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Abstract
Small cell lung cancer (SCLC) is a highly malignant and heterogeneous cancer with limited therapeutic options and prognosis prediction models. 
Here, we analyzed formalin-fixed, paraffin-embedded (FFPE) samples of surgical resections by proteomic profiling, and stratified SCLC into 
three proteomic subtypes (S-I, S-II, and S-III) with distinct clinical outcomes and chemotherapy responses. The proteomic subtyping was an 
independent prognostic factor and performed better than current tumor–node–metastasis or Veterans Administration Lung Study Group staging 
methods. The subtyping results could be further validated using FFPE biopsy samples from an independent cohort, extending the analysis to 
both surgical and biopsy samples. The signatures of the S-II subtype in particular suggested potential benefits from immunotherapy. 
Differentially overexpressed proteins in S-III, the worst prognostic subtype, allowed us to nominate potential therapeutic targets, indicating that 
patient selection may bring new hope for previously failed clinical trials. Finally, analysis of an independent cohort of SCLC patients who had re-
ceived immunotherapy validated the prediction that the S-II patients had better progression-free survival and overall survival after first-line im-
munotherapy. Collectively, our study provides the rationale for future clinical investigations to validate the current findings for more accurate 
prognosis prediction and precise treatments.
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Introduction
Small cell lung cancer (SCLC) is an exceptionally aggressive 
lung neuroendocrine neoplasm characterized by rapid tumor 
growth, early metastasis, and acquired chemo-resistance. 
Comprehensive whole-exome and whole-genome analyses 
have identified inactivation of TP53 and RB1 as the predomi-
nant genetic alterations in SCLC, occurring in > 98% of the 
patients [1,2]. Genomic analysis of 51 SCLC cases also found 
genetic alterations in the PI3K/AKT/mTOR pathway in 36% 
of the samples, with mutations in PIK3CA (6%), PTEN 
(4%), AKT2 (9%), AKT3 (4%), RICTOR (9%), and mTOR 
(4%) [3]. However, effective stratification markers and treat-
ment targets for SCLC remain limited [4]. As a result, the 
overall survival (OS) of SCLC patients has seen no significant 
improvement despite numerous clinical trials of different 
chemotherapy schemes and biological agents over the past 

decades [5]. Moreover, a lack of biomarkers that help predict 
efficacy has also impeded SCLC patients from reaping signifi-
cant benefits from immunotherapy [6]. Currently, the 5-year 
survival rate is approximately 20%–25% for limited-stage 
SCLC (LS-SCLC) and barely 1%–2% for extensive-stage 
SCLC (ES-SCLC), making SCLC one of the deadliest cancers.

Early studies based on cell line morphologies classified 
SCLC into classic subtypes that expressed higher neuroendo-
crine markers and variant subtypes that showed low or an 
absence of neuroendocrine features [7,8]. These characteris-
tics were further observed in clinical samples [9,10]. 
Subsequently, SCLC was classified according to the expres-
sion of neuroendocrine transcription factors ASCL1 and/or 
NeuroD1 [11]. Additionally, POU2F3 expression was used 
to define a non-neuroendocrine, tuft cell variant of SCLC 
[12]. And although YAP1 was proposed as a potential 
subtype marker for the remaining unclassified SCLC cases 
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[3], it has yet to be confirmed [13]. Recently, re-analyzing 
previously published transcriptomic data classified SCLC 
into four subtypes [14]; in addition to the previously 
identified subtypes with the ASCL1 (SCLC-A), NeuroD1 
(SCLC-N), and POU2F3 (SCLC-P) signatures, a new subtype 
(SCLC-I) characterized by the expression of inflammation 
gene signatures was uncovered.

In IMpower133, a global phase I/III, double-blind, ran-
domized, placebo-controlled trial, atezolizumab (anti-PD-L1) 
was added to carboplatin þ etoposide for ES-SCLC. SCLC-I 
patients were reported to experience the greatest benefit from 
this combined immunotherapy and chemotherapy. In the ran-
domized, controlled, open-label, phase III CASPIAN trial, 
first-line durvalumab plus platinum–etoposide also signifi-
cantly improved OS in patients with ES-SCLC vs. a clinically 
relevant control group [15]. Additionally, cisplatin treatment 
of SCLC-A patient-derived xenografts (PDXs) induced intra-
tumoral shifts toward SCLC-I [16]. These analyses suggest 
that the SCLC-I subtype might be the right candidate for im-
munotherapy. Therapeutic vulnerabilities were also identified 
for each subtype, including to inhibitors of PARP (SCLC-P), 
Aurora kinases (SCLC-N), or BCL-2 (SCLC-A) [16]. More 
recently, single-cell RNA sequencing (scRNA-seq) and imag-
ing techniques have further revealed the heterogeneity and tu-
mor microenvironment (TME) of SCLC [16]. Monocytes/ 
macrophages appear to play a profibrotic and immunosup-
pressive role in SCLC TME. SCLC-N shows less immune in-
filtrate and greater T cell dysfunction than SCLC-A. More 
importantly, most SCLC cases share a small PLCG2-high 
subpopulation, which is linked to metastasis and 
poor prognosis.

While subtyping based on genomic and transcriptomic 
analyses has greatly improved our understanding of SCLC, 
the resulting subtypes correlate poorly with clinical out-
comes. In contrast, subtyping with proteomics has revealed 
its exceptional clinical potential for more accurate predica-
tion of prognosis, chemo-sensitivity, and treatment targets 
for myriad cancers including stomach [17,18], liver [19,20], 
ovarian carcinoma [21], colorectal cancer [22], and non- 
small cell lung cancer (NSCLC) [23,24]. Here, we reported a 
proteomic subtyping model derived from a discovery dataset 
containing 75 surgically resected formalin-fixed, paraffin- 
embedded (FFPE) samples. The model was then validated in 
an independent cohort of 52 FFPE biopsy samples. The sub-
types based on our proteomic model correlated well with clini-
cal information including OS, and also allowed subtype- 
specific nomination of drug targets in SCLC. In addition, analy-
sis of another 52 samples from patients who received immuno-
therapy allowed us to validate the finding that one particular 
proteimic subtype is an immune responsive subtype.

Results
Limited predictive power of SCLC staging and 
classification systems
In an effort to develop a more reliable SCLC subtyping sys-
tem, we first analyzed the 75 surgically resected FFPE SCLC 
samples as shown in Figure 1A. Key clinical characteristics of 
the patients in the discovery cohort are presented in  
Figure 1B, with their detailed clinical and pathological data 
provided in Table S1. Of the 75 cases, 62 (82.7%) were LS- 
SCLC and 13 (17.3%) were ES-SCLC according to the 
Veterans Administration Lung Study Group (VALG) 

definition. Based on the tumor–node–metastasis (TNM) stag-
ing system, 13 (17.3%), 19 (25.3%), 28 (37.3%) and 13 
(17.3%) cases were categorized as stage I, II, III, and IV, re-
spectively. At the end of follow-up, 31 (41.3%) patients sur-
vived, with a median OS time of 2.78 ± 0.25 years. The 
statistically significant univariate prognostic factors included 
age (log-rank test, P ¼ 0.035), gender (log-rank test, P ¼
0.0085), and lymph node metastasis (LNM) (log-rank test, P 
¼ 0.01) (Figure S1).

When the predictive value of the current staging systems 
(including VALG and TNM) were examined against actual 
prognosis of SCLC patients, their limitations became clear 
(Figure 1C). In fact, only TNM I patients had significantly 
better OS than those of TNM IV (log-rank test, P ¼ 0.04) 
(Figure 1C). Immunohistochemistry (IHC) was used to exam-
ine the expression of ASCL1, NeuroD1, and YAP1 in the 
samples, and positive rates of 81.3% (61/75), 20% (15/75), 
and 4% (3/75), were obtained respectively. Of all cases, 11 
were double-positive for ASCL1 and NeuroD1 (Figure S2; 
Table S1). However, classification based on ASCL1/ 
NeuroD1 expression did not correlate with OS differences in 
patients either (Figure 1C), although the NeuroD1þ/ASCL1− 

subtype showed better but not statistically significant prog-
nosis (log-rank test, P ¼ 0.561).

Proteomics stratifies SCLC into subtypes that 
correlate with clinical outcomes
Since the current SCLC staging and classification systems 
failed to make a satisfactory prediction, we carried out a pro-
teomic study using these 75 samples by label-free quantitative 
mass spectrometry (MS) (Figure 1A). We detected a total of 
7028 gene products of high confidence from 75 samples, 
with 2957 proteins identified in more than 50% samples. 
The protein identities and relative abundances of each case, 
designated as fraction of total (FOT) [25], are provided in 
Table S2. To develop a robust classification model, we first 
selected the top 1100 most abundant proteins detected from 
each sample, which yielded a dataset of 3460 proteins; then 
the 445 proteins that were detected in at least 8 samples 
(> 10%) with the coefficient of variation (CV) greater than 
1.9 were used for non-negative matrix factorization (NMF) 
consensus clustering (Table S3). NMF clustering yielded three 
subgroups, namely S-I (n ¼ 28, 37%), S-II (n ¼ 20, 27%), 
and S-III (n ¼ 27, 36%) with the maximum average silhou-
ette of 0.83 (Figure 2A). Importantly, these proteomic sub-
types correlated well with OS prognosis. Patients in S-I had 
the best OS with a 5-year OS probability of 75%, whereas 
S-III had the worst survival with only 3.7% of 5-year OS 
(log-rank test, P < 0.001) (Figure 2B). A multivariate Cox 
analysis confirmed that the proteomic subtype was an inde-
pendent prognostic factor [S-I vs. S-III: hazard ratio (HR) ¼
4.73, 95% confidence interval (CI) ¼ 1.81–12.4, Cox P value 
¼ 0.002] after adjusting for TNM stage, VALG stage, and 
other covariates including chemotherapy, age, gender, LNM 
status, and smoking history (Figure S3). These data indicate 
that proteomics-based subtyping is superior in OS prognosis.

The proteomic subtypes show different benefit of 
chemotherapy on prognosis
The platinum agent (cisplatin or carboplatin) and etoposide- 
based combination chemotherapy is the standard care for 
SCLC patients after surgery, although the percentage of 
patients who actually benefit from such care is quite small 
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Figure 1 Study design and key clinical characteristics of the SCLC patients from the discovery cohort 

A. A flowchart of our study scheme. B. Clinical characteristics of the patients from the discovery cohort. C. The Kaplan–Meier plots showing the limited 
predictive values on patient OS of the VALG, TNM, and ASCL1/NeuroD1 staging and classification methods. SCLC, small cell lung cancer; TNM, tumor– 
node–metastasis; VALG, Veterans Administration Lung Study Group; OS, overall survival; PFS, progression-free survival; ICI, immune checkpoint 
inhibitor; LNM, lymph node metastasis; LS, limited stage; ES, extensive stage.
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[26]. In our dataset, approximately half of the patients (n ¼
33, 44%) underwent chemotherapy. Considering the impact 
of TNM I and IV on prognosis mentioned earlier, we in-
cluded only TNM II and III patients for chemo-sensitivity 
analysis. As shown in Figure 2C, chemotherapy exhibited dif-
ferent impacts on prognosis for the three proteomic subtypes. 
The S-I subtype benefited most significantly from chemother-
apy (log-rank test, P ¼ 0.023), with all patients who received 
chemotherapy still alive by the end of the study. The S-II sub-
type appeared to have worse prognosis (log-rank test, P ¼
0.043). The S-III subtype had the worst prognosis and was 
chemo-insensitive (log-rank test, P ¼ 0.148). In summary, 
our proteomic SCLC subtyping could stratify patients into 
three distinct subtypes that are more clinically relevant. The 
S-I subtype is chemo-sensitive with the best OS. S-II has me-
dium OS where chemotherapy might be detrimental. S-III has 
the poorest prognosis and is insensitive to chemotherapy, 
suggesting that S-III patients have the greatest need for 
new therapies.

To facilitate the validation of the subtyping in the indepen-
dent external dataset, we developed a random forest (RF) 
classifier with the discovery dataset. The top 500 most abun-
dant proteins detected in each sample were aggregated for 
differential expression analysis. The resulted 58 signature 
proteins [fold change (FC) > 1.5; adjusted t-test, P < 0.05] 
with high identification frequencies (detected in more than 
25% of the samples) were used as input (predictor variables) 
(Table S4). We trained a RF classifier with a 10-fold cross- 

validation in the discovery dataset. Based on the 58 features, 
the predictive classifier model yielded a 90.8% accuracy for 
the discovery dataset. We collected 52 SCLC biopsy samples 
from another center (the First Affiliated Hospital of Henan 
University, Kaifeng, China) as an independent validation 
dataset. The corresponding clinical information of these 
samples is summarized in Table S5. This subset included 
12 female and 40 male patients, with an OS time ranging 
from 0.019 to 4.493 years. The 2-year survival rate was 
15.4% (8/52) and the 3-year survival rate was 3.8% (2/52). 
Proteomic analysis was performed on the 52 biopsy samples. 
The results are listed in Table S6. When the RF classifier was 
applied to the validation dataset, the predicted S-I, S-II, and 
S-III subtypes contained 8, 34, and 10 cases, respectively. The 
prognosis trend was consistent with that of the discovery co-
hort, with 1-year survival rates of 87.5%, 52.9%, and 30.0% 
and 2-year survival rates of 37.5%, 14.7%, and 0% for S-I, 
S-II, and S-III, respectively. Kaplan–Meier analysis illustrated 
that the OS varied significantly among the three subtypes 
(log-rank test, P ¼ 0.007) (Figure 2D). Thus, the proteomic 
subtyping model derived from surgical samples could be vali-
dated with biopsy samples from an independent cohort.

Differential signature proteins and enriched 
biological processes in proteomic SCLC subtypes
To investigate the proteomic features of SCLC subtypes, we 
selected significantly altered proteins by comparing their ex-
pression in each subtype to the other subtypes (FC > 3 for S-I 
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Figure 2 Proteomics stratifies SCLC into subtypes that correlate with clinical outcomes 

A. NMF clustering yielded three subgroups in SCLC in the discovery cohort. B. The three subtypes based on proteomic profiling were associated with 
different clinical outcomes. C. The three proteomic subtypes exhibited different responses to chemotherapy. D. The predictive classifier model showing 
the prognosis trend similar to the discovery cohort. In the validation cohort, biopsy samples were obtained from the First Affiliated Hospital of Henan 
University, China. P values were determined by log-rank test (�, P < 0.05; ��, P < 0.01; ���, P < 0.001; n.s., not significant). NMF, non-negative matrix 
factorization.
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and S-II or FC > 10 for S-III; Wilcox test, P < 0.05). As a re-
sult, 206, 162, and 126 subtype-specific proteins for S-I, S-II, 
and S-III, respectively, were designated as significantly altered 
proteins (Figure 3A; Table S7). Functional enrichment using 
Metascape showed that the most distinct subtype was S-II, 
which was significantly enriched in NABA core matrisome, 
interferon signaling, and immune-related processes/responses 
(adjusted P values were between 1 × 10−17 and 1 × 10−8) 
(Figure 3B). In the regulation of immune functions, major his-
tocompatibility complex class I (MHC-I) molecules play an 
important role in cell-mediated immunity by presenting tu-
mor antigens to CD8þ T cells and enabling cytotoxic T cells 
to recognize and eliminate tumor cells. Antigen presenting 
cells (APCs) such as B cells, dendritic cells (DCs), and mono-
cytes/macrophages express major histocompatibility complex 
class II (MHC-II) molecules and present antigenic peptides to 
CD4þ helper T cells. Here, we found that the MHC-I 
molecules (including HLA-A, HLA-B, HLA-C, HLA-E, and 
HLA-F) but not the MHC-II molecules (including HLA- 
DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, and HLA- 
DRB5) were expressed at higher levels in S-II than in the 
other two subtypes (P < 0.05, rank sum test between two 
groups and Kruskal-Wallis rank sum test for all; Figure 3C 
and D). Moreover, TAP1, TAP2, and TAPBP were also 
highly expressed in S-II. TAP1 and TAP2 are members of the 
superfamily of ATP-binding cassette (ABC) transporters that 
shuttle various molecules across extra-cellular and intra- 
cellular membranes. The ATP-loaded TAP1–TAP2 complex 
mediates unidirectional translocation of peptide antigens 
from the cytosol to endoplasmic reticulum (ER) for their 
loading onto MHC-I molecules [27]. TAPBP is a transmem-
brane glycoprotein that mediates interactions between newly 
assembled MHC-I molecules and TAP proteins, and is re-
quired for the transport of antigenic peptides across ER mem-
brane [28]. Thus, the S-II subtype is characterized by an 
enrichment of factors involved in antigen presentation.

The S-I subtype appeared to be marginally enriched in pro-
teins functioning in transport, membrane trafficking, and RNA 
metabolic processes (adjusted P values of 1 × 10−4–1 × 10−2). 
Detailed analysis identified ubiquitin-mediated proteolysis in 
cell cycle control, including the anaphase promoting complex 
(ANAPC1, ANAPC13, and ANAPC4) and COPS9 signalosome 
components (COPS3 and COPS7B) as well as NEDD8. DNA 
repair and DNA replication proteins, including MSH3, LIG1, 
POLE3, RFC3, ORC2, and ATM, were also enriched (Table 
S7). After adjusting for P values, Metascape analysis could not 
identify significantly enriched biological processes for S-III. 
Manual inspection showed that proteins in chromatin organiza-
tion/transcription regulation as well as various enzymes were 
enriched (Table S7). Among them were proteins mediating 
chromatin assembly and telomere maintenance (CHAF1A, 
TERF2, and TOX4), transcription coactivators (e.g., ATAD2, 
ZNF516, PHF6, PHF8, MED6, TAF5, and TAF), and tran-
scription corepressors (e.g., TBL1X, TBL1Y, CHD8, ATXN2, 
and SPEN). It appears that mis-regulation in chromatin struc-
ture and transcription may profoundly impact an array of bio-
logical processes, which the Metascape algorithm might have 
failed to identify.

The S-II patients have the best immunotherapy 
responses in SCLC
Aforementioned analyses suggest that S-II is an inflamed 
SCLC subtype in nature, which may benefit from 

immunotherapy. To test this hypothesis, we collected another 
52 real-world FFPE biopsy or surgery samples from ES-SCLC 
patients who received immune checkpoint inhibitors (ICIs; 
including sintilimab, toripalimab, durvalumab, camrelizu-
mab, tislelizumab, and atezolizumab), termed as the ICI co-
hort. Among these samples, 37 were treated with combined 
immunotherapy with chemotherapy as a first-line treatment, 
and 49 were from biopsy (Figure 4A; Table S8). We classified 
these samples using the model derived from the discovery 
dataset (Table S9) into S-I (23 patients), S-II (13 patients), 
and S-III (16 patients). We specified an ICI progression-free 
survival (ICI-PFS) as the duration between the time when the 
first immunotherapy was applied, and progressive disease 
(PD) was determined by clinical standards. As shown in  
Figure 4B and C, the ICI-PFS of the S-II patients with first- 
line ICIs rather than > first-line ICIs was longer than that of 
S-III (log-rank test, P ¼ 0.038) and S-I (log-rank test, P ¼
0.056). Moreover, when the Kaplan–Meier plots of the S-II 
patients in the ICI cohort, the discovery cohort (WH-S-II, no 
immunotherapy), and the validation cohort (HN-S-II, no 
immunotheray) were compared, the S-II patients treated with 
ICIs achieved better OS (ICI cohort vs. discovery cohort: P ¼
0.03; ICI cohort vs. validation cohort: P < 0.0001; log-rank 
test) (Figure 4D). Together, these analyses demonstrate the 
values of stratifying patients for immunotherapy, and suggest 
that immunotherapy could significantly improve the OS of 
SCLC patients, particularly for those in the S-II subtype.

Potential drug repurposing targets for S-III 
subtype patients
Since patients in the S-III subtype had the worst OS and did 
not benefit from chemotherapy, they were the most in need 
of new therapeutic options. We selected specifically overex-
pressed proteins in S-III compared with S-I and S-II and inves-
tigated their feasibility as potential drug repurposing targets. 
We first identified previously investigated actionable drug 
targets and found that at least one target among EGFR, 
AURKB, BCL-2, and EZH2 was highly expressed in 77.8% 
(21/27) of the S-III patients. Drugs targeting AURKB, BCL-2, 
or EZH2 are currently in various stages of clinical develop-
ment and have shown promising results for treating certain 
cancers [29,30]. Many kinases, phosphatases, transporters, 
ubiquitin–proteasome system (UPS) proteins, and other 
enzymes were overexpressed in S-III, accounting for nearly 
1/3 of all specifically overexpressed proteins in S-III. 
Proteins that regulate necroptosis, including MLKL, TRAF2, 
and RIPK1, are also potential targets [31]. Their druggability 
needs to be further investigated. An overview of the potential 
drug repurposing targets for each individual patient is shown 
in Figure 5.

Discussion
While genomic and transcriptomic analyses have greatly im-
proved our understanding of SCLC tumorigenesis, their val-
ues in identifying effective stratification markers and 
therapeutic targets are limited. In this retrospective proteomic 
analysis, we showed that proteomics alone could stratify 
SCLC for prognosis and chemo-sensitivity. Since most SCLC 
tumors are non-resectable when diagnosed, we validated our 
proteomic subtyping using biopsy samples from an indepen-
dent center, expanding the clinical utility of our proteomic 
subtyping method. Our analysis showed that all S-I patients 
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Figure 3 Differential signature proteins and enriched biological processes in proteomic SCLC subtypes 

A. Heatmap of signature proteins in each subtype. B. Metascape functional enrichment analysis identified different biological processes or pathways 
activated in the three subtypes. C. and D. The MHC-I (C) rather than MHC-II (D) molecules were highly expressed in S-II compared with S-I and S-III. P 
values were determined by rank sum test between two groups and Kruskal-Wallis rank sum test for all. MHC-I, major histocompatibility complex class I; 
MHC-II, major histocompatibility complex class II; FOT, fraction of total.
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Huo Z et al / Proteomic Stratification of SCLC                                                                                                                                                                        7 



in the discovery cohort who received chemotherapy were 
alive by the end of the study, confirming the suitability of 
chemotherapy as first-line treatment option for these 
patients. Antigen presentation and other immune responses 
were enriched in S-II, suggesting that ICIs may be a viable 
choice for S-II patients. We validated this prediction in a third 
independent group of patients that received immunotherapy 
as the first-line treatment. Notably, a previous transcriptomic 
study also defined an “inflamed” SCLC subtype (SCLC-I) 
[15] which was characterized by high expression of genes re-
lated to HLAs and experienced greatest benefit from the addi-
tion of anti-PD-L1 to chemotherapy [15]. Our proteomic 
subtyping thus may provide value in guiding 
SCLC treatment.

Since neither PD-L1 expression nor TMB is a reliable bio-
marker for the prediction of immunotherapy response in clin-
ical trials such as IMpower133 and CheckMate-032, other 
biomarkers are in great need. Our analysis showed that 
patients in the S-II subtype may benefit from the immuno-
therapy. Although they were mostly ES-SCLC and lost the 
oppotunity for surgery, the 2-year survival rate of the S-II 
patients with immunotherapy reached over 30%, much bet-
ter than the other subtypes. In other clinical trials (e.g., 
ASTRUM-005), the median PFS was generally less than 6 
months [32], which was similar to that of S-I/S-III patients in 
our study. However, the median PFS reached around one 
year for the S-II subtype here. It will be important to investi-
gate in a prospective trial to determine whether the S-II sub-
type could serve as a new predictive biomarker for guiding 
SCLC immunotherapy.

Mechanisms of immune resistance vary [33]. MHC-I mole-
cules were generally expressed at low levels in the SCLC tu-
mor cells, resulting in low antigen presentation. In addition, 
tumor cells can also secrete factors to inhibit antigen present-
ing cells. About 50% of patients with SCLC have almost no 
T cell infiltration, and there are also suppressive immune cells 
in the immune microenvironment of SCLC. In our study, S-II 
subtype had higher MHC-I molecules along with other pro-
teins in antigen presenting. Interferon gamma signaling was 
also enriched in S-II. Thus, S-II may be the immune hot sub-
type while S-I and S-III were the cold ones.

Among proteins and pathways as potential drug targets for 
the S-III subtype, BCL-2, EZH2, ARUKB, and EGFR are ac-
tionable drug targets that have been at various stages of clini-
cal trials. Among them, EZH2 was identified as an upstream 
regulator in the SLFN11 axis that mediates acquired chemo-
resistance in an in vitro PDX model [34]. Food And Drug 
Administration (FDA) has recently approved the EZH2 in-
hibitor tazemetostat for treating epithelioid sarcoma [35]. 
Interestingly, EZH2 is a negative regulator of MHC-I mole-
cules, and inhibiting EZH2 could enhance antigen presenta-
tion and circumvent anti-PD-1 resistance [36]. Although 
EGFR tyrosine kinase inhibitors (EGFR-TKIs; such as gefiti-
nib) are not effective in a SCLC clinical trial [37], the identifi-
cation of a subgroup of patients with EGFR overexpression 
suggest an alternative approach by using EGFR antibody. 
Notably, EGFR antibody has been approved as first-line 
treatment option for KRAS wild-type, EGFR-overexpressing 
colon cancer patients [38]. BCL-2 family proteins comprise 
the sentinel network that regulates mitochondrial and intrin-
sic apoptotic responses. Previous studies of a BCL-2 inhibitor 
fell short of expectations in SCLC clinical trials [39]. A possi-
ble explanation is that patients in the trial were not screened 

for BCL-2 expression. Interestingly, the SCLC-A transcrip-
tomic subtype [15], which had higher expression of BCL-2, 
was found to be sensitive to multiple BCL-2 inhibitors in an 
in vitro study. Recently, the single target BCL-2 inhibitor ven-
etoclax, which was approved by the FDA for acute myeloid 
leukemia and chronic lymphocytic leukemia [40], showed 
therapeutic effect on multiple PDXs of SCLC [41]. AURKB is 
a mitotic protein kinase. Phase I/II clinical studies of its inhib-
itor alisertib have demonstrated increased antitumor effects 
in various hematologic malignancies and solid tumors [42].

In addition, our proteomic data suggest that necroptosis 
regulators including MLKL, TRAF2, and RIPK1 may be in-
vestigated as potential therapeutic targets for SCLC. 
Necroptosis causes cellular swelling and plasma membrane 
collapse, which may lead to the release of intra-cellular bio-
molecules including damage-associated molecular patterns 
(DAMPs) and cytokines. These molecules can perform immu-
nological functions such as chemotaxis, phagocytosis, and 
immune cell activation [43]. Although initial attraction of an-
tigen presentation cells such as macrophages and DCs by 
DAMPs/cytokines could recruit CD8þ/CD4þ T cells for im-
mune activation in early stage, the recruitment of myeloid- 
derived suppressor cells (MDSCs) and tumor-associated 
macrophages (TAMs) at later stages could lead to immune 
suppression [44]. The effects of necroptosis proteins on 
tumors are cancer dependent. Cytokines released by necrop-
totic cancer cells can promote tumor angiogenesis, prolifera-
tion, and metastasis. For instance, high expression of RIPK1 
was linked to metastasis in breast cancer [45] and poor sur-
vival in glioblastoma [46], but was a good prognostic indica-
tor in head and neck cancer [47]. High MLKL expression 
correlated positively with good prognosis in colorectal cancer 
[48], high-risk human papillomavirus (HR-HPV) cervical 
cancer [49], ovarian cancer [50], and pancreatic adenocarci-
noma [51], but negatively with breast cancer [52], cervical 
squamous cell carcinoma [53], and gastric cancer [54]. We 
found in this study a correlation between high expression of 
MLKL, TRAF2, and RIPK1 and the most malignant SCLC S- 
III subtype, suggesting that these proteins may represent good 
targets for treating SCLC.

The S-III subtype is also enriched for proteins involved in 
chromatin organization and transcriptional regulation. For 
example, CHAF1A, TERF2, and TOX4 can mediate chroma-
tin assembly, protect chromosome ends, and regulate chro-
matin binding during DNA replication [55], metaphase [56], 
and transition to interphase [57], respectively. For transcrip-
tional regulation, ATAD2 and ZNF516 act as transcription 
activators, promoting the expression of CCND1/MYC/E2F1 
[58] or genes related to cellular response to replication stress 
[59], respectively. Moreover, PHF8 acts as a coactivator of ri-
bosomal DNA (rDNA) transcription by activating polymer-
ase I-mediated transcription of ribosomal RNA (rRNA) 
genes [60], while MED6 is a coactivator involved in the regu-
lated transcription of nearly all RNA polymerase II- 
dependent genes [61]. These findings underline the impor-
tance of investigating dysfunctional chromatin organization 
in the development and treatment of SCLC.

Our study has some limitations. For example, our discov-
ery cohort was relatively small compared with other omics 
studies, such as those of NSCLC. This is in part because most 
SCLC cases were detected at late stages without opportunity 
for surgery, so large-scale proteomic analysis of surgically 
resected samples was rare in the past. Moreover, our 
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proteomic stratification was different from previous tran-
scriptional classification based on ASCL1, NeuroD1, and 
YAP1, thus providing limited mechanistic insight into the tu-
morigenesis. The reason for the discrepancy is unclear, but 
we did notice the overlap of several of these markers by IHC.

In summary, our results demonstrate the validity and im-
portance of using both surgical and biopsy FFPE samples and 
serve as a valuable resource for the SCLC research commu-
nity. This work should also help guide future pre-clinical 
investigations that seek more meaningful and efficacious 
stratification of SCLC in order to improve therapeutic 
responses and patient survival.

Materials and methods
Sample collection
Tumors in the discovery cohort (diagnosed from 2012 to 2018) 
were obtained with informed consent from archival sources at 
Tongji Hospital, Tongji Medical College, Huazhong University 
of Science and Technology, Wuhan, China. Tumors in the sec-
ond cohort (diagnosed from 2018 to 2021) were biopsy samples 
obtained from the First Affiliated Hospital of Henan University, 
Kaifeng, China. The 52 samples in the ICI cohort was also from 
Tongji Hospital, Tongji Medical College, Huazhong University 
of Science and Technology (diagnosed from 2017 to 2021). The 
samples were collected from patients at initial diagnosis. All di-
agnoses were independently reviewed by three experienced 
pathologists, and complied with the latest World Health 
Organization classification standards. The tumors came from 
patients not treated with neoadjuvant chemotherapy or radio-
therapy before operation, with no previous history of malig-
nancy, having SCLC as the initial primary cancer diagnosis at 
the time of surgical resection, and with adequate tumor/tissue 
material as well as clinical annotation and follow-up time. The 
tumor cell content was > 90% tumor cells judged by haematox-
ylin and eosin (H&E) staining and yielded > 700 proteins in 
MS analysis. All cases were staged according to the National 
Comprehensive Cancer Network (NCCN) Clinical Practice 
Guidelines in Oncology for SCLC (version 4.2020).

IHC and assessment
Immunohistochemical staining was conducted using tissue 
arrays. Prior to deparaffinization, the slides were heated to 
60�C for 10 min to melt the paraffin. The slides were then 
washed three times with xylene to solubilize and remove the 
paraffin. Next, the xylene was removed by washing three 
times with 100% ethanol followed by 75% ethanol, 50% 
ethanol, and phosphate buffer saline (PBS). After the sections 
were deparaffinized and hydrated, the endogenous peroxi-
dase activity was blocked. Antigen retrieval was performed 
using the Dako Target Retrieval Solution, High pH (Catalog 
No. S1699, Agilent Technologies, Santa Clara, CA) on Dako 
Ominis (Agilent Technologies) at 98�C for 25 min. The slides 
were then incubated with the primary antibody at 
4�C overnight.

Primary antibodies used in this study were: anti-ASCL1 an-
tibody (1:200; Catalog No. ab211327, Abcam, Boston, MA), 
anti-NeuroD1 antibody (1:200; Catalog No. ab213725, 
Abcam), and anti-YAP1 antibody (1:50; Catalog No. 
ab52771, Abcam). After incubated with the secondary anti-
body of Universal SAP reagent kit (mouse/rabbit universal) 
(Catalog No. SAP-9100, Zhongshan Biotechnology, Beijing, 
China) for � 1 h, the sections were visualized with the DAB 

kit (Catalog No. ZLI-9017, Zhongshan Biotechnology) and 
counterstained with hematoxylin. The stained samples were 
scored by three pathologists independently for the multiplica-
tion of staining intensity (1, weak; 2, moderate; 3, strong) 
and the percentage of positive tumor cells, which resulted in 
scores of 0–300. A score of < 10 was designated as 0, 10–40 
as 1þ, 41–140 as 2þ, and 141–300 as 3þ. All samples with 
scores of > 10 were considered positive cases.

Protein extraction, trypsin digestion, and liquid 
chromatography-tandem mass 
spectrometry processing
For each SCLC sample, proteins were extracted from three 
tissue slices (5-mm thick) from the FFPE block (2–5 mm in di-
ameter). The deparaffinization procedure was the same as 
IHC as described above. Air dried sample was scraped from 
the slide and resolubilized in 100 ml of 50 mM NH4HCO3. 
The sample was then incubated at 95�C for 5 min for de- 
crosslinking, and cooled to room temperature. Trypsin diges-
tion was carried out at 37�C overnight. Peptides were 
extracted twice with 200 ml of extraction buffer (50% aceto-
nitrile and 0.1% formic acid in water) with 15 min vortex. 
The resulting peptides were dried and stored at −80�C for fu-
ture analysis. The digested peptides were eluted, divided into 
three fractions, and analyzed on a Q Exactive HF-X (Catalog 
No. 2151480, Thermo Fisher Scientific, Waltham, MA) or 
Orbitrap Exploris 480 Mass Spectrometer (Catalog No. 
BRE725539, Thermo Fisher Scientific) coupled with an 
UltiMate 3000 RSLCnano LC system (Catalog No. 
5200.0356, Thermo Fisher Scientific) and operated at data- 
dependent aquisition mode. MS1 was measured in the 
Orbitrap at a resolution of 60,000 followed by tandem MS 
scans of the top 40 precursors using higher-energy collision 
dissociation with 27% of normalized collision energy and 
15 s of dynamic exclusion time.

MS data analysis
MS raw files were searched against the National Center for 
Biotechnology Information (NCBI) RefSeq human proteome 
database (updated on 04/07/2013, 27,414 entries) in 
Firmiana [62], a one-stop proteomic cloud platform for data 
processing and analysis, implemented with Mascot search en-
gine with Percolator (Matrix Science, version 2.3.01). The 
following search parameters were used: (1) mass tolerances 
were 20 ppm for precursor ions and 0.05 Da for product 
ions; (2) up to two missed cleavages were allowed; (3) the 
minimal peptide length was seven amino acids; (4) cysteine 
carbamidomethylation was set as a fixed modification, and 
N-acetylation and methionine oxidation were considered var-
iable modifications; and (5) the charges of precursor ions 
were limited toþ2,þ3,þ4,þ5, andþ6. The peptide and pro-
tein false discovery rates (FDRs) were both set to 1%. A 
label-free, intensity-based absolute quantification (iBAQ) al-
gorithm was used for protein quantification. The iBAQ val-
ues were calculated by dividing the raw intensities by the 
number of theoretical observable peptides. FOT, calculated 
by dividing a protein’s iBAQ by the sum of iBAQs of all iden-
tified proteins in a single experiment, was used as normalized 
abundance to compare protein abundance across all experi-
ments. The missing value was imputed with 1/10 of the 
global non-zero minimum value of the sample [63].
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Subtyping and validation
A NMF consensus clustering algorithm was used for subtyp-
ing the discovery dataset. The standard “brunet” option was 
selected and 50 iterations were performed. The number of 
clusters (k) was set as 2 to 6, and the minimum member of 
each subclass was set as 10. The silhouette indicator (average 
silhouette > 0.8) and prognostic association (P < 0.01) were 
used to determine the optimal clustering number.

To develop a robust classification model, we first selected 
the top 1100 most abundant proteins detected from each 
sample, which yielded a dataset of 3460 proteins; then the 
445 proteins that were detected in at least 8 samples (> 10%) 
with the CV greater than 1.9 were used for NMF consensus 
clustering (Table S3).

To validate the classification in an independent external 
dataset, the RF classifier was implemented on the discovery 
dataset using the R package randomForest. The top 500 most 
abundant proteins detected in each sample were aggregated 
for differential expression analysis. Finally, 58 significantly 
differentially expressed proteins (FC > 1.5; adjusted t-test, P 
< 0.05) with high identification frequencies (detected in more 
than 25% of the samples) were used as input (predictor varia-
bles). The subtype terms of SCLC on the discovery dataset 
were used as the response variables. The optimal parameters 
were estimated from the R function training with package 
caret. The 10-fold cross-validation strategy was utilized for 
internal validation.

Survival analysis
The Kaplan–Meier method, log-rank test, and the Cox 
proportional-hazards model with Wald statistics were used 
for survival analysis in all datasets. The multivariate Cox 
analysis was adjusted for age, sex, staging system, and che-
motherapy. HRs with 95% CI were estimated for each vari-
able. All calculated P values were two-sided where P < 0.05 
was considered statistically significant.

Bioinformatic analysis
To investigate the proteomic features of SCLC subtypes, we 
selected significantly altered proteins by comparing their ex-
pression in each subtype to the other subtypes (FC > 3 for S-I 
and S-II or FC > 10 for S-III; Wilcox test, P < 0.05). 
Metascape analysis was conducted online (https://metascape. 
org) for functional pathway analysis. The on-line tool 
SangerBox (http://www.sangerbox.com/tool.html) was used 
for generating the plots and heatmap. All other statistical 
analyses were carried out with R 3.6.1.
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