Skip to main content
. 2024 Sep 11;10(18):e37820. doi: 10.1016/j.heliyon.2024.e37820

Table 3.

Performance comparison of MLAFP-XN with existing proposed methods on similar datasets.

Dataset name Proposed model Accuracy (%) References
Antifp_DS1 AntiFP 87.29 [9]
AFPDeep 90.21 [10]
iAMPCN 69.59 [41]
AFPtransferPred 48.97 [42]
AFP-MFL 94.40 [8]
DeepAFP 92.44 [14]
MLAFP-XN 97.93 This study
Antifp_DS2 AntiFP 90.21 [9]
AFPDeep 94.67 [10]
iAMPCN 84.19 [41]
AFPtransferPred 66.32 [42]
AFP-MFL 96.84 [8]
DeepAFP 96.05 [14]
Deep-AFPpred 56.49 [47]
MLAFP-XN 99.47 This study
Antifp_Main AntiFP 84.98 [9]
AFPDeep 91.05 [10]
iAMPCN 79.35 [41]
AFPtransferPred 58.35 [42]
AFP-MFL 95.84 [8]
DeepAFP 93.29 [14]
Deep-AFPpred 51.45 [47]
MLAFP-XN 99.48 This study
Other datasets Deep-AFPpred 94.27 [47]
PhytoAFP 94.4 [48]