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from prion-decontaminated surfaces

Sara M. Simmons,1 Vivianne L. Payne,2 Jay G. Hrdlicka,1 Jack Taylor,3 Peter A. Larsen,4,5 Tiffany M. Wolf,5,6 Marc D. Schwabenlander,4,5 

Qi Yuan,1 Jason C. Bartz1,5,7

AUTHOR AFFILIATIONS See affiliation list on p. 17.

ABSTRACT Prion diseases are untreatable fatal transmissible neurodegenerative 
diseases that affect a wide range of mammals, including humans, and are caused by 
PrPSc, the infectious self-templating conformation of the host-encoded protein, PrPC. 
Prion diseases can be transmitted via surfaces (e.g., forceps, EEG electrodes) in laboratory 
and clinical settings. Here, we use a combination of surface swabbing and real-time 
quaking-induced conversion (RT-QuIC) to test for residual surface-associated prions 
following prion disinfection. We found that treatment of several prion-contaminated 
laboratory and clinically relevant surfaces with either water or 70% EtOH resulted in 
robust detection of surface-associated prions. In contrast, treatment of surfaces with 
sodium hypochlorite resulted in a failure to detect surface-associated prions. RT-QuIC 
analysis of prion-contaminated stainless steel wires paralleled the findings of the surface 
swab studies. Importantly, animal bioassay and RT-QuIC analysis of the same swab 
extracts are in agreement. We report on conditions that may interfere with the assay that 
need to be taken into consideration before using this technique. Overall, this method 
can be used to survey laboratory and clinical surfaces for prion infectivity following prion 
decontamination protocols.

IMPORTANCE Prion diseases can be accidentally transmitted in clinical and occupa­
tional settings. While effective means of prion decontamination exist, methods for 
determining the effectiveness are only beginning to be described. Here, we analyze 
surface swab extracts using real-time quaking-induced conversion (RT-QuIC) to test for 
residual prions following prion disinfection of relevant clinical and laboratory surfa­
ces. We found that this method can rapidly determine the efficacy of surface prion 
decontamination. Importantly, examination of surface extracts with RT-QuIC and animal 
bioassay produced similar findings, suggesting that this method can accurately assess 
the reduction in prion titer. We identified surface contaminants that interfere with the 
assay, which may be found in clinical and laboratory settings. Overall, this method can 
enhance clinical and laboratory prion safety measures.
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P rion diseases are fatal, neurodegenerative disorders that affect several mammalian 
species. Human prion diseases include Creutzfeldt-Jakob disease (CJD), Gerstmann-

Sträussler-Scheinker disease, fatal familial insomnia, and Kuru (1–4). Prion diseases 
known to afflict other species include chronic wasting disease in cervids, scrapie in 
sheep and goats, camel prion disease in dromedary camels, and bovine spongiform 
encephalopathy (BSE) in cattle (5–9). Prion diseases are caused by the misfolding of the 
normal cellular form of the prion protein (PrPC) into the infectious and pathogenic form 
(PrPSc) (10–15). PrPSc converts further PrPC into the pathogenic form eventually leading 
to neuronal dysfunction and death of the host (16–20). Prion strains are operationally 
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defined by a heritable phenotype of disease that is encoded by strain-specific confor­
mations of PrPSc (21–23). Mounting evidence indicates that several other protein 
misfolding neurodegenerative diseases follow the prion paradigm (24–29). While not 
contagious in a population, these diseases share similarities in prion formation, spread in 
the nervous system, and strain-specific phenotypes of the disease (25, 27, 30–37).

Prions are highly resistant to common forms of disinfection. Prions and/or PrPSc are 
resistant to inactivation by UV light, ionizing radiation, heat, formaldehyde, hydrogen 
peroxide, and alcohol (38–48). Similarly, multiple system atrophy α-synuclein and 
amyloid-β prions are resistant to inactivation by formalin fixation (49–51). Recently, it 
has been shown that Lewy body α-synuclein prions that cause dementia are resistant 
to inactivation by autoclaving at 121°C (52). Prions can be chemically inactivated with 
sodium hydroxide, sodium hypochlorite, acidic sodium dodecyl sulfate, hypochlorous 
acid, and the phenolic compounds Environ LpH and Wexide-128 (53–59). Importantly, 
prion strain-specific differences in susceptibility to inactivation by both physical and 
chemical methods have been observed; therefore, the efficacy of antiprion modalities to 
new prion diseases or strains must be interpreted with caution (56, 60). Strain-specific 
incomplete inactivation of prions can result in the emergence of a minor prion strain 
from a mixture (61).

Prions can be transmitted via iatrogenic infection. Iatrogenic infection can arise from 
prion-contaminated transplant materials or medical equipment. The first reported case 
of iatrogenic infection originated from a corneal transplant that was derived from a 
cadaver unknowingly harboring CJD (62). Additionally, iatrogenic CJD can occur after the 
transplantation of CJD-contaminated human growth hormone or dura mater (63–73). 
Iatrogenic Alzheimer’s disease in recipients of growth hormone derived from pituitary 
glands that contain Aβ prions has been observed (36, 74, 75). Cases of iatrogenic CJD 
transmission have been reported following the use of contaminated neurosurgical tools 
involved in procedures such as brain biopsies and tumor removals on a patient later 
diagnosed with CJD (76–80).

Occupational prion transmission has been reported. The first account of an occupa­
tional prion transmission occurred in a laboratory worker who was exposed to brain 
material from humanized transgenic mice infected with sheep-adapted BSE, likely from 
a puncture wound from forceps (81). A second suspect case of occupational CJD 
attributed to laboratory transmission was reported in 2021 resulting in a moratorium 
on prion research in France (82). The reported transmission of non-PrP-based prions from 
the iatrogenic transmission and laboratory studies, in conjunction with PrP and some 
non-PrP prions’ unusual resistance to inactivation, highlights the potential for prion 
transmission under occupational and medical settings (83).

Prion decontamination efficacy has been measured through bioassay of treated 
samples. This can be accomplished by animal bioassay of treated tissue homogenates 
or prion-coated stainless steel wires (84, 85). While effective, this process is costly and 
time-consuming (86, 87). The scrapie cell assay (SCA) is as sensitive as animal bioassay, 
more precise, and can be completed in a fraction of the time (88). The SCA can accurately 
measure prions on the surface of stainless steel wires to determine the efficacy of prion 
decontamination methods (89). A weakness of this method is only a limited number 
of prion strains are compatible with the SCA, and the method is not able to assess 
for prions on working surfaces in laboratory or clinical settings. Ultra-sensitive prion 
detection assays, such as real-time quaking-induced conversion (RT-QuIC), have allowed 
for the amplification and detection of minute amounts of PrPSc and the prion forms of 
synuclein, tau and Aβ (90–95). Recent work indicates that PrP, α-synuclein, and tau prions 
can be detected from media that are applied to a surface (96). Here, we investigate if 
the combination of RT-QuIC coupled with the newly developed swabbing methodology 
provides a practical approach to assess surface decontamination efficacy in laboratory 
and clinical settings (97).
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RESULTS

Efficient recovery of prions applied to laboratory surfaces

Each surface type was contaminated with 10-fold serial dilutions of hyper transmissible 
mink encephalopathy (HY TME)-infected brain homogenate in Dulbecco’s phosphate-
buffered saline (DPBS) (mother dilutions), and contaminated surfaces were allowed to 
dry for 24 hours prior to swabbing, extraction, and RT-QuIC analysis (Fig. 1, panel A). 
Negative control swab extracts failed to yield positive readings, in terms of maxpoint 
ratio (MPR) above the determined positive threshold of 2. In some instances, however, 
positive signals were observed in one out of four technical well replicates for one 
technical negative swab extract replicates. When comparing the SD50 (seeding dose that 
resulted in 50% positivity for tested samples determined by RT-QuIC end-point dilutions, 
Table 1) of swabbing-recovered HY TME to the original HY TME mother dilutions applied 
to the surface, there was an approximate loss of 1.1 logs for glass surfaces (Fig. 1, panel 

FIG 1 Effective swabbing recovery of prions applied to laboratory surfaces. (A)Vertical dilution method surface contamination and swabbing methodology 

of contaminated laboratory surfaces. Created with BioRender.com. (B)RT-QuIC detection for glass slide surface-recovered HY prions. (C)RT-QuIC detection for 

stainless steel surface-recovered HY prions. (D)RT-QuIC detection for laboratory benchtop surface-recovered HY prions. Negative plate controls include blank 

(tissue dilution solution) and uninfected brain homogenate. A positive fluorescence threshold (illustrated by the red line) was determined to be at 2. The 

maxpoint ratio reported is the ratio of the maximum fluorescence to the initial fluorescence reading obtained by the plate reader. Each point represents the 

average MPR from one biological replicate (mean ± standard deviation).
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B), 1.6 logs for stainless steel surfaces (Fig. 1, panel C), and 2 logs for benchtop surfaces 
(Fig. 1, panel D), respectively.

Residual bleach does not interfere with RT-QuIC detection of surface-recov­
ered HY TME

The potential inhibitory role of bleach residue that may be introduced to the RT-QuIC 
reaction from treated surfaces was investigated. Glass slide surfaces were contaminated 
with 10−2 HY TME-infected brain and were allowed to dry for 24 hours prior to bleach 
treatment, swabbing, extraction, and RT-QuIC analysis (Fig. 2, panel A). To quantify 
any potential inhibition imparted by bleach residue, the bleach control swab extracts 
were run in comparison to a representative swab extract that had not undergone 
treatment. The SD50 was determined and used to assess any loss of detection. Negative 
plate controls failed to yield MPR above the determined positive threshold of 2. (Fig. 
2, panel B). The swabbing of residual bleach, followed by swabbing of an additional 
surface contaminated with 10−2 HY TME-infected brain homogenate in DPBS yielded 
SD50 results, determined by RT-QuIC end-point dilutions, that were within 0.2 log when 
compared to 10−2 HY brain homogenate (BH) swab extract samples alone (Table 2). 
The results of this experiment illustrate that residual bleach, which may be present on 
a treated surface following thorough rinsing with water, does not inhibit the RT-QuIC 
reaction. Overall, the reduction of RT-QuIC seeding activity with bleach treatment is a 
result of decontamination.

Bleach is an effective disinfectant for HY-contaminated laboratory surfaces, 
while 70% EtOH and H2O are ineffective disinfectants

The efficacy of multiple disinfectants in decontaminating prion-contaminated surfaces 
was investigated. These disinfectants included undiluted bleach and 70% EtOH. Water 
was used as a negative disinfection control. Each surface type was contaminated with 
10−2 HY TME-infected brain homogenate, and surfaces were allowed to dry for 24 hours 
prior to disinfection, swabbing, extraction, and RT-QuIC analysis (Fig. 3, panel A). Each 
disinfectant was applied to the prion-contaminated area for a treatment duration of 10 
minutes. Swab extracts were then evaluated with RT-QuIC, and each plate compared 
an untreated positive surface control extract to surfaces treated with H2O, 70% EtOH, 
and undiluted bleach. Negative swab controls failed to yield fluorescence signals above 
the positive fluorescence threshold determined to be at 2 (Fig. 3, panel B). In rare 
instances, 1/4 technical replicate wells for negative control swab extracts showed low 
seeding capabilities. The treatment of glass slides, stainless steel surfaces, and benchtops 
with undiluted bleach led to a complete loss of fluorescence signals above the positive 
fluorescence threshold of 2 (Fig. 3, panel C). Treatment of glass slide surfaces with both 
70% EtOH and H2O led to an approximate one log reduction in the SD50 when compared 

TABLE 1 Comparison of log SD50/g of brain homogenate, determined by RT-QuIC end-point dilutions, of 
prion-contaminated surface swabbing recovered HY

Surface Biological 
replicate

Mother 
dilution

Technical 
replicate #1

Technical 
replicate #2

Technical 
replicate #3

Technical 
replicatea

Glass slide #1 10.53 8.93 9.03 9.20 9.05 ± 0.11
#2 9.33 8.78 9.17 8.92 8.96 ± 0.16
#3 9.70 8.17 8.03 8.45 8.22 ± 0.17

Stainless 
steel

#1 10.53 9.03 9.20 9.03 9.09 ± 0.08
#2 10.53 8.70 9.20 8.70 8.87 ± 0.24
#3 9.20 7.37 7.70 7.37 7.48 ± 0.16

Benchtop #1 10.20 8.33 7.37 8.20 7.97 ± 0.43
#2 9.20 7.70 7.70 7.37 7.59 ± 0.16
#3 9.44 7.70 6.33 8.03 7.35 ± 0.74

aAverage ± SD.

Research Article mSphere

September 2024  Volume 9  Issue 9 10.1128/msphere.00504-24 4

https://doi.org/10.1128/msphere.00504-24


to the swab extracts of untreated, prion-contaminated glass slide surfaces (Table 2). 
Treatment of stainless steel surfaces with H2O did not lead to a statistically significant 
(0 > 0.05) reduction in SD50 when compared to the untreated surface. In addition, there 
was an approximate 0.5 log reduction in SD50 for the 70% EtOH-treated stainless steel 
surfaces, but this difference was not statistically significant (P > 0.05). Seventy percent 
EtOH and H2O treatment of benchtop surfaces led to statistically significant (P < 0.05) 
reduction in SD50 at approximately 0.7 and 1.3 logs, respectively. Overall, bleach is an 
effective disinfectant for prion-contaminated surfaces, while H2O and 70% EtOH are 
ineffective.

FIG 2 Residual bleach does not interfere with RT-QuIC detection of surface-recovered prions. (A)Residual bleach swabbing 

methodology (Created with BioRender.com.). (B)RT-QuIC detection of swab extracts from prion-contaminated surfaces 

exposed to residual bleach residue. Plate controls included negative plate controls: blank (tissue dilution solution) and 

uninfected hamster brain homogenate of 10−3 and the positive plate control mother dilution 10−5. A positive fluorescence 

threshold (illustrated by the red line) was determined to be at 2. The maxpoint ratio reported is the ratio of the maximum 

fluorescence to the initial fluorescence reading obtained by the plate reader (mean ± standard deviation). Each experiment 

was performed at least three times, with similar results obtained from each experiment.
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Direct surface measurement of prion seeding activity on stainless steel wire 
mimics the results of surface-recovered prion seeding activity

Mock-treated, plus HY TME-contaminated stainless steel wires were subjected to 
treatment with either H2O, 70% EtOH, or undiluted bleach and were subsequently 
assayed with RT-QuIC in order to test residual infectivity that may remain on the surface 
itself following treatment (Fig. 4, panel A). Two- to three-millimeter stainless steel wires 
were incubated with either UN HA BH 10−3 or HY 10−3 BH for 1 hour followed by thorough 
rinsing. Both sets of wires were then subjected to treatment with various disinfectants for 
10 minutes prior to rinsing and were then added directly to the 96-well plate for assay 
with RT-QuIC. The treatment of HY-contaminated stainless steel wires with undiluted 
bleach led to a complete loss of fluorescence signals above the positive fluorescence 
threshold of 2 (Fig. 4, panel B). In addition, 70% EtOH and H2O were ineffective disinfec­
tants for HY-contaminated stainless steel wires. In addition, negative control wires that 
underwent the same treatments failed to yield fluorescence signals above the positive 
fluorescence threshold of 2. All treated HY TME treatment data points are an average 
of 16 replicate wires, except one biological replicate of 70% EtOH-treated wires, which 
contained 15 replicate wires, and 1 biological replicate of H2O-treated wires, which 
contained 14 replicate wires.

TABLE 2 RT-QuIC detection (log SD50/g of brain homogenate as determined by end-point dilutions) of HY recovered from relevant surfaces treated with various 
disinfectants

Surface Biological replicate Technical replicate Treatment

None H2O 70% EtOH Bleach Bleach control

Glass slide 1 a 10.20 10.20 9.20 MPR< 2 10.70
b 10.47 9.37 9.37 MPR< 2 10.70
c 11.20 10.20 9.70 MPR< 2 10.20

2 a 10.93 9.20 9.53 MPR< 2 9.70
b 10.37 9.37 9.20 MPR< 2 10.20
c 10.53 8.20 10.03 MPR< 2 9.70

3 a 9.20 8.33 8.20 MPR< 2 9.47
b 9.70 8.93 9.33 MPR< 2 9.53
c 9.20 8.20 9.20 MPR< 2 10.20

Avg± SD 10.20 ± 0.66 9.11 ± 0.73 9.31 ± 0.47 MPR< 2 10.04 ± 0.44a

Stainless steel 1 a 10.53 10.32 9.47 MPR< 2 N/Ab

b 10.37 9.70 10.20 MPR< 2 N/A
c 9.93 9.70 9.37 MPR< 2 N/A

2 a 9.20 9.30 9.03 MPR< 2 N/A
b 9.20 8.93 8.70 MPR< 2 N/A
c 9.37 10.20 9.03 MPR< 2 N/A

3 a 9.03 10.02 8.20 MPR< 2 N/A
b 10.03 9.20 9.37 MPR< 2 N/A
c 8.93 9.20 8.70 MPR< 2 N/A

Avg± SD 9.62 ± 0.57 9.62 ± 0.46 9.12 ± 0.54 MPR< 2 N/A
Benchtop 1 a 10.93 9.20 10.03 MPR< 2 N/A

b 10.37 8.70 10.03 MPR< 2 N/A
c 10.93 9.70 10.20 MPR< 2 N/A

2 a 10.37 10.03 10.37 MPR< 2 N/A
b 11.37 9.93 10.20 MPR< 2 N/A
c 10.70 10.03 10.20 MPR< 2 N/A

3 a 10.37 8.37 9.37 MPR< 2 N/A
b 10.37 8.93 10.03 MPR< 2 N/A
c 10.93 10.03 9.93 MPR< 2 N/A

Avg± SD 10.70 ± 0.34 9.44 ± 0.61 10.04 ± 0.27 MPR< 2 N/A
aAverage ± SD.
bNot Applicable.
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Examination of swab extracts by RT-QuIC and animal bioassay for prions

Mock-contaminated glass and HY TME-contaminated glass treated with either H2O, 70% 
EtOH, or bleach were swabbed, and the swab extract was split into two equal aliquots 
(Fig. 5, panel A). The first aliquot was analyzed using RT-QuIC for the presence of seeding 
activity. In the negative control glass surfaces treated with either DPBS, 10−3, or 10−5 

dilution of uninfected (UN) brain homogenate did not result in detectable RT-QuIC 
seeding activity (Fig. 5, panel B). Swab extracts from glass surfaces contaminated with 
HY TME that were treated with either H2O or 70% EtOH yielded an SD50 within approx­
imately 1 log when compared to swab extracts that did not undergo treatment (P = 
0.09172). Bleach treatment of contaminated glass surfaces resulted in a complete loss 
of fluorescence above the defined threshold. The second aliquot was intracerebrally (i.c.) 
inoculated into hamsters to examine for prion infectivity. As a positive control, hamsters 
were i.c. inoculated with a 10−4 dilution of HY TME-infected brain homogenate resulting 
in all (n = 5) of the animals developing clinical signs of hyperexcitability and ataxia at 
76 ± 3 days post-infection (dpi) (Fig. 5, panel D). As a negative control, swab extract 
from an uncontaminated glass surface resulted in none (n = 5) of the animals developing 
clinical signs of prion infection at 300 dpi when the experiment was terminated (Fig. 5, 
panel D). Swab extracts from HY TME-contaminated surfaces treated with either water 
or 70% EtOH resulted in all (n = 5) of the animals developing clinical signs of prion 
disease at 91 ± 7 and 95 ± 4 dpi, respectively. Swab extract from HY TME-contaminated 

FIG 3 Bleach is an effective disinfectant for HY-contaminated laboratory surfaces, while 70% EtOH and H2O are ineffective disinfectants. (A)Horizontal 

dilution method surface contamination and swabbing methodology of contaminated and treated laboratory surfaces (created with BioRender.com). (B)RT-QuIC 

detection for glass slide surface recovered negative controls included UN HA BH 10−3, UN HA BH 10−5, and DPBS. (C)RT-QuIC detection for swab extracts 

from HY-contaminated glass slide surfaces treated with H2O, 70% ethanol, or undiluted bleach for 10 minutes. (D)RT-QuIC detection for swab extracts from 

HY-contaminated stainless steel surfaces treated with H2O, 70% ethanol, or undiluted bleach for 10 minutes. (E)RT-QuIC detection for swab extracts from 

HY-contaminated benchtop surfaces treated with H2O, 70% ethanol, or undiluted bleach for 10 minutes. Negative plate controls include blank (tissue dilution 

solution) and uninfected brain homogenate of 10−3. A positive plate control consisted of 10−5 or 10−6 dilution prepared from the mother dilution applied to 

surfaces. A positive fluorescence threshold (illustrated by the red line) was determined to be at 2. The maxpoint ratio reported is the ratio of the maximum 

fluorescence to the initial fluorescence reading obtained by the plate reader (mean ± standard deviation). Each experiment was performed at least three times, 

with similar results obtained from each experiment.
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surfaces treated with bleach resulted in none (n = 5) of the animals developing clinical 
signs of prion disease at 300 dpi when the experiment was terminated (Fig. 5, panel D). 
Western blot analysis for the presence of PrPSc from these animals was consistent with 
the clinical diagnosis of disease (Fig. 5, panel E). Overall, the results from RT-QuIC and 
animal bioassay were congruent (Table 3).

The effect of environmental factors on RT-QuIC reactions

Given the wide-ranging use and degree of cleanliness of relevant clinical and laboratory 
surfaces, various concentrations of three distinct soil minerals [non-expanding kaolinite 
(Kao), expanding montmorillonite, and hectorite] were added to the tissue dilution 

FIG 4 Direct surface measurement of prion seeding activity on stainless steel wire mirrors the results of surface-recovered prion seeding activity. (A)Overview of 

wire contamination and analysis by RT-QuIC (created with BioRender.com). (B)RT-QuIC detection of HY BH dilutions and stainless steel wires contaminated with 

HY BH dilutions. (C)RT-QuIC detection of contaminated stainless steel wires. A positive fluorescence threshold (illustrated by red line) was determined to be at 

2. The maxpoint ratio reported is the ratio of the maximum fluorescence to the initial fluorescence reading obtained by the plate reader. Each point represents 

the average MPR from one biological replicate (mean ± standard deviation). For treated HY TME wires, each point is an average of 16 replicate wires, except one 

biological replicate for 70% EtOH-treated wires contained 15 replicate wires, and one biological replicate of H2O-treated wires contained 14 replicate wires.
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solution used for the preparation of UN HA BH negative plate controls and HY TME 
dilution series to investigate their potential impacts on the RT-QuIC reaction. Each of the 
aforementioned soil types was added to the tissue dilution solution at concentrations of 
100, 10, 1, and 0.1 mg/mL, and this tissue dilution solution was used for the preparation 
of UN HA BH and HY TME dilution series (Fig. 6, panel A). The addition of the highest 

FIG 5 RT-QuIC and animal bioassay of swab extracts produced similar results. (A)Overview of surface prion contamination and swabbing procedure resulting in 

swab extracts that were analyzed by either (B and C)RT-QuIC (created with BioRender.com) (D)or animal bioassay. A positive fluorescence threshold (illustrated by 

the red line) was determined to be at 2. The maxpoint ratio reported is the ratio of the maximum fluorescence to the initial fluorescence reading obtained by the 

plate reader (mean ± standard deviation). (E)Western blot analysis of PK digested brain homogenates from bioassay results from panel D.
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concentration of Kao led to a complete inhibition of the detection of the HY TME 
dilution series, yielding no fluorescence above the set positive fluorescence threshold of 
2 (Fig. 6, panel B). Interestingly, the fluorescence curves of the uninfected BH dilutions 
with 100 mg/mL of Kao added showed distinct tracings (although below the positive 
threshold) when compared to the same dilutions without soil added (Fig. S7, panel A). 
The addition of 10, 1, and 0.1 mg/mL did not significantly (P < 0.05) alter the SD50 of the 
HY dilution series compared to a no soil control (Fig. 5, panels C, D, and E). For hectorite, 
the addition of 10 mg/mL completely inhibited the RT-QuIC reaction, while the addition 
of 1 and 0.1 mg/mL did not significantly (P < 0.05) affect the SD50 value sensitivity 
(Table 4). For montmorillonite (Mte), again the addition of 10 mg/mL of soil inhibited 
the RT-QuIC reaction. While 0.1 mg/mL of Mte had no significant (P > 0.05) effect on 
the sensitivity of the RT-QuIC reaction, the addition of 1 mg/mL led to an approximate 1 
log increase in SD50, which was statistically (P < 0.05) significant. In addition, 0.1 mg/mL 
Mte led to a decrease in the maximum fluorescence observed in each replicate well (Fig. 
S7, panel B). Of note, when performing experiments on factory new benchtop surfaces, 
an altered background fluorescence curve was observed, extending above the positive 
fluorescence threshold (Fig. S7, panel C), which was eliminated by washing with water 
(Fig. S7, panel C). Due to these findings, the impact of environmental contaminants such 
as dust and byproducts of manufacturing on RT-QuIC should be considered.

The addition of nanoparticles to RT-QuIC can increase the sensitivity of 
surface-recovered prions

The ability of silica nanoparticles to increase the sensitivity of RT-QuIC on surface-
recovered HY prions was investigated. Stainless steel tokens were contaminated with 
10−1 to 10−9 10-fold serial dilutions of HY TME-infected brain homogenate in DPBS 
(mother dilutions), and contaminated surfaces were allowed to dry for 24 hours prior to 
swabbing, extraction, and RT-QuIC analysis as previously described. While low dilu­
tions of brain homogenate are not generally tested due to the inhibitory effects on 
RT-QuIC, the addition of silica nanoparticles has previously been shown to overcome this 
inhibition (98). For this reason, a dilution series of 10−2 to 10−10 was investigated using 
both standard RT-QuIC and nanoparticle RT-QuIC (Nano-QuIC). Negative plate controls 
for standard RT-QuIC failed to yield MPR above the determined positive threshold of 2 
(Fig. 7). One out of three replicates yielded positive signals in the negative plate controls 
for nanoparticle RT-QuIC reactions. When comparing standard RT-QuIC to nanoparticle 
RT-QuIC, a restoration of seeding was observed for the HY dilution 10−2 following the 
addition of nanoparticles, thus increasing the sensitivity of surface recovered HY prions 
by one order of magnitude.

DISCUSSION

The surface swab prion detection method effectively assessed the decontamination 
efficacy of two common disinfectants. Building upon our previous work indicating that 
prions can be recovered from surfaces with swabbing, here we show efficient recovery 
of prions from laboratory and clinically relevant surfaces (Fig. 1) (97). To investigate 
the utility of this methodology in assessing the effectiveness of prion decontamination 

TABLE 3 Comparison of RT-QuIC and bioassay results of treated prion-contaminated glass slide surfaces

RT-QuIC SD50/g of brain 
homogenate

RT-QuIC positive 
wells (10−3)

Incubation period 
(days)a

Attack 
rate

PrPSc present on 
western blot

UN HA BH swab extract negative control MPR< 2 0/4 >300 0/5 0/5
HY TME 10−4 positive control 11.37 4/4 76 ± 3 5/5 5/5
H2O-treated swab extract 10.20 4/4 91 ± 7 5/5 5/5
70% ethanol-treated swab extract 9.20 4/4 95 ± 4 5/5 5/5
Bleach-treated swab extract MPR< 2 0/4 >300 0/5 0/5
aAverage ± SD.
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procedures, we treated surfaces with either water as a negative decontamination control, 
70% EtOH as an example of a common laboratory disinfectant, and sodium hypochlorite 
as a positive control for prion decontamination. We observed that 70% EtOH treatment 
of HY TME-contaminated surfaces resulted in the detection of RT-QuIC seeding activity in 

FIG 6 Impact of soil on RT-QuIC detection of HY dilutions is dependent on soil concentration. (A)Overview of soil spiking procedure of tissue dilution solution for 

RT-QuIC analysis (created with BioRender.com). (B)RT-QuIC detection of HY dilutions prepared in tissue dilution solution with 100mg/mL of kaolinite. (C)RT-QuIC 

detection of HY dilutions prepared in tissue dilution solution with 10mg/mL of Kao. (D)RT-QuIC detection of HY dilutions prepared in tissue dilution solution 

with 1mg/mL of Kao. (E)RT-QuIC detection of HY dilutions prepared in tissue dilution solution with 0.1mg/mL of Kao. Negative plate controls include blank 

and uninfected brain homogenate of 10−5 and 10−12 with and without soil. A positive plate control consisted of a HY dilution series prepared in standard tissue 

dilution solution. A positive fluorescence threshold (illustrated by red line) was determined to be at 2. The maxpoint ratio reported is the ratio of the maximum 

fluorescence to the initial fluorescence reading obtained by the plate reader. Each point represents the average MPR from one biological replicate (mean ± 

standard deviation).
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the swab extracts with a similar SD50 compared to swab extracts from water-treated 
HY TME-contaminated surfaces (Fig. 3) consistent with previous studies suggesting 
the ineffectiveness of ethanol as a prion disinfectant (39, 42, 99, 100). Consistent with 
previous findings, RT-QuIC testing of swab extracts from bleach-treated surfaces failed 
to detect prion RT-QuIC seeding activity (Fig. 3) (58, 86, 89, 101). Importantly, control 
experiments determined that the failure to detect prions on bleach-treated surfaces was 
not due to residual bleach in the surface swab extract inhibiting the RT-QuIC reaction but 
was instead due to the destruction of prions (Fig. 2).

The reduction in RT-QuIC seeding activity of surface swab extracts corresponded with 
a reduction in the seeding activity of prion-coated stainless steel wires. To investigate the 
possibility that the reduction in RT-QuIC seeding activity of the surface swab extracts is 
due to a failure to recover infectious prions from the surface, we coated stainless steel 
wires with HY TME brain homogenate and placed them directly into RT-QuIC reaction 
tubes to test for prions bound to the surface (58). As a positive control, stainless steel 
wires were coated with a 10-fold dilution series of HY TME-infected brain homogenate 
and placed directly into the RT-QuIC reactions, resulting in a similar sensitivity for prion 
detection as HY TME homogenate directly added to the RT-QuIC reaction (Fig. 4, panel 
B). Treatment of the HY TME-contaminated stainless steel wires with either water or 
70% EtOH resulted in similar RT-QuIC seeding activity consistent with a lack of prion 
inactivation observed in the surface swab extracts (Fig. 4, panel C). Treatment of the 
HY TME-contaminated prion wires with bleach resulted in a failure to detect RT-QuIC 
seeding activity on the wire surface (Fig. 4, panel C) similar to previous studies (58, 86). 
The combination of the failure to detect RT-QuIC seeding activity from surface swab 
extracts and bleach-treated stainless steel wires indicates that the surface swab extract 
findings are predictive of the prion contamination status of the surface tested.

The RT-QuIC seeding activity and prion infectivity of surface swab extracts are 
congruent. To investigate the possibility that RT-QuIC seeding activity may not cor­
respond with prion infectivity, we designed an experiment where the same surface 
extracts were tested for seeding activity using RT-QuIC and i.c. inoculated into hamsters 

TABLE 4 Comparison of log SD50/g of brain homogenate, determined by RT-QuIC end-point dilutions, of 
the effects of soil on HY dilution seeding capabilities

Mineral Soil concn 
(mg/mL)

HY 1 2 3 Avg± SD

Kaolinite HY without soil 9.93 10.03 10.90 10.29 ± 0.44
100 HY with soil MPR< 2 MPR< 2 MPR< 2 MPR< 2

HY without soil 10.20 11.70 10.93 10.94 ± 0.61
10 HY with soil 8.37 10.31 9.96 9.55 ± 0.84

HY without soil 10.70 12.25 10.37 11.11 ± 0.82
1 HY with soil 11.52 12.25 10.70 11.49 ± 0.63

HY without soil 10.70 10.93 10.93 10.85 ± 0.11
0.1 HY with soil 11.82 10.37 11.31 11.17 ± 0.60

Montmorillonite HY without soil 10.70 10.03 10.20 10.31 ± 0.28
10 HY with soil MPR< 2 MPR< 2 MPR< 2 MPR< 2

HY without soil 10.20 12.08 10.47 10.92 ± 0.83
1 HY with soil 11.70 11.70 12.14 11.85 ± 0.21a

HY without soil 10.47 11.03 10.03 10.51 ± 0.41
0.1 HY with soil 11.70 11.47 10.20 11.12 ± 0.66

Hectorite HY without soil 9.92 10.37 9.37 9.89 ± 0.41
10 HY with soil MPR< 2 MPR< 2 MPR< 2 MPR< 2

HY without soil 9.37 10.03 10.46 9.95 ± 0.45
1 HY with soil 9.93 10.20 11.03 10.39 ± 0.47

HY without soil 10.47 10.03 10.70 10.40 ± 0.28
0.1 HY with soil 10.20 10.70 11.44 10.78 ± 0.51

ap<0.05.
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to examine for prion infectivity. We found that surfaces treated with either water or 
70% EtOH contained RT-QuIC seeding activity, which also resulted in all the animals in 
each group developing prion disease (Fig. 5). Interestingly, the seeding activity SD50 and 
incubation period in hamsters were similar between the water- and 70% EtOH-treated 
surface swab extracts, suggesting that both methods produced qualitatively similar 
results (Fig. 5) (102). The bleach-treated surface swab extracts failed to result in RT-QuIC 
seeding activity and did not result in clinical signs of prion disease in hamsters or 
evidence of a subclinical infection, at 300 days post-infection (Fig. 5). As 300 days 
post-infection is a longer incubation period than a single i.c. LD50 of HY TME, we interpret 
this finding that bleach treatment completely inactivated HY TME infectivity (103, 104). 
As we applied 5 × 105.8 i.c. LD50 of prion infectivity to the surface, we interpret this 
negative result as a >5-log reduction in prion infectivity. Overall, under the conditions 
tested, we found that RT-QuIC seeding activity and animal bioassay produced similar 
results.

Nano-QuIC may enhance the sensitivity of prion detection from surface swab 
extracts. A weakness of the current study is that the swab extract must be diluted 
100-fold prior to RT-QuIC analysis, as higher concentrations (i.e., lower dilutions) of swab 
extract inhibit the detection of PrPSc in RT-QuIC (Fig. 7). This inhibitory phenomenon has 
previously been observed with low dilution of tissue homogenates (102, 105–107). A 
recently described modification of RT-QuIC that includes nanoparticles (nano-QuIC) may 
overcome this limitation (98). Here, we found that the use of nano RT-QuIC resulted in 
the reliable detection of prions in 10-fold swab extract dilutions, effectively increasing 
the sensitivity of the assay by an order of magnitude (Fig. 7). While promising, the 
effectiveness of Nano-QuIC to overcome RT-QuIC inhibitors may differ with the nature of 

FIG 7 Nano RT-QuIC increases the sensitivity of RT-QuIC detection of surface-recovered HY. RT-QuIC 

and nano RT-QuIC detection of stainless steel surface-recovered HY dilutions from vertical dilution 

experiment. Negative plate controls include blank and uninfected brain homogenate dilution of 10−3 and 

10−10. A positive fluorescence threshold (illustrated by the red line) was determined to be at an MPR of 2. 

The maxpoint ratio reported is the ratio of the maximum fluorescence to the initial fluorescence reading 

obtained by the plate reader. Each point represents the average MPR from one technical replicate (mean 

± standard deviation).
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the contents of the extract or the prion strain tested. Further studies are warranted to 
evaluate the effectiveness of nano RT-QuIC for surface swab extract detection of prions.

Testing surfaces for residual prion infectivity can be integrated into a comprehensive 
prion safety program. A recent report provided a methodology to test surfaces and 
tools to verify that prion decontamination was effective (96). Here, we extended this 
important work by integrating surface swabbing that may prove to be useful where the 
application of media for direct testing by RT-QuIC is impractical. In laboratory settings, 
this can be used to verify that laboratory space is decontaminated and to evaluate 
the potential for cross-contamination from disinfected necropsy tools used between 
animals and/or tissues. Similarly, in clinical settings, surfaces and instruments can be 
tested for the presence of residual prions to reduce the risk of iatrogenic transmission. 
Here, we show the limitations of the technique as the addition of soil and residues from 
the manufacturing process of laboratory benchtop can adversely affect RT-QuIC results 
(Fig. 6; Fig. S7; Table 4). From a practical perspective, laboratory and clinical surfaces 
should be as free of dust and chemicals prior to surveying for prion seeding activity. 
Anomalous RT-QuIC results from surfaces not described here should be interpreted 
with caution. Additional analysis or experimentation to discriminate between bona fide 
seeding activity and environmental artifact would be justified. Finally, the methodologies 
described here can be adapted for prion and prion-like diseases that support detection 
using RT-QuIC (92–94, 96, 108, 109).

MATERIALS AND METHODS

Prion sources

Brain tissue was collected from hamsters infected with hyper transmissible mink 
encephalopathy at the terminal stage of disease containing 109.3 i.c. LD50/g of prion 
infectivity as previously described (104). Brain tissue was homogenized in Dulbecco’s 
phosphate-buffered saline (Mediatech, Herndon, VA, USA) to 10%, wt/vol using syringe 
and needle homogenization. The 10%, wt/vol HY BH aliquots were clarified by centrifu­
gation at 450 g for 30 seconds. Supernatants were transferred into new 1.5 mL microcen­
trifuge tubes and stored at −80°C.

Surface contamination—vertical dilution experiments

Ten percent uninfected brain homogenate (BH) was used to prepare serial 10-fold 
dilutions in DPBS (10−2–10−9) for use as negative controls. The dilutions applied directly 
to the surface will be referred to as mother dilutions. Ten percent HY BH was used 
to prepare serial 10-fold mother dilutions in DPBS (10−2–10−9). Fifty microliters of each 
dilution in the series was applied in triplicate onto the surface of Sakura, Tissue-Tek 
SmartWrite Charge, white frosted glass slides (product number: 9036), stainless steel 
tokens (Lindstrom Grade 304, Part# FW5X01000, Lot# W033000812), or laboratory 
benchtop surfaces (Kewaunee, Kemresin epoxy resin benchtop, 1″ cubes with one 
finished surface). Mother dilutions were stored at −80°C for further use in RT-QuIC plates. 
Glass slide surfaces were partitioned using a hydrophobic marker to prevent the runoff 
water generated during rinsing from reaching other prion-contaminated areas. Negative 
controls applied to all surface materials included DPBS, UN 10−2, and UN 10−9. Fifty 
microliters of each negative control was applied in triplicate. All surfaces were allowed to 
dry overnight.

Surface contamination—horizontal dilution experiment

HY 10% BH was used to prepare 10-fold serial dilutions in DPBS (10−2 and 10−4 were used 
for this experiment). UN 10% BH was used to prepare 10-fold serial dilutions in DPBS 
(10−2 and 10−4 were used for this experiment). Negative controls applied to all surfaces 
included DPBS, UN 10−2, and UN 10−4 BH. Fifty microliters of each mother dilution was 
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applied in triplicate to each respective surface. The remaining mother dilutions were 
stored at −80°C. All surfaces were allowed to dry overnight.

Surface disinfection

For surface disinfection, either MQ H2O, 70% EtOH, or undiluted bleach (Clorox, Sodium 
Hypochlorite 8.25%) was used as a treatment. Prior to 70% EtOH treatment, boxes were 
drawn around the prion-contaminated area on glass slide surfaces with a hydrophobic 
marker to prevent the dispersal of the treatment. Contaminated glass slide surfaces, 
stainless steel tokens, and benchtop surfaces were subjected to 70, 60, or 90 µL, 
respectively, of one of the three disinfection treatments at room temperature for 10 
minutes. After 10 minutes, the treated surfaces were rinsed thoroughly with water prior 
to swabbing. Following rinsing, if the surfaces remained wet, foam swabs were not 
prewet prior to swabbing, if surfaces were dry, foam swabs were prewet. All treatments 
were performed in triplicate on separate prion-contaminated areas.

Surface swabbing, swab extraction, and concentration

Extracts from swabbed surfaces were performed as previously described (97). Briefly, 
foam swabs (Fisher brand, Catalog #14-960-3E) were prewet with MQ water. Each surface 
was swabbed with a separate, new swab approximately 10 times with rotation. Swab 
handles were cut to fit into microcentrifuge tubes preloaded with 250 µL DPBS, and 
swabs were immediately placed into designated tubes. The swabs, in microcentrifuge 
tubes, were sonicated (Q700 QSonica sonicator) for a total of 15 seconds (5 seconds 
of sonication and 5 seconds of rest) at an average of 80 watts. After sonication, swabs 
were briefly centrifuged (Thermo Scientific mini-centrifuge) prior to the transfer of the 
extract into a new tube. The swab extracts were then subjected to vacuum concentration 
(Thermo Scientific savant speedvac SPD1030) for a total of 2 hours at 45°C and a vacuum 
setting of 5.1. Pellets were resuspended with 50 µL of H2O prior to RT-QuIC analysis.

Bleach RT-QuIC inhibition control experiment

Two groups of glass slides were contaminated with 10−2 HY as described above. One 
prion-contaminated surface was treated with undiluted bleach as described in Surface 
Disinfection section. The treated and rinsed surface was then swabbed as described 
above to capture any residual bleach from the surface. This same swab was then used 
to immediately swab the second 10−2 HY-contaminated surface. The swabs in microcen­
trifuge tubes were then subjected to the swab extraction and concentration protocol 
described below.

Dilution preparation for RT-QuIC

For the vertical dilution experiment, each swab extract in a dilution series was 10-
fold diluted into N2-0.1% SDS/PBS (N-2 supplement (100×); ThermoFisher catalog 
#17502048). Positive plate control dilutions for vertical dilution experiments included 
the original mother dilution series diluted 10-fold into N2-0.1%SDS/PBS (Fig. S1). HY 
was diluted 10-fold into N2-0.1%SDS/PBS for use as a positive control in swab control 
plates. For the horizontal dilution experiment, both untreated and treated 10−2 swab 
extracts were subjected to further 10-fold serial dilution in N2-0.1%SDS/PBS (10−3–10−9). 
The untreated swab extracts were used as a positive plate control.

RT-QuIC reaction

RT-QuIC was performed as previously described (97). Briefly, negative plate controls 
included a blank sample (N2-0.1%SDS/PBS) and the lowest dilution included in the plate 
of UN BH. The reaction buffer was prepared to the following concentrations: 1× PBS, 
170 mM, 1 mM EDTA, 10 µM ThT, and 0.1 mg/mL of recombinant hamster prion protein 
(recHaPrP; Priogen Corp, St. Paul, MN, USA). Two microliters of each sample was added to 
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98 µL of the reaction buffer. Cycle duration was 45 minutes, and fluorescence readings 
were recorded once per cycle for a total of 65 cycles. RT-QuIC reactions were performed 
in a BMG FLUOstar Omega plate reader (BMG Labtech, Cary, NC, USA). Shaking at 
700 rpm double orbital with alternating cycles of 1 minute of shaking followed by 1 
minute of rest. The MPR was obtained by dividing the maximum fluorescence reading 
in each well by the initial (background) fluorescence. A positive fluorescence threshold 
was established at 2. A cutoff of 45 cycles (33 hours) was established for positive time to 
fluorescence following the post hoc analysis of the time to fluorescence for negative and 
positive controls from 84 plates. SD50 determinations (dilution at which 50% of replicate 
wells give off fluorescence above the defined positive threshold) were calculated using 
the method of Reed and Muench (110)

Nano-QuIC reaction comparison

For Nano-QuIC, experiments were performed as previously described (98). Briefly, 
RT-QuIC reaction plates were performed with standard RT-QuIC and Nano-QuIC ran in 
parallel. The Nano-QuIC reaction buffer was prepared to the following concentrations: 
1× PBS, 300 mM NaCl, 500 µM EDTA, 50 µM ThT, 2.5 mg/mL 50 nm silica nanoparticles, 
and 0.1 mg/mL of recombinant hamster prion protein. Negative plate controls included 
tissue dilution solution, UN HA BH 10−3 and UN HA BH 10−10. All test samples were 
investigated with standard reaction buffer and Nano-QuIC reaction buffer within the 
same plate. RT-QuIC was performed as previously described.

Wire-QuIC reaction

Wire-QuIC reactions were performed as previously described (58). Briefly, 2–3 mm 
stainless steel wires were incubated with 50 µL of HY BH 10−3, prepared in DPBS, 
following a brief vortex in microcentrifuge tubes for 1 hour. Following incubation, BH 
was discarded, and wires were washed with DPBS three times. Wires in microcentrifuge 
tubes were allowed to dry overnight. For each treatment group, 16 wires were used. A 
volume of 50 µL of each disinfectant was added to the wires for 10 minutes followed 
by thorough rinsing. Negative plate controls included a blank sample, UN SLN 10−2, and 
UN HA BH 10−3. Negative wire controls included wires incubated with UN HA BH 10−3 

that underwent either no treatment, treatment with H2O, treatment with 70% EtOH, or 
treatment with undiluted bleach. One wire was added to each well. Each well contained 
98 µL of reaction buffer and 2 µL of tissue dilution solution. RT-QuIC was performed as 
previously described.

Effects of soil on RT-QuIC seeding capabilities experiment

Briefly, a stock of tissue dilution solution was created for each soil mineral and each soil 
final concentration. These included kaolinite (100, 10, 1, and 0.1 mg/mL), montmorillon­
ite (10, 1, and 0.1 mg/mL), and hectorite (10, 1, and 0.1 mg/mL). Stocks were generated 
by adding the appropriate amount of soil to N2-0.1% SDS/PBS followed by vortexing to 
achieve thorough mixing. A 10-fold dilution series was generated for HY TME BH and UN 
HA BH in standard N2-0.1%SDS/PBS and soil N2-0.1%SDS/PBS. RT-QuIC was performed 
as previously described. Negative plate controls included a blank sample (without soil), 
UN HA BH 10−5 (without soil), and UN HA BH 10−12 (without soil). Negative soil controls 
included a blank (with soil added), UN HA BH 10−5 (with soil added), and UN HA BH 10−12 

(with soil added).

Bioassay

Male 3–4-week-old Syrian hamsters were intracerebrally inoculated with 20 µL of either 
a 1:10 dilution of swab extracts or a HY 10−4 BH dilution. The animals were monitored 
three times a week for the onset of neurological signs, and the incubation period was 

Research Article mSphere

September 2024  Volume 9  Issue 9 10.1128/msphere.00504-2416

https://doi.org/10.1128/msphere.00504-24


calculated as the difference in days between the date of inoculation and the onset of 
clinical signs of prion infection.
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