Skip to main content
. 2024 Sep 25;13(9):e12511. doi: 10.1002/jev2.12511

TABLE 1.

The benchmarked deconvolution methods.

Algorithm Regression Reference
Bisque Non‐negative least squares Jew et al. (2020)
CIBERSORTx Support vector regression Newman et al. (2019)
EV‐origin Support vector regression Li et al. (2020)
DeconRNASeq Non‐negative least squares Gong and Szustakowski (2013)
dtangle Linear mixing model Hunt et al. (2018)
DWLS a Dampened weighted least squares Tsoucas et al. (2019)
DWLSj a Dampened weighted least squares b Tsoucas et al. (2019)
DWLS OLS a Ordinary least squares Tsoucas et al. (2019)
DWLS SVR a Support vector regression Tsoucas et al. (2019)
MuSiC Weighted non‐negative least squares Wang et al. (2019)
MuSiC nnls Non‐negative least squares Wang et al. (2019)
a

The DWLS‐based methods use the same algorithm to identify signature genes for tissue/cell types.

b

Unlike DWLS, DWLSj does not iterate the proportion estimation to converge on a solution.