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Integrated Mixed Potential Gas Sensor with Efficient
Structure for Discriminative Volatile Organic Compounds
Detection

Siyuan Lv, Tianyi Gu, Qi Pu, Bin Wang,* Xiaoteng Jia, Peng Sun, Lijun Wang,
Fangmeng Liu,* and Geyu Lu*

Amid growing interest in the precise detection of volatile organic compounds
(VOCs) in industrial field, the demand for highly effective gas sensors is at an
all-time high. However, traditional sensors with their classic single-output
signal, bulky and complex integrated structure when forming array often
involve complicated technology and high cost, limiting their widespread
adoption. Here, this study introduces a novel approach, employing an
integrated YSZ-based (YSZ: yttria-stabilized zirconia) mixed potential sensor
equipped with a triple-sensing electrode array, to efficiently detect and
differentiate six types of VOCs gases. This innovative sensor integrates
NiSb2O6, CuSb2O6, and MgSb2O6 sensing electrodes (SEs), which are
sensitive to pentane, isoprene, n-propanol, acetone, acetic acid, and
formaldehyde gases. Through feature engineering based on intuitive
spike-based response values, it accentuates the distinct characteristics of
every gas. Eventually, an average classification accuracy of 98.8% and an
overall R-squared error (R2) of 99.3% for concentration regression toward six
target gases can be achieved, showcasing the potential to quantitatively
distinguish between industrial hazardous VOCs gases.

1. Introduction

With the advancement of industrial modernization, the variety of
volatile organic compounds (VOCs) found in industrial produc-
tion is on the rise, necessitating enhanced capabilities for VOCs
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detection. As sensing technology evolves,
leading to the development of sensor ar-
rays that mimic human olfaction by em-
ploying multiple sensors to differentiate be-
tween gases.[1] This technological evolu-
tion is rooted in the principle that human
olfaction discerns various VOCs through
numerous receptors. A concept now mir-
rored in gas detection through sensor ar-
rays combined with pattern recognition
algorithms.[2]

As for gas pattern recognition, current re-
search can be carried out from two aspects:
the development of sensor diversity,[3] and
the enhancement of data processing ca-
pability through machine learning (ML).[4]

Traditionally, the sensor array with large
number of high-performance sensing el-
ements enhances discrimination capabil-
ities. With regard to array consisting of
standalone sensors, Sun et al. developed a
sensor array to identify various VOCs to de-
tect different bacteria in wound infection,
achieving an optimized recognition rate of

95.19% with 10 sensors.[5] From the perspective of the multivari-
able integrated sensor array, Kang et al. designed uniform inte-
grated gas sensor arrays through glancing angle deposition for
gas detection between CO, NH3, NO2, CH4, and C3H6O.[3a] Cap-
man et al. utilized graphene-based gas sensor arrays that each
array contains 108 sensors for classification of 5 VOCs species
with 4 concentrations each.[3b] However, when the number of
sensing element increases, it will inevitably face the bottleneck
challenge of large size, complex technology or fragile sensing sys-
tem. Therefore, beyond the development of variety of gas sen-
sors, leveraging varied signal processing for machine learning
enhances discrimination efficiency. Ji et al. proposed a multicom-
ponent gas detection method based on the temperature-response
relationship.[4c] The multicomponent gas could be recognized
with the help of coordinate system transformation and rational
Taylor function fitting. Wang et al. applied different bias voltage
on the sensor to obtain diverse signal curves.[6] Fourier transfor-
mation and integral of the signal curves were adopted for dis-
crimination toward 5 different VOCs gases. While in some stud-
ies, complex signal conversion or additional time-consuming
method for effective feature extraction is still inescapable. There-
fore, to sum up, realizing high sensing and discrimination
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Figure 1. Schematic diagram of a) integrated sensor and b) dynamic measurement platform.

Figure 2. Temperature modulation response values of triple-SE sensor.
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Figure 3. Dynamic response under different concentration range of a–c) pentane, d–f) isoprene, g–i) n-propanol, j–l) acetone, m–o) acetic acid and p–r)
formaldehyde.
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Figure 4. The sensitivity fitting lines to a,b) pentane, c,d) isoprene, e,f) n-propanol, g,h) acetone, i,j) acetic acid and k,l) formaldehyde.

Table 1. The features parameters definition.

Feature Definition Description

Group I

S1 ΔVCuSb2O6
= Vgas CuSb2O6

− Vair CuSb2O6
The response value with CuSb2O6-SE

S2 ΔVNiSb2O6
= Vgas NiSb2O6

− Vair NiSb2O6
The response value with NiSb2O6-SE

S3 ΔVMgSb2O6
= Vgas MgSb2O6

− Vair MgSb2O6
The response value with MgSb2O6-SE

Group II

R1
1 ΔVNiSb2O6

∕ΔVCuSb2O6
First-order response value ratio

R1
2 ΔVMgSb2O6

∕ΔVNiSb2O6
First-order response value ratio

R1
3 ΔVMgSb2O6

∕ΔVCuSb2O6
First-order response value ratio

Group III

R2
1 ΔV2

NiSb2O6
∕(ΔVCuSb2O6

∗ ΔVMgSb2O6
) Second-order response value ratio

R2
2 ΔV2

MgSb2O6
∕(ΔVCuSb2O6

∗ ΔVNiSb2O6
) Second-order response value ratio

R2
3 ΔV2

CuSb2O6
∕(ΔVNiSb2O6

∗ ΔVMgSb2O6
) Second-order response value ratio

Group IV

R3
1 ΔV2

NiSb2O6
∕ΔVCuSb2O6

Third-order response value ratio

R3
2 ΔV2

MgSb2O6
∕ΔVNiSb2O6

Third-order response value ratio

R3
3 ΔV2

MgSb2O6
∕ΔVCuSb2O6

Third-order response value ratio

efficiency with minimum number of sensors and further opti-
mization of data processing is indispensable but challenging.

For the design of highly efficient and compact integrated
sensor, among various gas sensors based on different sensing
mechanisms,[7] the YSZ-based (YSZ: yttria-stabilized zirconia)

mixed potential type sensors have attracted much attention. As a
representative electrochemical sensor, it possesses fast response
and recovery speeds, simple structure and easy integration etc.
characteristics.[6,8] It is widely accepted that the change of sen-
sor’s potential signal is originated from the electrochemical re-
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Figure 5. Repeatability of sensor with triple-SE to a) pentane, b) isoprene, c) n-propanol, d) acetone, e) acetic acid and f) formaldehyde.

actions of analyte gas molecules and oxygen molecules at triple
phase boundary (TPB: the interface of gas molecules, electrode
and solid electrolyte).[9] Taking acetone gas as an example, the
electrochemical anode reaction and cathode reaction that occur
simultaneously at TPB can be expressed as:

O2 + 4e− → 2O2− (1)

C3H6O + 8O2− → 3CO2 + 3H2O + 16e− (2)

When the electrochemical reactions reach dynamic equilib-
rium, the mixed potential will be formed. Various sensing elec-
trodes with different electrochemical catalytic activities lead to di-
verse potential signals that reflect the characteristics of analyte
gas. These response signals are operable for feature engineering
to achieve optimization of signal processing for discriminative
gas detection.

In this work, an integrated YSZ-based mixed potential sensor
equipped with a triple-sensing electrode array is developed for
pattern recognition of VOCs gases. SEs of NiSb2O6, CuSb2O6,
MgSb2O6, and reference electrode (RE) of Pt are integrated on
one YSZ substrate to form an efficient structure. Feature engi-
neering from the perspective of data dimensionality enhance-
ment is utilized to accentuate the distinct characteristics of ev-
ery gas. Ultimately, an average classification accuracy of 98.8%,

and an overall R-squared error (R2) of 99.3% for concentration
regression can be achieved between six VOCs gases. The inte-
grated sensor with optimized signal processing paves the way for
the replacement of bulky sensor arrays to realize discriminative
detection of hazardous VOCs gases which possesses widespread
applications prospect in next-generation artificial olfaction.

2. Results and Discussion

2.1. Evaluation of Integrated YSZ-Based Mixed Potential Sensor
Equipped with Triple-sensing Electrode Array

In this study, three sensing electrodes (NiSb2O6, CuSb2O6, and
MgSb2O6) and one shared reference electrode (Pt) are inte-
grated on one YSZ substrate to prepare the sensor as shown in
Figure 1a. Its sensing performance was measured by a self-
assembled dynamic testing platform as depicted in Figure 1b.
Gas sensing measurements separately to six VOCs gases of pen-
tane, isoprene, n-propanol, acetone, acetic acid and formaldehyde
with varying concentrations were conducted. Each gas exposure
experiment was repeated three times under the same condition
to reduce accidental errors.

The goal of optimizing sensor’s operating temperature goes to
benefit from its enhanced sensing capabilities. Figure 2 shows
the response values of the integrated sensor with triple-sensing
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Table 2. Average accuracy of tenfold cross-validation of discrimination between six VOCs analyte gases under diverse algorithms with different input
vectors.

Input
vector

Accuracy

DT SVM-RBF SVM-LIN LR KNN LDA

(S1, S2, S3) 86.7% 78.8% 75.2% 66.1% 86.7% 52.8%

(R1
1, R1

2, R1
3) 89.2% 92.2% 89.7% 84.9% 89.8% 77.1%

(R2
1, R2

2, R2
3) 89.1% 90.3% 91.0% 85.0% 84.3% 75.3%

(R3
1, R3

2, R3
3) 84.4% 74.0% 60.0% 61.3% 79.5% 37.7%

(S1, S2, S3, R1
1, R1

2, R1
3) 93.3% 98.2% 98.8% 97.6% 98.2% 86.7%

(S1, S2, S3, R1
1, R1

2, R1
3,R2

1, R2
2, R2

3) 95.8% 97.6% 98.2% 98.2% 97.6% 90.4%

(S1, S2, S3, R1
1, R1

2, R1
3,R2

1, R2
2, R2

3, R3
1, R3

2, R3
3) 95.8% 97.6% 98.2% 97.6% 96.9% 97.0%

(R1
1, R1

2, R1
3, R2

1, R2
2, R2

3) 92.8% 90.4% 90.4% 88.6% 90.4% 77.2%

(R1
1, R1

2, R1
3, R2

1, R2
2, R2

3,R3
1, R3

2, R3
3) 95.1% 96.4% 94.6% 92.8% 95.8% 88.6%

(R2
1, R2

2, R2
3, R3

1, R3
2, R3

3) 93.4% 94.6% 91.0% 89.2% 94.6% 79.9%

Figure 6. Radar plot of response values toward a) pentane, b) isoprene, c) n-propanol, d) acetone, e) acetic acid and f) formaldehyde.
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Figure 7. a) PCA scatter plot for six VOCs analyte gases with input vector of (S1, S2, S3); b) Accuracy of discrimination between six VOCs gases with
different algorithms with input vector of (S1, S2, S3).

Table 3. The performance metrics of classification toward six VOCs gases
based on SVM-LIN classifier.

Gas type Precision (%) Recall (%) F1 score (%)

N-propanol 100 100 100

Acetone 100 100 100

Isoprene 100 100 100

Formaldehyde 100 96.3 98.1

Pentane 96.4 100 98.2

Acetic acid 100 100 100

Table 4. The prediction performance under corresponding algorithm mod-
els.

Metrics SVM-LIN SVM-RBF Polynomial
Regression

MAE 0.775 0.490 0.316

MSE 1.489 0.890 0.314

R2 95.5% 97.7% 99.3%

electrode array to pentane, isoprene, n-propanol, acetone, acetic
acid and formaldehyde, across a range of temperatures. Notably,
the vast majority of response values reach the maximum at ≈

520 °C to six VOCs gases, except for the case of NiSb2O6-SE to
C5H12 gas. Typically, as the operating temperature increases, the
greater number of activated gas molecules and increased trans-
port rate of O2− at TPB can be generated, which are propitious
to elevated response values. The case of pentane may be due to
the probability that further increase in temperature may result in
a concomitant enhancement of gas-phase reaction for C5H12 in
NiSb2O6-SE, thereby causing no further improvement of the re-
sponse value. It is unavoidable that continual raise of operating
temperature will increase the power consumption. Under com-
prehensive consideration, the optimal operating temperature of
the device is selected to be 520 °C.

In this temperature condition, the sensor can generate differ-
entiated response patterns to various types of VOCs gases. Figure
3 depicts the detailed concentration gradient dynamic response
of the integrated sensor to six VOCs gases. It is obvious that all the
response values increase with the increase of gas concentration.

Three SEs exhibit different specific response values for diverse
VOCs gases. The standard deviation and the mean of correspond-
ing response values are plotted in Figure 4. A linear relationship
is discernible between the response values and the gas concen-
trations in logarithmic coordinate or linear coordinate which is
consistent with the mixed potential mechanism.[8b,10] Repeatabil-
ity of the sensor was also tested as shown in Figure 5. The sensor
can perform stable and repeatable potential signals and response
values towards six VOCs gases. These results confirm that the
sensor also possesses good repeatability.

2.2. Feature Engineering and Gas Classification

In order to realize qualitative gas identification and quanti-
tative concentration prediction, machine learning is further
demanded.[2a,11] In this study, The programming language is de-
veloped by python (3.8.10) on Linux (Ubuntu 20.04 64 bit) system.
Scikit-learn is deployed to build different algorithm models. The
preprocessing of data is processed by Pandas. To train different
algorithm models, the dataset is validated with a training set and
testing set with 70% and 30% data separately.

The response data is utilized to train algorithm model for
pattern recognition. Tenfold cross-validation is used to avoid
overfitting. Machine learning algorithms such as Decision Tree
(DT), Support Vector Machine with radial basis function kernel
(SVM-RBF), Support Vector Machine with linear kernel (SVM-
LIN), Logistic Regression (LR), K-Nearest Neighbor (KNN)
and Linear Discriminant Analysis (LDA) are applied for gas
classification.

For the purpose of visualizing the response patterns of six
VOCs gases, Figure 6 depicts the response values of the sensor
with varying concentrations in a parallel coordinate plot. To
verify the discrimination capability on the basis of response
values, input vector of (S1, S2, S3) as described in Table 1 is
adopted for model training. Figure 7a is the scatter plot of
principal component analysis (PCA) for six VOCs target gases.
It can not present clear separation between the clusters repre-
senting individual gas. As shown in Figure 7b, DT, SVM-RBF,
SVM-LIN, LR, KNN and LDA models also display poor degree
of accuracy. The models merely yield the highest classification
accuracy of 86.7%. The results demonstrate that it cannot
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Table 5. The detailed prediction performances under polynomial regression model.

Metrics Pentane Isoprene N-propanol Acetone Acetic acid Formaldehyde Six VOCs gases

MAE 0.043 0.643 0.218 0.121 0.749 0.053 0.316

MSE 0.003 0.794 0.067 0.029 0.885 0.006 0.314

R2 99.9% 97.8% 99.9% 99.8% 99.0% 97.9% 99.3%

Figure 8. Relationships of predicted gas concentrations versus true concentrations for six VOCs gases through polynomial regression model.

distinguish well between six VOCs gases simply utilizing the
response values as feature parameters. Therefore, it is crucial to
further select appropriate feature parameters for more accurate
classification.

For the sake of obtaining effective features and accentuating
the distinct characteristics of every gas, feature engineering of
data dimensionality enhancement is performed. Subsequently,
12 features parameters based on response values are assigned

into four groups as annotated in Table 1. A preparatory parameter
selection is performed to explore their importance. Table 2 shows
the superiority of input vectors of (R1

1, R1
2, R1

3) and (R2
1, R2

2, R2
3)

with the highest accuracy of 92.2% and 91.0%. However, the DT
algorithm model can only provide an accuracy of 84.4% with an
input vector of (R3

1, R3
2, R3

3). The improvement of model accuracy
indicates that the expanded feature parameters play a critical role
in gas pattern recognition.

Adv. Sci. 2024, 11, 2405124 2405124 (8 of 11) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Table 6. The performance comparison between previously reported literature and this work.

Type of sensor/sensor array Sensing Material Element
number

Number of
classified

gases

Classification
accuracy (%)

Quantification Reference

YSZ-based integrated sensor array NiSb2O6; CuSb2O6; MgSb2O6 3 6 98.8% R2: 99.3% This work

Semiconductor-
based
sen-
sor
array

SnO2; In2O3; WO3 and CuO with and
without Au nanoparticle

decoration

8 6 98.1% average error: 10.15%. [3a]

In2O3 with different
Ga doping/alloying levels

4 6 92.85% Accuracy: 99.14% [12]

(Commercial sensors) 10 6 94.4% / [4e]

N-doped graphene quantum dots;
MoS2; Au; Pd

4 5 97% / [4a]

ZnO-based MEMS sensor array ZnO and ZnO with additives 6 4 97.9% R2: 0.975 [13]

Graphene-based sensor array Functionalized Graphene 108 5 98% / [3b]

Polymer-based sensor array paper-based; poly(2-acrylamido-2-
methyl-1-propanesulfonic acid); N-3-

(dimethylamino)propyl
methacrylamide (DMAPMAm) and
methoxyethyl methacrylate (MEMA)
(PD-co-M), and diethylamine (DEA)

3 3 / / [14]

Polymer-based sensor array Graphene and
polyaniline composite

4 2 100% R2: over 99% [15]

Polymer-based sensor array polymer-graphene nanoplatelet
composite

12 5 99% / [16]

Polymer-based sensor array Poly(styrene); Poly(caprolactone);
Poly(ethylene-co-vinyl

acetate); Poly(vinyl chloride); Nafion

7 5 / / [17]

Polymer-based sensor Pt 1 2 / / [18]

Polymer-based sensor Polypyrrole 1 3 / / [19]

Polymer-based sensor 3D sulfonated RGO hydrogel 1 4 / / [20]

Additionally, an analysis about further enhancing the clas-
sification accuracy also needs to be discussed. Owing to the
elevated accuracy based on elementary feature selection, anal-
ysis based on the more combinations of feature parameters
is carried out. From the comparison in Table 2, it shows
that the accuracy based on different combinations between ex-
tended feature parameters is generally improved. By compar-
ison, the feature parameters of Group I and Group II con-
tribute to higher classification accuracy. Considering the influ-
ence of features of Group I and Group II, the input vectors of
(S1, S2, S3, R1

1, R1
2, R1

3), (S1, S2, S3, R1
1, R1

2, R1
3, R2

1, R2
2, R2

3) and
(S1, S2, S3, R1

1, R1
2, R1

3, R2
1, R2

2, R2
3, R3

1, R3
2, R3

3) can display bet-
ter accuracy of 98.8%, 98.2%, and 98.2%. Table 2 exhibits the opti-
mal accuracy of 98.8% which demonstrates that data dimension-
ality enhancement improves the accuracy of pattern recognition.
The metrics in Table 3 also prove the high success rate of clas-
sification by the SVM-LIN classifier toward six VOCs gases. All
data is based on the spike signals within 60 s that avoids waiting
for the signal to stabilize or recover for a complete response and
recovery process. It could improve detection efficiency with the
spike signal of high amplitude which facilitates rapid discrimina-
tive detection of hazardous VOCs gases.

2.3. Concentration Prediction

Further quantitative prediction of gas concentrations is studied
with SVM-LIN, SVM-RBF and polynomial regression models.
As compared in Table 4, polynomial regression model exhibits
the best concentration regression results among the three algo-
rithms. In detailed prediction performance from validation data
for six VOCs gases of Figure 8, the closer the point is to the dot-
ted line, the more accurate quantitative prediction can be proved.
It can be seen that most of prediction results from polynomial
regression model are close to the real concentrations. The per-
formance of the model is evaluated using mean absolute error
(MAE), mean squared error (MSE), and R2 as summarized in
Table 5. The R2 scores are as high as 99.9%, 97.8%, 99.9%, 99.8%,
99.0% and 97.9% for C5H12, C5H8, C3H8O, C3H6O, C2H4O2 and
CH2O. Furthermore, the overall regression results display MAE,
MSE and R2 scores of 0.316, 0.314, and 99.3%. Table 6 displays
the accuracy comparison of gas identification in previous works
and this study. It can demonstrate the effectiveness of the inte-
grated YSZ-based mixed potential sensor equipped with a triple-
sensing electrode array for quantitative discriminative detection
toward six VOCs gases.
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3. Conclusion

In this paper, we propose an integrated YSZ-based mixed poten-
tial sensor equipped with a triple-sensing electrode array com-
bining with feature engineering for discriminative detection of
six VOCs gases. Relatively low concentration ranges of pentane,
isoprene, n-propanol, acetone, acetic acid, and formaldehyde can
be detected with distinctive response values. On the basis of fea-
ture engineering from spike response signal, data dimensional-
ity enhancement and optimized selection of features are further
adopted. Eventually, elevated classification accuracy of 98.8% be-
tween six VOCs gases is achieved, resulting from that feature en-
gineering allows for amplification of the distinct characteristics of
every gas. In addition, the sensor is capable of predicting the un-
trained dataset to verify the ability of quantitative prediction. The
overall R2 error for concentration regression can achieve 99.3%
toward six VOCs gases. The purpose of replacing large-size sen-
sor array with efficient integrated sensor can also be realized,
which will have important practical significance and broad appli-
cation prospects in next-generation electronic nose for hazardous
gases.

4. Experimental Section
Design of Integrated Sensor with Triple-Sensing Electrode Array: Three

sensing electrodes (NiSb2O6, CuSb2O6, and MgSb2O6) and one shared
reference electrode (Pt) were integrated on one YSZ substrate. The syn-
thetic methods of sensing materials can be obtained from the previous
works where their characterization results have been detailed.[8] The heat-
ing plate was bonded with the RE side of the YSZ substrate by an inor-
ganic adhesive. Eventually, the sensor was connected to a hexagonal tube
socket for testing. Through applying current to the heating plate, the de-
sired working temperature of the sensor could be provided. The exact tem-
perature value was standardized by the FLIR T250 thermal infrared imager.

Measurement Platform and Testing Process: The gas flow rate through
the chamber was set by digital mass flow controllers (MFCs). Six analyte
gases with varying concentrations were modulated by controlling the flow
ratio of dry synthetic air, humid synthetic air, and standard gas. In the gas
circuit, the humidity was set at ≈40% RH, and the temperature is retained
within the range of 23 ± 1 °C.

During the testing procedure, the potential differences between the
three SEs and RE were measured as voltage signals every second. The max-
imal difference of voltage signal between analyte gas and air is defined as
response value (ΔV = Vgas − Vair).
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