25B induces cellular senescence and
correlates with tumor suppression in a p53-dependent manner.

Additionally, APOA1 was identified to be upregulated in normal
PC. Augmented APOA1 reflects its potential role in driving ther-
apeutic resistance and disease progression by reprogramming
the lipid metabolic network of tumor cells [52]; APOB, APOC3,
and APOH may function like APOA1. Other highlighted gene was
SYT4, which is a well-characterized marker for NE tumors, [53,54].
NR0B2 is a novel androgen receptor co-repressor in mouse Sertoli
cells [55]. MAPK1 plays a role in the activation of Erk1/2-mitogen-
activated protein kinases (MAPK) signal transduction pathway in
SCLC [56], which has NE features. FOXA1 inhibits prostate cancer
NED [57].

We investigated the consensus sequences in the region span-
ning upstream 2 kb to downstream 500 bp of up-regulated genes
and down-regulated genes, respectively, in the top 500 gene can-
didates (Fig. 7E). The repressor element-1 (RE-1) silencing tran-
scription factor (REST) motif was observed to be enriched in the
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Figure 6. Examination of CDHu40 score on PRAD SU2C 2019 samples. NEPC scores on clinical NE and non-NE samples were calculated by (A) CDHu40,
(B) Bluemn2018, and (C) Dong2020. Corresponding survival differences were evaluated using stratified Cox regression with the pathological grade being
adjusted as a stratification factor according to scores by (D) CDHu40, (E) Bluemn2018, and (F) Dong2020, respectively. HR: hazard ratio of high score
samples.

up-regulated genes, including targets CHGA, CHGB, and SYP based
on the motif analysis. The known functions of REST involve the
repression of neural genes and the negative regulation of neu-
rogenesis. Up-regulation of REST target genes in NEPC samples
indicates a weakening or absence of the repression role of REST,
in turn, activating or contributing to the NE features. Another
noteworthy finding is the involvement of E2F6, a member of the
E2F family, activated in the NEPC samples. E2F6 plays a critical
role during the G1/S transition in the mammalian cell cycle.
This suggests potential dysfunction of the cell cycle in NEPC
through the activity of E2F6 and its target genes. Interestingly,
no significantly enriched motifs were observed in down-regulated
genes among the top 500 candidates.

Conclusions and discussions
PCa stands as the most prevalent cancer among men in the USA
[1]. Hormone treatment is the frontline treatment regimen for
PCa patients due to the disease sensitivity towards androgen. All
existing therapies for PCa, particularly the next-generation ASI
drugs, lead to the development of a particular subtype of PCa that
exhibits the NE-like phenotype that is no longer responsive to any
type of antiandrogen treatment [58]. Not only is NEPC treatment-
resistant, but its complex genetic heterogeneity also contributes
to misdiagnosis and challenges in recognition.

Due to the lack of biopsy samples of metastatic NEPC, poor
characterization of the disease is still prevalent [9]. One of the hur-
dles of disease identification is the consequent undersampling of
mixed histology of the NEPC samples. Genotypic and phenotypic

evaluation only represents small lesions of the actual diverse
genetic profile of the disease. Several studies have shown poten-
tial diagnosis markers for NEPC such as CGA, NCAM1, SYP, and
NSE; however, their expressions do not always coincide among
patients. To address this biopsy barrier, we established potential
diagnostic and prognostic markers for NEPC patients.

Here we proposed a novel integration method incorporating
differential gene expression analysis between NEPC and non-
NEPC samples as well as the uKIN algorithm based on the PPI
network starting with several well-known NEPC biomarkers. The
approach effectively generates a list of candidate biomarker genes
for NEPC. Our analysis of the top 500 candidates revealed enrich-
ment in neural-related features and cell cycle process enriched in
genes up-regulated in NEPC, along with repression in the AR net-
work in NEPC. The PPI network for these top 500 genes identified
hub genes associated with the cell cycle and progression of NED.
Additionally, motifs of REST and E2F6 were enriched in promoter
regions of these top candidates, suggesting their involvement in
the generation of NE features and cell cycle regulation.

We specifically selected the top 40 candidate genes, termed
CDHu40, which includes some different targets not reported
in other NEPC marker sets. The CDHu40 gene set exhibited
functional relations with NE features, providing further insights
into the underlying NED mechanisms. Particularly, CDHu40 genes
demonstrated robust and efficient performance in predicting
NEPC samples using both bulk mRNA expression and single cell
expression data compared with other published marker gene
sets. In this paper, we used the AUPRC, the golden-standard and
most popular statistical tool, as the overall criteria to evaluate the
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Figure 7. Top 500 genes identified by our methods. (A) Correlation between uKIN scores of top 500 gene and corresponding adjusted P-values (−log10)
determined by differential analysis on two datasets, NEPC WCM 2016 and PRAD SU2C 2019, respectively. Gene ontology and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enriched in (B) up-regulated genes and (C) down-regulated genes. (D) PPI network of top 500 genes including.
CDHu40 maerker genes and other genes with elevated and lower expression levels, respectively, in NEPC samples. (E) Motifs enriched in the regions
from upstream (2 kb) to downstream (500 bp) of 330 up-regulated candidate genes.

precision and recall across a range of different threshold values.
An alternative approach is to consider the F-scores, which may
be more suitable for imbalanced data. Further research in this
area is warranted. More importantly, the CDHu40 score emerges
as a better diagnostic marker for NEPC and a reliable prognostic
marker for NEPC patients.

Nevertheless, due to the heterogeneity of NEPC, most of the
time, the identified markers will not reflect the clinical identi-
fication of NEPC/NE-CRPC. For example, variations in CDHu40
gene expression profiles were observed across diverse datasets
(Fig. 4D). Notably, distinct subsets of non-NEPC samples were
noted with elevated expressions of either RBP4, ALB, FGB, FGG, and
TTR, or DDC, BEX1, HGFAC, and CHGB (Fig. 4D), which typically
exhibit heightened expression levels in the majority of NEPC
samples. This observation suggests potential subtypes within doc-
umented non-NEPC samples that may harbor some NEPC features
or could be progressing toward NEPC. Collectively, these insights
contribute to improving diagnosis and imaging options for NEPC
patients.

Key Points

• Our study integrates gene expression variances in multi-
ple neuroendocrine prostate cancer (NEPC) studies and
protein–protein interaction (PPI) network to pinpoint a
specific set of NEPC maker genes, namely, CDHu40. With
PPI networks, we identify genes that can distinguish
a specific cancer phenotype and predict clinical prog-
nostic significance. This approach may offer additional
insights for similar analyses in other cancer types.

• Our paper holds significant translational importance
due to the current lack of suitable unique identification
markers for NEPC. The CDHu40 genes demonstrated
strong and efficient performance in predicting NEPC
samples using both bulk messenger RNA expression and
single-cell expression data. Notably, the CDHu40 score
proves to be a superior diagnostic marker for NEPC and
a reliable prognostic marker for NEPC patients compared
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to other published marker gene sets. The CDHu40 score
may have substantial translational relevance based on
the results presented in the paper.

• The PPI network analysis of the top 500 candi-
date marker genes, identified through our innovative
approach, revealed hub genes associated with the cell
cycle and neuroendocrine differentiation progression.
Additionally, the promoter regions of these top candi-
dates showed enriched motifs of REST and E2F6, suggest-
ing their potential role in shaping neuroendocrine char-
acteristics and regulating the cell cycle. These findings
offer deeper insights into NEPC mechanisms.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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