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Abstract

OBJECTIVE—Intracranial pressure (ICP) is an important therapeutic target in many critical 

neuropathologies. The current tools for ICP measurements are invasive; hence, these are only 

selectively applied in critical cases where the benefits surpass the risks. To address the need for 

low-risk ICP monitoring, the authors developed a noninvasive alternative.

METHODS—The authors recently demonstrated noninvasive quantification of ICP in an animal 

model by using morphological analysis of microvascular cerebral blood flow (CBF) measured 

with diffuse correlation spectroscopy (DCS). The current prospective observational study 

expanded on this preclinical study by translating the method to pediatric patients. Here, the CBF 

features, along with mean arterial pressure (MAP) and heart rate (HR) data, were used to build a 

random decision forest, machine learning model for estimation of ICP; the results of this model 

were compared with those of invasive monitoring.

RESULTS—Fifteen patients (mean age ± SD [range] 9.8 ± 5.1 [0.3–17.5] years; median 

age [interquartile range] 11 [7.4] years; 10 males and 5 females) who underwent invasive 

neuromonitoring for any purpose were enrolled. Estimated ICP (ICPest) very closely matched 

invasive ICP (ICPinv), with a root mean square error (RMSE) of 1.01 mm Hg and 95% limit 
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of agreement of ≤ 1.99 mm Hg for ICPinv 0.01–41.25 mm Hg. When the ICP range (ICPinv 

0.01–29.05 mm Hg) was narrowed on the basis of the sample population, both RMSE and limit of 

agreement improved to 0.81 mm Hg and ≤ 1.6 mm Hg, respectively. In addition, 0.3% of the test 

samples for ICPinv ≤ 20 mm Hg and 5.4% of the test samples for ICPinv > 20 mm Hg had a limit 

of agreement > 5 mm Hg, which may be considered the acceptable limit of agreement for clinical 

validity of ICP sensing. For the narrower case, 0.1% of test samples for ICPinv ≤ 20 mm Hg and 

1.1% of the test samples for ICPinv > 20 mm Hg had a limit of agreement > 5 mm Hg. Although 

the CBF features were crucial, the best prediction accuracy was achieved when these features 

were combined with MAP and HR data. Lastly, preliminary leave-one-out analysis showed model 

accuracy with an RMSE of 6 mm Hg and limit of agreement of ≤ 7 mm Hg.

CONCLUSIONS—The authors have shown that DCS may enable ICP monitoring with 

additional clinical validation. The lower risk of such monitoring would allow ICP to be estimated 

for a wide spectrum of indications, thereby both reducing the use of invasive monitors and 

increasing the types of patients who may benefit from ICP-directed therapies.
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Intracranial pressure (ICP) is defined as the pressure within the craniospinal compartment, 

a closed system that comprises a fixed total volume of neural tissue, cerebral blood, and 

cerebrospinal fluid (CSF).1 Within the rigid skull, any increase in one volume compartment 

needs to be matched by an equal decrease in another or ICP will rise, as illustrated 

by the Monro-Kellie doctrine.2,3 Although the CSF and the blood compartments provide 

some buffering of increasing volume, once the compensatory capacity is exhausted, further 

increases in volume lead to a rise in ICP, as routinely observed in patients with many 

neuropathologies.2,4–7 Thus, ICP is an important biomarker in the care of patients with these 

critical diseases.8–13

The techniques currently used in the clinic for ICP measurements are invasive, requiring 

pressure transducers to be placed into the parenchyma8 or the ventricular system.14 Due 

to the invasive nature of these procedures, there are associated risks that include infection 

and hemorrhagic complications.15 Hence, ICP monitoring is typically only recommended 

in critical cases where the benefits exceed the procedural risks.16 There is a need for a 

noninvasive alternative that minimizes the risk of complications and at the same time allows 

accurate ICP monitoring for a broader set of indications.

Over the past years, a variety of noninvasive approaches have been proposed for ICP 

measurement, including transcranial Doppler (TCD) ultrasonography and several diffuse 

optical techniques.17–23 Although TCD is considered promising and is being used in some 

regions of the world, factors such as operator dependence, motion sensitivity, and lack of 

ease for long-term bedside measurements limit its widespread clinical applicability.24,25 

The measurement of optic nerve sheath diameter (ONSD), which increases with ICP, with 

standard intracranial imaging or more recently with ultrasound have also shown the promise 

of clinical utility.26,27 However, ONSD measurement is limited in that it is susceptible to 
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inaccuracy due to differences in baseline ONSD between individuals, can only delineate 

between normal and elevated ICP, does not provide continuous monitoring, and presents 

additional shortcomings such as patient discomfort.26,27

In an attempt to derive absolute ICP values noninvasively, our prior work utilizing diffuse 

correlation spectroscopy (DCS) estimated ICP with an accuracy of < 4 mm Hg in a 

nonhuman primate model.28 DCS is an emerging diffuse optical technique that measures 

microvascular cerebral blood flow (CBF) noninvasively and continuously.29,30 DCS can 

resolve the cardiac pulsatility in CBF,31 and we have previously shown that the shape of the 

CBF cardiac pulse waveforms changes with baseline ICP; this association was previously 

explored and tested with TCD.32,33 Because DCS directly measures CBF instead of blood 

flow velocity, and also because the small cortical vessels probed with DCS are more 

susceptible to transmural pressure changes than the large vessels probed with TCD, DCS 

may be a superior option for noninvasive ICP measurement.34

This work specifically expanded on our preclinical study by translating the method 

to pediatric patients. First, we provide details on strategic and technical optimizations 

implemented in this work, including DCS data processing and machine learning tools. Then, 

we present data from 15 pediatric intensive care unit (PICU) patients and show estimation 

of ICP from the pulse morphological features of CBF with and without other physiological 

signals, e.g., mean arterial pressure (MAP) and heart rate (HR), by using a random forest 

regressor model.

Methods

To briefly summarize the methodology, pediatric patients were evaluated with DCS to 

extract CBF data. Next, morphological features were extracted from the CBF pulses, in 

addition to MAP and HR data, by using signal processing to train a machine learning model. 

Lastly, ICP estimated by the model was validated against invasively measured ICP.

Clinical Pediatric Population

The study was conducted at the PICU of the University of Pittsburgh Medical Center 

Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania. The study protocol was 

approved by the University of Pittsburgh and Carnegie Mellon University Institutional 

Review Board.

Children between 1 month and under 18 years of age who underwent placement of an 

external ventricular drain (EVD) or a parenchymal pressure monitor for ICP monitoring as 

a part of their routine clinical care were eligible for enrollment. Written informed consent 

was provided by the legal guardian. Noninvasive monitoring was not performed in settings 

where it may have impeded patient care. For this study, a total of 18 patients were recorded 

and data from 3 patients were excluded. Two of these patients had a low signal-to-noise 

ratio (SNR), and 1 had a technical error resulting in incorrect synching of invasive and 

noninvasive data.
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The mean ± SD (range) age of the population was 9.8 ± 5.1 (0.3–17.5) years, median 

age (interquartile range) was 11 (7.4) years, and 10 males and 5 females were included 

(Table 1). Optical measurement was taken on the left or right forehead, and the ICP 

sensor was surgically inserted at Kocher’s, Keen’s, and Frasier’s points as dictated by 

clinical necessity (Fig. 1). Each DCS measurement session spanned approximately 1 hour, 

with repeated measurements not exceeding a total of 6 hours/day for 7 consecutive days. 

During measurement, the patient was either supine or seated, as well as sedated or awake, 

depending on the clinical condition. Of 15 patients, 1 had a parenchymal pressure monitor 

for continuous ICP recording (Table 1). In patients with an EVD, a 3-way stopcock valve 

was turned to switch from draining CSF to recording ICP inside the closed catheter. Synched 

noninvasive recording was performed during the periods of time in which the EVD was 

clamped for clinical purposes.

Signal Acquisition

DCS provides a measure of CBF in the microvasculature.29,35 A custom-built DCS device, 

which is not approved by the US Food and Drug Administration (FDA), was used (Fig. 

1).28 DCS is similar to near-infrared spectroscopy, and some devices used for clinical 

purposes have been FDA approved and are often considered to have minimum risk. The 

device contained an auxiliary port to receive time markers used to time synchronize CBF 

with the signals obtained from the patient monitor. In addition to invasive ICP (ICPinv), 

electrocardiography (EKG) was performed and MAP was measured with the hospital 

bedside monitor (General Electric Solar 8000M, GE Healthcare). Although ICP and EKG 

data were measured continuously, MAP was measured sporadically, approximately every 30 

minutes via a blood pressure cuff, or continuously measured with an arterial line. The optical 

probe was secured on the forehead with sports tape or a padded adjustable headband (Fig. 

1A–B). More details on the DCS methodology can be found in the Supplemental Materials 

and Methods, Section 1.

Signal Processing

Signal processing was performed using MATLAB R2019b (The MathWorks Inc.). A total 

of 18 patients were recorded; however, 3 were excluded owing to poor SNRs or errors 

in patient monitoring data. Among the 15 included patients, the DCS sessions with poor 

SNRs (SNR < 4.8, empirically determined) were also removed. Movement, routine ICU 

procedures, room light, poor tissue contact, and poor probe placement were some of the 

probable reasons behind a poor SNR.

For each DCS measurement session, the CBF time series was preprocessed to remove noise 

such as respiration and time aligned with the signals from the patient monitor. Figure 2A 

shows example time traces of CBF and ICP from a representative patient, where the dashed 

vertical lines represent the R-peaks within the QRS complex of the EKG signal. The next 

step in data processing was to segment each individual CBF pulse from its time series, and 

an average of 100 consecutive pulses (150 for patients with an average SNR < 7) generated 

an average CBF cardiac pulse. The process was repeated, after the average window was 

shifted by 10% of the window length, to generate a series of average CBF pulses from the 

CBF time trace (Fig. 2B).
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Following that, the CBF pulse averages were normalized between 0 and 1 in time (x-axis) 

and amplitude (y-axis) (Fig. 2C) to achieve comparability across patients. At this step, 

ICPinv and MAP were averaged over the time span of CBF pulse averages to obtain average 

values. Additionally, the difference between the R-peaks within the QRS complex of the 

EKG signal was used to generate an HR value. Thus, at the end of signal processing, each 

CBF pulse average waveform was associated with a set of ICPinv, MAP, and HR values. 

The last column in Table 1 shows the number of days each patient was evaluated, the 

number of hours of the CBF time series that were analyzed, and the number of CBF pulse 

averages finally used for feature extraction. Altogether, a total of 19,019 pulse averages were 

extracted from 15 patients with an ICPinv range of 0.01–41.25 mm Hg.

Next, the morphological features of 3 different waveform peaks (P1–3) were extracted 

from the CBF pulse average (Fig. 2C). To describe the individual peaks, peak height (pk), 

prominence (p), full width at half maximum (w), and time point of the peak relative to 

the prior diastolic minimum (pos) were extracted. Area under the curve (AUC) was also 

acquired. Features were further obtained by quantifying the differences in pk, p, w, and pos 

between P1 and P2, as well as between P2 and P3. This resulted in a set of 21 features 

from each CBF pulse average for use in supervised machine learning. See the Supplemental 

Materials and Methods, Section 2, for further details on determining SNR, noise filtration, 

pulse averaging, normalization, and feature extraction.

Regression Learner

In this step, the entire data set of CBF pulses was randomly split, with 80% of the data 

used for training the model and 20% was held out from the training process for testing. The 

data points were randomly sampled in time. The model was optimized compared with our 

previous work in animals (Supplemental Materials and Methods, Section 3).28

Figure 3 describes the main aspects of the training and testing steps. The CBF features, 

MAP, HR, and ICPinv from the training set (total 15,215) were used to build and train a 

random decision forest with a bagged ensemble of 200 individual decision tree regressors. 

Each tree estimator was randomly assigned 60% of the training samples and 80% of the 

features (total 23) to reduce variance and limit overfitting.36 After training, the CBF features 

along with the corresponding MAP and HR data from the testing set were fed into each tree 

regressor to extract an estimated ICP. Lastly, the outputs of the 200 trees were averaged to 

obtain the estimated ICP value (ICPest). More details on the regression learner can be found 

in the Supplemental Materials and Methods, Section 3.

Statistical Analysis

Statistical analyses were conducted using MATLAB R2019b (The MathWorks Inc.). For 

the statistical analyses, results from only the testing set were reported. The goodness of 

fit between ICPinv and ICPest was calculated using the coefficient of determination metric 

(R2) and root mean squared error (RMSE). Bland-Altman analysis was also conducted 

to determine the mean bias and 95% limit of agreement between the two methods. A 

discrepancy of 5 mm Hg between invasive and noninvasive monitoring was defined as the 
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maximum difference that would justify use of DCS as, at minimum, a clinically useful 

screening adjunct.

Results

Random Decision Forest Regression Learner

The withheld testing data demonstrated that ICPest very closely matched ICPinv, with an R2 

value of 0.97 and an RMSE error of 1.01 mm Hg (Fig. 4A); however, the sample population 

was not consistent across ICPinv values, as shown in the inset histogram. Noticeably, 

the size of the sample population was reduced drastically at high ICPinv values, which 

would subsequently reduce the sample size of the training set at these values. Because 

a small training set population is known to affect model performance,37 a new analysis 

was conducted with only ICPinv, for which the sample population matched or surpassed 

a certain threshold (as shown with the horizontal dotted line in the histogram shown Fig. 

4A). This threshold represented 5% of the largest sample population. This masking based 

on the sample population narrowed down ICPinv to the range of 0.01–29.05 mm Hg. By 

using this narrower ICP range and by retraining the algorithm (Fig. 4B), we determined that 

the narrower ICPinv range improved both the R2 value and RMSE error to 0.98 and 0.81 

mm Hg, respectively. The inset image shows a histogram of the sample population for the 

narrower ICPinv.

Further evidence of goodness of fit for both ICPinv ranges was provided by the Bland-

Altman plots shown in Fig. 4C and D, where the difference between ICPest and ICPinv was 

plotted against ICPinv. Negligible bias was observed for both the entire and narrower ICPinv 

ranges. The narrower ICPinv range also slightly improved the upper and lower limits of the 

agreement values and demonstrated that 95% of the testing data points were within ± 1.6 

mm Hg of the corresponding ICPinv. Because 5 mm Hg was considered the acceptable limit 

of agreement for clinical validity of ICP sensing, we explored what percentage of the testing 

samples, less than and greater than 20 mm Hg, was outside the limit of agreement of 5 mm 

Hg. To summarize, for the entire ICP range, 0.3% of the test samples for ICPinv ≤ 20 mm Hg 

and 5.4% of the test samples for ICPinv > 20 mm Hg were outside the limit of agreement of 

5 mm Hg. For an ICP range of 0.01–29.05 mm Hg, only 0.1% of data points for ICPinv ≤ 20 

mm Hg and 1.1% of data points for ICPinv > 20 mm Hg were outside the limit of agreement 

of 5 mm Hg.

To further delve into the model, the importance of the features was analyzed for both ICPinv 

ranges (Fig. 4E and F). The order of features in terms of importance was consistent between 

the entire and narrower ICPinv ranges. MAP was the most widely used, as observed in our 

previous work.28 HR was also promising and turned out to be the third strongest predictor. 

Among the CBF features, the features related to the P1 peak were found to be the most 

useful compared with the other two peaks. For example, P1(pos) was the second strongest 

feature and P1(p) was the fourth strongest feature. P1(w) and AUC were interchangeably the 

fifth and sixth best features.

Leave-one-out analysis was also conducted, during which data points from 1 patient were 

used in the testing set and data points from the other 14 patients were used in the training 
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set. This analysis mimics how well the algorithm would work for a new patient who was not 

a part of the training set. The process was repeated for each patient. When averaged over all 

15 patients, an RMSE of 6.1 mm Hg and limit of agreement ≤ 7.4 mm Hg was observed for 

the entire ICP range, and an RMSE of 6 mm Hg and limit of agreement ≤ 7 mm Hg were 

observed for the narrower ICP range.

Dependence of Learner Performance on Model Parameters

Because learner performance can depend on the model parameters, several model 

parameters were tested against learner outputs; the results are shown in Table 2. All analyses 

were conducted for the narrow ICPinv range of 0.01–29.05 mm Hg. We investigated train/

test split ratios of 80%/20%, 70%/30%, 60%/40%, and 50%/50%. The results showed that 

R2 changed slightly; however, both RMSE and limit of agreement values increased by as 

much as approximately 32% because the training population size was reduced from 80% to 

50% of the train/test ratio.

Because our previous work in animals used a different type of decision forest classifier 

called the bagging regressor, we also compared the bagging and random forest regressors.38 

The parameters for the bagging regressor were kept as previously used,28 except the number 

of trees was kept at 200 for an even comparison. To summarize, although R2 showed only 

a slight improvement, the bagging regressor underperformed because it increased both the 

RMSE and limit of agreement values by approximately 17% (Table 2).

Lastly, features were tested to find the optimum feature set for the most accurate learner 

prediction. Because MAP and HR were among the top three important features in this 

analysis (Fig. 4E and F), either one or both features were excluded from the feature set 

to investigate how that could affect model performance. The results showed that truncating 

one or both features increased both RMSE and limit of agreement values by as much as 

approximately 200% compared with CBF, MAP, and HR (Table 2). However, when the 

same analysis was conducted with only MAP and HR as features (i.e., no CBF features), 

RMSE and the limit of agreement increased by approximately 246% compared with CBF, 

MAP, and HR. This confirmed that although MAP and HR were important features, the CBF 

features played a very important role in learner performance, and the best performance was 

achieved when MAP and HR were added to the model with CBF features.

Discussion

In this work, we have demonstrated the clinical translation of our previously developed, 

noninvasive DCS-based ICP estimation method to pediatric patients admitted to the PICU. 

We found that the waveform features in CBF measured in the cerebral microvasculature are 

influenced by ICP. These CBF features, along with HR and MAP data, were used to train 

a random forest regressor for mapping CBF onto ICP.28 To summarize the results, strong 

similarity between estimates of ICP and the invasive measurements (R2 = 0.97, RMSE = 

1.01 mm Hg) were obtained with a limit of agreement ≤ 1.99 mm Hg. Model performance 

was improved for a narrower ICPinv range of 0.01–29.05 mm Hg, with RMSE reduced to 

0.81 mm Hg and the limit of agreement reduced to ≤ 1.6 mm Hg. For this ICP range, only 

0.1% of data points for ICPinv ≤ 20 mm Hg and 1.1% for ICPinv > 20 mm Hg were found 
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with the limit of agreement > 5 mm Hg. These results show the potential of DCS as a valid 

screening tool for ICP.

More accurate ICP extraction was possible when evaluating a narrower ICPinv range of 

0.01–29.05 mm Hg compared with the data set that included ICP > 30 mm Hg. The increase 

in estimation error likely stems from the lack of data at higher ICP and not the model 

inaccuracy. We believe that, with the addition of more data at higher ICP values, the model 

could be trained across a wider ICP range and thus improve overall model accuracy even 

at ICP > 30 mm Hg. Our results suggest that absolute ICP estimation based on noninvasive 

measurements of CBF cardiac waveforms is possible, with further enhanced performance 

with concurrent MAP and HR data. Although we used EKG signals to obtain HR, other 

means such as a wrist-worn wearable device should suffice.39 The invasively measured ICP 

used as the reference/gold standard was certainly not free from measurement error. The 

combined mean (95% CI) difference between invasive ICP probes, reportedly 1.6 (1.3–1.9) 

mm Hg in the literature,40 was comparable to the noninvasive limit of agreement values 

calculated in this study.

Machine learning approaches such as regression forests provide information about feature 

importance in terms of how often a feature was used for ICP splits at split nodes.28 This 

information could be used to improve algorithm performance in the future by optimizing 

good features and rejecting bad ones. In this work, MAP and HR were among the topmost 

features, as both signals were strongly related to the cardiac cycle. Among the CBF features, 

P1 peak was the most useful compared with the P2 and P3 features, which is consistent with 

our previous preclinical work. AUC was found to be the fifth or sixth best feature, which 

implies that changes in P1 peak features (pos, p, and w) were more significant than the 

overall broadening of the CBF pulse in contributing to change in AUC. Most notably, in 

contrast to the preclinical results, none of the differences in peak features between P1 and P2, 

or between P2 and P3, were found to be useful.

Because MAP and HR turned out to be among the top three features, analyses were 

conducted to explore how the model performed without these features. Truncating MAP 

and HR data from the feature set increased both RMSE and limit of agreement values 

by approximately 200%, but using only these two features in the feature set affected 

the algorithm outcome even more by raising the percentage error to approximately 246% 

compared with that of the feature set that also included CBF. This indicated that although 

MAP and HR were valuable components to the model, the CBF features were crucial, thus 

offering the best prediction accuracy when combined. In the comparison of regressor types, 

the random forest regressor performed slightly better than the bagging regressor, and we 

assume this was a result of the additional subsampling of the features (80%) and samples 

(60%) assigned to each tree during training; this an important attribute of the random forest 

regressor known to curb overfitting.36 The leave-one-out analysis showed an RMSE ≤ 6.1 

mm Hg and a limit of agreement ≤ 7.4 mm Hg. Although this suggests that the model loses 

accuracy when validated against unknown data, we believe this is avoidable by increasing 

the number of patients and thus the training set population.37 With additional refinement, 

a noninvasive model capable of consistently predicting a limit of agreement < 5 mm Hg 

will have clinically meaningful applications. Invasive monitors could be then applied in the 
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setting of equipoise, such as a result of ≥ 20 mm Hg. In our current model, we used 100–150 

consecutive pulses to estimate 1 ICP value, corresponding to a readout of 1–2 per minute. 

Although the data were downsampled by averaging multiple waveforms, a readout of every 

pulsation should be feasible when SNR is high, producing real-time or near real-time ICP 

estimation.

Depth of measurement inside the brain varied due to differences in patient age, scalp 

thickness, and head size.41 Although different brain volumes were measured between 

patients, SNR was not age dependent (data not shown). Our previous animal study was 

conducted directly on the skull to avoid the effect of the scalp on DCS measurements. 

Although the clinical measurements in this work were taken with the scalp in place, we did 

not see an effect on data quality or model performance. This implies that the implementation 

of this technology is feasible across a wide span of pediatric and adult patients.

Our work compares favorably to other noninvasive ICP monitors that use TCD, which have 

shown an overall accuracy of ± 12 mm Hg,25 and acoustic signals propagating through the 

cranium within an accuracy of ≤ 7.38 mm Hg.42 In terms of methodology, a close similarity 

can be drawn to Fischer et al., who applied a neural network model with solely CBF time 

traces from DCS without using MAP or HR data.43 Although the accuracy of ICP estimation 

was comparable to the results shown here, we believe the added benefit of our approach is 

the interpretability of the features found. Given that the same importance of peak features 

was found between our animal studies and human data, we believe that the presented model 

can be generalized to different diseases, ages, and patient populations.

The current study was limited to its demonstration of potential efficacy in pediatric 

populations, although older patients in the cohort may be physiologically comparable to 

some adult populations. To show generalization, the next steps will involve recruiting a 

larger cohort of patients with various ages and conditions. We anticipate several challenges 

in translation to an adult population, e.g., increased scalp thickness and vascular stiffness. 

The increase in central arterial stiffening due to aging may alter MAP.44 However, we 

believe that the proposed method will remain highly accurate in the adult population because 

it performed well as MAP changed in children and adolescents.45

With decreasing risk of harm to patients, the possibility of new applications for ICP 

measurement may arise for traditional pathologies such as hydrocephalus and shunt 

malfunction, but also for novel ones such as concussion, intraoperative monitoring, and 

Chiari malformation. It is our hope, with time, that ICP will transition to becoming the 

next commonly used vital sign for patients with neurological disease and allow for a greater 

understanding of normal and abnormal ICP across a wide spectrum of patients.

Conclusions

DCS-based sensing of ICP showed a high level of similarity with invasive measurements. 

CBF waveforms were used for ICP estimation, but inclusion of MAP and HR data improved 

accuracy. Our preliminary leave-one-out analysis showed that the algorithm could be applied 

to a new patient not included in the training set, but accuracy of prediction requires a larger 
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data set, particularly at high ICP. Further work is needed to streamline and automate the 

entire process of DCS measurement and ICP estimation. We believe that our method made 

promising advancements in the translation of DCS-based ICP estimation to humans. The 

wide availability of noninvasive ICP measurement technology would minimize procedural 

risk and at the same time expand ICP monitoring to a wide array of clinical circumstances.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AUC area under the curve

CBF cerebral blood flow

CSF cerebrospinal fluid

DCS diffuse correlation spectroscopy

EKG electrocardiography

EVD external ventricular drain
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HR heart rate
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MAP mean arterial pressure

ONSD optic nerve sheath diameter

p prominence

PICU pediatric intensive care unit

pk peak height

pos time point of the peak relative to the prior diastolic minimum
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P1 waveform peak

RMSE root mean square error

SNR signal-to-noise ratio

TCD transcranial Doppler

w full width at half maximum
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FIG. 1. 
Details of DCS instrumentation and measurement setup. A–B: Probe secured on the left 

forehead with the adjustable headband. C: Probe placement on the right forehead of a 

patient, where the ICP monitor is surgically inserted in the left frontal lobe. D: Hospital cart 

with instruments placed. E: Custom-made DCS device. F: Custom-made DCS optical probe. 

The green regions refer to the DCS source and detector.
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FIG. 2. 
A: Example time traces of CBF and ICP from a representative patient, where the dashed 
vertical lines represent the R-peaks within the QRS complex of the EKG signal. B: 
Segmented CBF pulses on the left side, and an example CBF pulse average on the right 
side. The upward arrows indicate the two diastolic points utilized for pulse normalization 

in time. C: CBF pulse average normalized in amplitude and in time. The features extracted 

from the pulse average are described in the Regression Learner section of the Methods. 

FWHM = full width at half maximum.
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FIG. 3. 
Algorithm flowchart of the machine learning model. A train/test split ratio of 80%/20% was 

used. Upper: The CBF morphological features and MAP, HR, and ICPinv values were used 

to train a random decision forest. Lower: During testing, the CBF features and MAP and 

HR values were fed into the model as input to obtain an estimated ICP.
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FIG. 4. 
Results of the regression forest machine learning model for the entire range of ICPinv (0.01–

41.25 mm Hg) and a narrower range of ICPinv (0.01–29.05 mm Hg). The data points are 

color coded according to patient identification. A–B: Performance of the regression forest. 

The solid line shows the ideal fit between ICPinv and ICPest, whereas the dashed line shows 

the linear fit. R2 represents goodness of fit, and N represents the sample size of the testing 

set. The inset images show histograms of ICPinv of the entire sample population before 

splitting into the train/test sets. A bin width of 0.83 mm Hg was used in the histogram. 

C–D: The Bland-Altman plot shows the difference between the two methods with respect 

to ICPinv. The solid line represents mean bias and the dashed lines represent the upper 

and lower 95% LOA. The histogram plots on the right side of each panel display the 

distributions of the differences. E–F: Distribution of features used in the regression forest 

model as a percentage of all chosen features of all decision criteria generated. The standard 
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deviation across 200 individual trees is shown as error bars. Others refers to all other 

features apart from the ones shown in the plot. For nomenclature, please see the Signal 

Processing section of the Methods and Fig. 2C. LOA = limit of agreement.
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