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We introduce a quantum mechanical polarizable force field
(QMPFF) fitted solely to QM data at the MP2�aTZ(-hp) level. Atomic
charge density is modeled by point-charge nuclei and floating
exponentially shaped electron clouds. The functional form of
interaction energy parallels quantum mechanics by including elec-
trostatic, exchange, induction, and dispersion terms. Separate
fitting of each term to the counterpart calculated from high-quality
QM data ensures high transferability of QMPFF parameters to
different molecular environments, as well as accurate fit to a broad
range of experimental data in both gas and liquid phases. QMPFF,
which is much more efficient than ab initio QM, is optimized for the
accurate simulation of biomolecular systems and the design of
drugs.

drug design � quantum mechanics

Accurate simulation of intermolecular interactions is essential in
computational studies of chemical and biological systems

ranging from multimer spectroscopy in molecular beams, atom-
surface interactions, and catalyzed chemical reactions to protein
folding and rational drug design. The most reliable and consistent
means for such simulations would be to directly use quantum
mechanics. However, this is much too computationally demanding,
mandating instead the use of a force field, in which the molecular
potential surface is approximated by simple analytical formulas.
Commonly used force fields including CHARMM, OPLS-AA,
MMFF, and AMBER (1–4) originated with Lifson’s and Warshel’s
(5) consistent force field; they all use two basic types of interactions,
bonded and nonbonded. The bonded terms are usually modeled
formally as functions of stretching, bending, and torsion, whereas
the nonbonded components are more physically grounded and
involve electrostatic and van der Waals potentials. Electrostatics is
described in terms of fixed point charges, and the van der Waals
interaction is usually approximated by the classical Leonard–Jones
‘‘12–6’’ potential or its modifications. Empirical parameters that
shape the various functional forms are found by fitting to low-level
quantum mechanical (QM) and�or experimental data for simple
molecules and their interactions in the solid and liquid phases.

Although such force fields have been quite successful in modeling
a wide variety of molecular systems, there are significant problems
in simulation of liquid-phase solutes (6). These force fields have
many possible defects including oversimplified treatment of bonded
interactions and approximation of charge distributions by point
charges with consequent neglect of charge penetration effects,
nonadiabatic motions, and other QM features of intra- and inter-
molecular interactions. However, the most serious defect is recog-
nized to be the failure to incorporate electronic polarization at a
fundamental level, which is especially important in a polar medium
such as water. To allow for the effects of polarization, the standard
nonpolarizable force fields fit the mean field of the liquid by
artificially increased dipole moments, deformed molecular geom-
etry, etc. Doing this decreases both the theoretical grace and
practical applicability of such force fields. In addition, the standard
force fields have evident methodological restrictions. Fitting the
parameters to experiment is limited by insufficient data and gen-
erally provides little insight into how the model’s inadequacies can
be improved. On the other hand, fitting to QM data (if any)

generally requires special choice of the QM basis to conform with
the mean field approach, so the level of calculations cannot be
improved.

Clearly, further progress in force field development requires
polarizable models fitted to high-quality QM data, because non-
polarizable pair potentials evidently cannot be further improved
(7). The development of polarizable models is motivated by the
steadily increasing accuracy, versatility, and completeness of ab
initio data, enabling closer agreement to experiment. Polarizable
models were first introduced by Applequist and coworkers (8) to
describe molecular polarizability and then developed by Warshel
and Levitt (9) in the form of a force field. Although there were
applications to biomolecular systems (10, 11), the main efforts were
concentrated on water and simple compounds (see review in ref. 12
and references therein); more recently (13–15), polarization was
introduced into other general-purpose force fields. Two approaches
have generally been used to simulate molecular polarizability: (i)
inducible multipoles and (ii) fluctuating charges. In the first case,
inducible atomic multipoles are formally introduced and their
interactions are calculated in a self-consistent iterative way (e.g., see
ref. 14). The approach is often confined to a point dipole approx-
imation, although there are extensions using higher multipoles and
diffuse distributions (16). In the second case, the partial atomic
charges are considered as dynamic variables and the energy of
transferring a charge between two sites is usually approximated by
a quadratic form (17). In contrast to inducible multipoles, this
approach describes polarization to all orders in the charge mo-
ments. However, it is often unable to simulate correctly the
polarizability tensor, e.g., its normal component for planar mole-
cules. This defect is eliminated in models describing polarization in
a universal and intuitively clear way in terms of floating diffuse
charges (18–20) tracing back to classical Drude oscillators, and this
idea is extended here.

Introducing polarization undoubtedly provides a better physical
basis for further progress in simulation of the condensed phase. This
is especially important for large organic and biomolecular systems
in water solvent, such as proteins or protein–ligand systems, where
polarization depends on the local environment and varies widely
across the molecular complex. With such a heterogeneous system,
the mean-field approximation is intrinsically limited.

Polarization is only one of the components of real QM intermo-
lecular interactions. Providing the correct balance of the different
terms of the force field is one of the key requirements for the model
to be transferable. In principle, one might accurately fit even a
model with oversimplified functional forms and unaccounted ef-
fects to a particular training set while ignoring this requirement.
When this is done, inaccuracies in various energy components can
be made to cancel out. However, such an imbalance will manifest
itself in poor model performance beyond the training set, because
the relative contributions of different components vary from case
to case. To avoid this pitfall, a force field should have a solid physical

Abbreviations: DS, dispersion; ES, electrostatic; EX, exchange; IN, induction; QM, quantum
mechanical; QMPFF, QM polarizable force field.

†To whom correspondence should be addressed. E-mail: vladimir.tarasov@algodign.com.

© 2005 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0502962102 PNAS � May 31, 2005 � vol. 102 � no. 22 � 7829–7834

BI
O

PH
YS

IC
S



basis for both the energy decomposition scheme and the functional
form, as well as careful individual fitting of all of the components
to their QM counterparts. Only in this way can transferability from
the training set to other systems be assured.

An additional consideration involves the choice of atom types. In
a perfect QM force field, there is only one type of carbon, nitrogen,
or oxygen atom. We do not expect to be able to maintain this level
of simplicity here but strive for it by choosing components to be
mutually well balanced and ‘‘as simple as possible, but not simpler.’’
Because the appropriate levels of simplification are not known a
priori, it is reasonable to design the model in a step-by-step manner
starting from the simplest components and upgrading only as
necessary.

Based on these principles, a general QM polarizable force field
(QMPFF) is presented in this article. The model is fitted exclusively
to high-level QM data, which provide close agreement with exper-
iment in the gas phase. We find that a relatively small number of
atom types for each element (eight for H, three for C, two for O,
four for N, and one each for S, F, Cl, and Br) is sufficient to provide
strong transferability. QM energies are reproduced to within an
average of 0.27 kcal�mol for homo- and heterodimers of small
molecules as well as for larger molecules having the same atoms,
both inside and outside the training set. The same parameters work
well in both gases and liquids, demonstrating good transferability of
the model parameters from gas to condensed phase. Together,
these results bolster confidence that we have captured the under-
lying physics in our choice of key energy terms, functional forms,
and calibrated parameters. Despite the relatively small number of

atom types, our model is able to treat protein molecules and the
majority of small-molecule drugs. QMPFF is computationally
efficient for evaluation of total energy and forces in large systems
such as biomolecules in the condensed phase.

Methods
A molecule is represented as a superposition of interacting atoms.
In QMPFF, intramolecular geometry is taken as rigid so only
nonbonded interactions contribute to the potential energy (this
limitation is being eliminated in subsequent versions of QMPFF
that also handle bonded interactions). The potential energy of a
molecular complex is decomposed into four components, electro-
static (ES), exchange (EX), induction (IN), and dispersion (DS), as
has been done previously in general-purpose polarizable force
fields, implying that the model does not describe systems with strong
coupling of intra- and intermolecular degrees of freedom, e.g.,
molecular complexes with large charge transfer and significant
overlap of electron densities.

The charge distribution of each atom a is represented as a core
atomic point charge, Z̃a, and a diffuse electron density approxi-
mated by a negatively charged isotropic electron cloud of expo-
nential form �a(r) � Qa exp(��r � ra��w̃a)�8�w̃a

3.
Positions of the cloud centers ra are written as Ra � ta, where Ra

is the position of the nucleus of atom a and ta is the shift of the cloud
center from the nucleus. The vectors ta of all of the atoms of the
molecular complex under consideration are varied to minimize the
total QMPFF potential energy (Fig. 1). These dynamic variables

Fig. 1. Formulas for potential energy of a molecular complex according to the QMPFF potential. The position of the nucleus of atom a is specified by the vector Ra

and the offset of the electron cloud by ta; Ba denotes the set of atoms bonded to atom a. The potential is found by minimization of the sum of ES, EX, and IN terms
with respect to vectors ta. Summation of the binary atom–atom ES, EX, and DS interactions is performed over all the atoms in the complex, implying the ‘‘1–3 rule’’ with
the terms being dropped for atom pairs separated by one or two chemical bonds (along with the interaction of the clouds with their nuclear cores); for ‘‘1–4’’
interactions, a special renormalization is used (see text). These rules are introduced to comply with the next version of QMPFF, which will allow flexible valence
interactions. The unary term U a

IN simulates the potential restraining the cloud a to remain close to a reference position. The induction energy can be calculated as the
difference between UTOTAL and the energy formally calculated with the clouds fixed at their positions in isolated molecule(s). QMPFF parameters are marked by tilde
signs. Parameters for each atom, a: Z̃a, charge; �̃a, polarizability; C̃a, exchange strength; w̃a, cloud size; R̃a, dispersion range; Ẽa, dispersion strength. The core charges,
Z̃a, are currently fixed at values given in the text; the fixed scale factor R0 is set equal to 1 Å; the parameter t̃max is common for all the atom types. Parameters for each
bond,a tob: Q̃ab, bondcharge increment; t̃ab, referencecloudshiftalongbond. (Inset)A schematic representationofapairof interactingwatermolecules. (InsetLower)
Atoms drawn as space filling spheres, red for oxygen and gray for hydrogen. (Inset Upper) Nuclei as small spheres with core point charges. The diffuse clouds around
(but not necessarily centered on) the nuclei are the electron densities. The arrows illustrate the shifts of the electron cloud centers caused by the external field. It is this
movement of diffuse electronic clouds that makes QMPFF polarizable and much more realistic than normal simple point charge force fields. Although the formulae
used are much more complicated than for normal force fields, QMPFF is only a factor of 10–20 slower to use; QM would be a million times slower.
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mimic the rapid redistribution of the electron clouds on the nuclear
framework.

Approximating the molecular charge density by a diffuse distri-
bution is natural from the physical point of view: It allows adequate
description of the electrostatic interaction and takes into account
the penetration effect, which contributes to the total energy at small
and medium distances.

Atom types are assigned by a simple scheme according to which
heavy atoms are classified by atomic number, multiplicity of the
chemical bond, and aromatic attribute. Hydrogen atoms are clas-
sified by the heavy atom type to which the hydrogen is bonded. The
bond types are determined by the pair of atom types, the bond
multiplicity, and the bond aromatic attribute.

The QM data for parameterization of QMPFF were calculated
with the GAMESS package (www.msg.ameslab.gov�GAMESS�
GAMESS.html) at QM level MP2�aTZ(-hp), which is the Dunning
basis MP2�aug-cc-pVTZ (21) with the highest orbital momentum
functions removed. Preliminary tests of four basis sets at the MP2
level, 6–311G**, TZ(-hp), aTZ(-hp), and aTZ, showed that the fit
to experiment of dipole moments and molecular polarizabilities of
H2O, NH3, CH4, and CH3OH was best for the last two sets. On the
other hand, the energies of dimers of these molecules calculated
with aTZ(-hp) and aTZ were close to each other. Our choice of the
basis set is the most complete that in practice allows the treatment
with GAMESS of the largest dimers in the training set. Details of QM
calculations are given in Supporting Text, which is published as
supporting information on the PNAS web site.

The training set includes the data on molecular properties
(components of polarizability tensor, dipole, and quadrupole mo-
ments) for all representative molecules as well as components of
intermolecular energy of representative dimers. For each dimer in
the training set, we choose two types of conformations: (i) the
optimal conformations and (ii) ‘‘random’’ conformations covering
the most important intermolecular distances and orientations.

Functional Form. The electrostatic interaction between two atoms, a
and b, each with a nucleus and electron cloud, includes four terms:
nucleus–nucleus, cloud–cloud, cloud–nucleus, and nucleus–cloud.
Each term uses the function �(r; u, v) to calculate the electrostatic
potential between two exponentially shaped clouds with width
parameters u and v separated by distance r. For analytical expres-
sions, see ref. 22. Each atom has an adjustable parameter for the
cloud size, w̃a, and for the fixed charge, Z̃a, which is set equal to 1.0
for hydrogen, 4.0 for C, 5.0 for N, 6.0 for O, 7.0 for F, 6.0 for S, 7.0
for Cl, and 7.0 for Br in the current version of QMPFF.

The cloud charges Qa are defined as Qa � �Z̃a � �bQ̃ba, where

the bond charge transfers, Q̃ab, are QMPFF parameters, and the
summation is over all atoms bonded to atom a. For 1–4 interactions,
the sum over bonded atoms is dropped for pairs 1–2 and 3–4.

The exchange repulsion is known to decay almost exponentially
with the distance; the preexponential factor was found by trial and
error. Given that electron cloud sizes are generally similar to each
other, the decay rate of the exchange interaction of electron clouds
a and b can be taken as (w̃a � w̃b)�2 to give the EX term in Fig. 1.
The strength parameters, C̃, are adjustable.

Induction (IN) is simulated in QMPFF by floating electron
clouds. Each cloud a moves in the external field and in the
nonharmonic unary restraint potential Ua

IN. It constrains the cloud
shift, ta, to remain close to the reference position ta

0, depending on
the atoms b bonded to atom a and defined as �b�Ba

t̃abnab, where
nab � Rab�Rab is the unit vector directed from atom a to b. t̃ab is a
parameter depending on the bond type a–b; it characterizes the
tendency to shift the cloud from atom a toward atom b (note that,
in general, t̃ab � t̃ba). Thus, the electron cloud is attached to the
nucleus by a spring whose stiffness increases with the extent of the
stretching. The stiffness becomes infinite as the argument �ta � ta

0�
approaches the parameter value t̃max (Fig. 1). Therefore, the
restraint potential prevents the polarization catastrophe in nonuni-
form fields, whereas at small values of the argument, it is close to
a harmonic potential.

The dispersion term is expected from QM considerations to be
finite at r � 0 and vary like r�6 at large distances, so in QMPFF, it
was chosen as a simple buffered r�6 (see Fig. 1). Because the
positions of cloud centers are close to their corresponding nuclei,
the DS term is taken as between nuclei rather than clouds; this
simplifies minimization of the total potential energy with respect to
cloud positions. In the QMPFF parameterization procedure, the
DS term is fitted to the difference between the total QM intermo-
lecular energy and the sum of QM electrostatic, exchange, and
induction terms. Adjustable parameters are the buffering range, R̃a,
and strength, Ẽa, for each atom, whereas R0 is a common scaling
factor.

Parameterization Procedure. The full list of current QMPFF adjust-
able parameters is given in Fig. 1, and the list of atom types is given
in Table 1. The determination of parameter values was done in a
step-wise fashion starting with atom type group 1 (tetravalent
carbon and its associated hydrogen atom), for which we used
methane and ethane as representative molecules. For each repre-
sentative dimer conformation, the electrostatics and exchange
terms of the QMPFF model were fitted to those of the QM
calculation. The induction term of the model was fitted to QM

Table 1. Atom types used for QMPFF

Group Atoms Example Aromaticity Representative molecules

1C, H �C� CH4, COCH2OC�CHO F Methane, Ethane
2O, H OOO OH2, COOH, COOOC F Water, Methanol Methyl ether
3N, H �NO NH3, CONH2 CONHOC F Ammonia, Methylamine
4C, H AC� ACH2 F Ethylene, Propylene
5O OA COCOOC, �CAO F Acetone, MethylFormate Formic Acid, Formamide
6C, H AC� �CH T Benzene, Phenol, Aniline
7N ANO CANOC T Pyridine
8N, H �NO �NH T Pyrrole
9S, H OSO SH2, COSOC F Hydrogen Sulfide Methylethiole
10F FO COF F Methyl Fluoride
11Cl ClO COCl F Methyl Chloride
12Br BrO COBr F Methyl Bromide
13N ANO ANH F Methylimine, Guanidine

� and � both designate two single bonds. There are a total of 21 atom types (13 heavy atoms and 8 hydrogen atoms), each with five
energy parameters (w̃a, �̃a, C̃a, R̃a, and Ẽa), not including the fixed charge parameters Za. There are also a total of 43 bond types, each
with three energy parameters (Q̃ab, t̃ab, and t̃ba). Together, this gives a total of 105 � 106 adjustable parameters (23 bond parameters
are eliminated by symmetry) plus the universal parameter t̃max.
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molecular polarizability tensors, and the dispersion term of the
model was fitted to the differences between the total QM inter-
molecular energy and the other terms. In addition, data on dipole
and quadrupole moments of representative molecules were used to
choose the best parameter set. Next, parameters were found for
group 2 (divalent oxygen and its hydrogen atom) by using data on
water and methanol and their dimers as well as their mixed dimers
with methane (parameters already determined for group 1 were not
changed). The procedure was repeated for each new group without

recalculation of the previously determined parameters, radically
reducing computational effort while allowing a more thorough
search of the high-dimensional parameter space.

Results
The parameterization of QMPFF presented here includes the most
common atom types in biomolecules. With a total of just 13 atom
groups (21 atom types and 43 bond types; see Table 1), all 20
standard amino acids and about two-thirds of known drugs pre-
sented in the Dobashi Drug Data Base (www.ps.toyaku.ac.jp�
dobashi) can be parameterized. A total of 132 molecules were used
in the training set, with 44 of these molecules giving rise to 68
representative dimers. For these dimers, there were 81 optimal
conformations and 5,093 random dimer conformations. The rep-
resentative molecules and their dimers are listed in Tables 4–6,
which are published as supporting information on the PNAS web
site.

Quality of QMPFF Parameterization. The quality of the QMPFF
parameterization is demonstrated by the error distribution (Fig. 2)
and distance dependence of dimer energies (Fig. 3). Table 2
presents statistics characterizing the quality of the fit of QMPFF to
QM for the training set. In addition, corresponding results calcu-
lated with MMFF94 are given. Although a direct comparison of
QMPFF with a nonpolarizable force field is not strictly correct,
because the latter is oriented mainly to simulations in the liquid
phase, it nevertheless provides some reference point of accuracy for
gas-phase properties. As seen, the fit of QMPFF to QM is quite
satisfactory, with the most accurate fit being for the polarizability
values. In all cases, the percentage errors between QMPFF and QM
are smaller than those between MMFF94 and QM.

For the separate components in the energy decomposition
scheme (Fig. 1), the rms errors were 0.21, 0.17, and 0.27 kcal�mol

Fig. 2. Error distributions for dimer energies. (a) Distribution of energy
differences between QMPFF results and the QM results at the MP2�6–311G**
level for the interaction of 53 dimers in random orientations. The distributions
for the training set (red, 1,881 conformations) and test set (blue, 4,220
conformations) are essentially identical, with rms energy errors of 0.39 and
0.42 kcal�mol, respectively. (b) The distribution of errors with QMPFF fitted to
better quantum calculations at the MP2�aTZ(-hp) level are even closer to the
QM results (0.27 kcal�mol rms error). The errors between the Merck force field
MMFF94 and the QM results are larger (blue) with rms error of 0.51 kcal�mol.
In b, the number of random dimer conformations is 5,093.

Fig. 3. Distance dependence of dimer energies. (a–c) QMPFF with energy parameters for carbon and oxygen is able to reproduce the interaction energy of
homodimers (a and b) and heterodimers (c) of water and methane. The QMPFF energy (red line) is much closer to the QM values (shaded plus signs) calculated
at the MP2�aTZ(-hp) level than are the results from the Merck force field MMFF94 (blue line). (d–f ) QMPFF fits the QM results for molecules outside the training
set for the interaction of water–cyclohexane (d), ethanediol–ethanediol (e), and glycine–glycine ( f). The QMPFF energy functions achieve this fit while using
a comparatively small number of atom types (eight in all, with two carbon, two oxygen, and one nitrogen types and three associated hydrogen atom types). The
QMPFF energy (red line) is much closer to the MP2�aTZ(-hp) QM values (plus signs) than are the results from the best potentials like the Merck force field MMFF94
(blue line).
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for ES, EX, and DS, respectively. The correlation coefficients
between the QMPFF and QM data were 0.97, 0.98, and 0.87 for ES,
EX, and DS, respectively. The agreement for ES and EX was
reduced by strained conformations with very large energy terms.
The most problematic component is the DS term. This is expected
because in QMPFF (and many other force fields) the DS term
accounts not only for the dispersion interaction but also for all other
unaccounted effects.

The results presented here demonstrate the highly satisfactory
quality of QMPFF simulation of QM data. In all cases the system-
atic shifts of QMPFF results with respect to QM values were
negligible in comparison with random deviations. The accuracy was
	3% for molecular polarizability and 	12% for multipoles (see
Table 2). The accuracy of optimized dimer energies was 0.95
kcal�mol; however, the weighted rms deviation for the random
dimer conformations was only 	0.3 kcal�mol, which is comparable
with or better than the accuracy of the QM data itself. The reason
for this difference in accuracy is primarily that the energies of
random conformations are much less in absolute value than for
optimal conformations, so the rms deviation is correspondingly
smaller. In addition, a significant contribution to the rms deviation
of the random conformations is from polar dimers, which are
accurately described by QMPFF due to accurate simulation of the
dipole moments. On the other hand, in optimal conformations the
other components, e.g., DS, contribute more. Overall, the data
demonstrate that QMPFF conforms well with QM calculations at
the basis-set level MP2�aTZ(-hp).

Transferability. Preparation of MP2�aTZ(-hp) QM data is an
expensive procedure. Thus, it was not feasible to statistically
validate the force field at this level with a large number of molecules
outside the training set. Because the QMPFF approach is only
weakly dependent on the level of the QM calculations, transfer-
ability can be analyzed by fitting QMPFF to less accurate QM data
that can be generated rapidly enough to permit sufficient statistics.
The distribution of the dimer energy differences for a QMPFF
model fitted to QM at basis set level MP2�6–311G** is shown in
Fig. 2a for random dimer conformations involving atom groups 1–5.
The number of conformations in the training and test sets was 1,881
from 17 dimers and 4,220 from 36 dimers, respectively, providing
good statistics. The distributions of errors for the training and test
sets are indistinguishable, with rms errors of 0.39 and 0.42 kcal�mol,
respectively showing good fitting quality and almost perfect trans-
ferability. This use of the MP2�6–311G** basis is done solely for
testing purposes.

Error distributions in the training set were also determined for
the real QMPFF force field, i.e., fitted to high-level QM calculations
(Fig. 2b). These errors are very similar to those found for the test
and training sets by using MP2�6–311G**, with an rms error of 0.27
kcal�mol. The rms error for the MMFF94 potential is much larger,
at 0.51 kcal�mol, which can be partially explained by systematic
shifts of aTZ(-hp) QM data relative to the 6–31G* QM data
basically used for MMFF94 parameterization.

A good illustration of model transferability comes from the
variation of dimer energy with distance between the monomers.
These calculations, which were carried out at our usual basis-set
level, MP2�aTZ(-hp), start from the optimal conformation of the
dimer and then move one of the monomers along the direction
connecting two predefined reference atoms (usually the central
heavy atoms). Fig. 3 a–c shows how the parameters fitted to the
training set, which includes methane–methane and water–water
homodimers, reproduce the test water–methane heterodimer well.
Fig. 3 d–f shows the dimer interaction between larger molecules that
were not used in the training set. In all cases, the QMPFF potential
results in better agreement with QM data than the MMFF94
potential.

Validation. Our QMPFF potential is designed to reproduce the
properties of molecules in any phase by virtue of its physically
meaningful parameterization that captures essential QM effects.

Table 2. Fit of QMPFF to QM for various types of data in
training set

Property fitted
Number
of cases

rms
error

Percent error

QMPFF MMFF

Polarizability, Å3 132 0.44 2.7 —
Dipole moment, Debye 110 0.29 12.5 30.0
Quadrupole moment, Buckingham 128 2.20 11.9 30.0
Random dimer energies, kcal�mol 5,093 0.27 22.0 44.0
Optimized dimer energies, kcal�mol 81 0.95 13.7 18.7
Optimized dimer geometry, Å 81 0.10 3.3 5.0

Detailed data on molecular properties of dimers are given in Tables 5–7.

Fig. 4. Comparison of QMPFF and MMFF94 with experimen-
tal data for methane and methanol in gas and condensed
phases. The second virial coefficient characterizes the gas
phase and is calculated as Bij � (1�2)
�1�e�Uij/kT�
dR, where
�. . .�
 denotes the averaging over molecular rotations; Uij is
the interaction energy between the two molecules i, j; T is the
temperature; and the integration is performed over the trans-
lational degrees of freedom. (a) For methane, the fit of B
calculated for QMPFF (red line) to experiment (shaded plus
signs) is no better than that of MMFF94 (blue line); these errors
are partly due to insufficient accuracy of the QM calculations
(dotted black line). (b) For methanol, QMPFF fits experiment
much better than MMFF. (c) The radial distribution function,
which characterizes the liquid phase, shows that both QMPFF
and MMFF fit experiment well for methane. (d) For methanol,
the QMPFF fit to experiment is clearly better than for MMFF.
Liquids are simulated by using a box of 219 CH4 or 96 CH3OH
molecules for 100 ps. For QMPFF, these simulations were
slower by a factor of 15 than for MMFF.
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Fig. 4 shows that the model is indeed able to fit both gaseous and
condensed phases well. Dimerization Gibbs energy data closely
related to the second virial coefficient are shown in Table 7, which
is published as supporting information on the PNAS web site, for
homogeneous vapors and mixtures.

Discussion
Nonadditivity Effects. Table 1 presents atom types generally en-
countered in biomolecules and drug-like molecules. Other atom
types can also be parameterized in the framework of the QMPFF
approach. As an example, we parameterized the charged sp3-
hybridized nitrogen (along with corresponding hydrogen and
bonds) by using dimers NH3-NH4

�, H2O-NH4
�, CH3OH-NH4

�, and
CH3NH3

�-H2O. Because of the strong electric field due to nonzero
charge, the nonadditivity polarization effects in interactions of this
atom type are expected to be significant. Table 3 compares the
QMPFF predictions with QM results for decomposition of the total
energy of the pentamer (H2O)4-NH4

� calculated at the optimal
multimer conformation.

In Table 3, the Ek values denote the sums of energies of all of the
k-mers calculated with the geometry corresponding to the opti-
mized pentamer. The second through fifth columns represent the
contribution of two-, three-, four-, and five-particle nonadditivities,
respectively; in the last column, the total energy is given. As shown,
QMPFF gives many-particle nonadditivities that are in good agree-
ment with MP2 results. For comparison, MMFF94 gave a total
energy of �77.7 kcal�mol, satisfactorily simulating two-particle
polarization by artificially increasing dipole moments of water
molecules; however, all high-order nonadditivity effects are natu-
rally zero in the pairwise additive MMFF94 potential, so E5 is off
by 	13 kcal�mol.

Condensed-Phase Polarization. The most evident advantage of the
physically grounded polarizable model over fixed-charge models is
transferability from the gas to the condensed phase. Several liquids
have been simulated by using molecular dynamics and Monte Carlo
techniques and found to be in good agreement with experimental

data on thermodynamic and structural properties in all cases,
similarly to the results presented in Fig. 4.

Nonharmonic form of the restraint term Ua
IN not only prevents

the polarization catastrophe but decreases the mean molecular
polarizability in the liquid phase. It is also reduced by the exchange
repulsion between the electron clouds. This emulates the quantum
induction component of intermolecular interaction (23). Such
effects are not simulated by other force fields, because the polar-
ization is associated only with the electrostatic field, and electron
displacement is treated as a harmonic spring. The effect can be
significant in a highly polar liquid like water. For QMPFF, the
estimated 18% decrease of polarizability in liquid water relative to
vapor compares well with literature estimates ranging from 7% (24)
to 29% (19).

Limitations Due to QM Accuracy. The basis level of QM calculations
used here [MP2�aTZ(-hp)] is generally adequate for polar inter-
actions, where the accuracy is 	5%. For nonpolar and van der
Waals complexes, the accuracy is not as good (see Fig. 4a, com-
paring ab initio QM and experimental virial coefficients for meth-
ane). Errors are even larger for large nonpolar molecules: The
calculated energy of the optimal benzene homodimer is �7.3
kcal�mol, more than twice the generally accepted value. The
problem is worse for strained conformations, so more advanced
QM calculations are needed with emphasis on better treatment of
electron correlations. Indeed, because QMPFF, unlike other force
fields, has no free parameters that are not fitted to QM data, the
only way to improve QMPFF is by using such advanced QM
calculations.

Conclusions. QMPFF simulates vacuum dimer properties in sat-
isfactory agreement with experimental data. The fit of QMPFF
to the QM data is generally comparable to the fit of QM to
experiment. Further increase in the accuracy of QMPFF simu-
lations will require not only refinements in the functional form
and the model parameterization procedure, but also the use of
more accurate QM data for parameterization. Fitting the
QMPFF model to data obtained with more advanced QM
techniques will let QMPFF fit experimental data even more
precisely. QMPFF shows almost perfect transferability in sim-
ulations of dimer energies for a wide range of chemical
compounds, raising hopes for successful extension to large
biomolecules.
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Table 3. Nonadditivity effects in (H2O)4-NH4
�

Method E2 E3 � 3E2

E4 � 2E3

� 3E2

E5 � E4

� E3 � E2 E5

MP2�aTZ(-hp) �74.0 10.3 �0.5 0.0 �64.2
QMPFF �75.5 10.3 �0.3 0.0 �65.5

Values are in kcal�mol.
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