Skip to main content
. Author manuscript; available in PMC: 2024 Sep 25.
Published in final edited form as: J Neurosurg. 2022 Nov 11;139(1):184–193. doi: 10.3171/2022.9.JNS221203

TABLE 2.

Dependence of learner performance on algorithm parameters

Analysis of Model Variables Stationary Model Variables Accuracy Bland-Altman Analysis
RMSE (mm Hg) R2 Mean (mm Hg) Upper LOA (mm Hg) Lower LOA (mm Hg)
Train/test split ratio 80%/20% Random forest, CBF, MAP, & HR 0.81 0.98 0.01 1.6 −1.57
70%/30% 0.86 0.98 0.03 1.71 −1.66
60%/40% 0.98 0.97 −0.02 1.9 −1.93
50%/50% 1.06 0.97 −0.0 2.07 −2.08
Regressor type Random forest 80%/20% split, CBF, MAP, & HR 0.81 0.98 0.01 1.6 −1.57
Bagging 0.94 0.97 0.01 1.85 −1.84
Feature performance CBF, MAP, & HR Random forest & 80%/20% split 0.81 0.98 0.01 1.6 −1.57
CBF & MAP 1.03 0.97 −0.03 1.99 −2.05
CBF & HR 1.77 0.91 0.02 3.49 −3.44
CBF features only 2.38 0.82 −0.03 4.64 −4.69
MAP & HR only 2.79 0.76 0.04 5.51 −5.43

LOA = limit of agreement.