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Abstract

Brain-computer interfaces (BCIs) can potentially restore lost function in patients with neurological 

injury. A promising new application of BCI technology has focused on speech restoration. One 

approach is to synthesize speech from the neural correlates of a person who cannot speak, as they 

attempt to do so. However, there is no established gold-standard for quantifying the quality of 

BCI-synthesized speech. Quantitative metrics, such as applying correlation coefficients between 

true and decoded speech, are not applicable to anarthric users and fail to capture intelligibility by 

actual human listeners; by contrast, methods involving people completing forced-choice multiple-

choice questionnaires are imprecise, not practical at scale, and cannot be used as cost functions 

for improving speech decoding algorithms. Here, we present a deep learning-based “AI Listener” 

that can be used to evaluate BCI speech intelligibility objectively, rapidly, and automatically. We 

begin by adapting several leading Automatic Speech Recognition (ASR) deep learning models – 

Deepspeech, Wav2vec 2.0, and Kaldi – to suit our application. We then evaluate the performance 

of these ASRs on multiple speech datasets with varying levels of intelligibility, including: healthy 

speech, speech from people with dysarthria, and synthesized BCI speech. Our results demonstrate 

that the multiple-language ASR model XLSR-Wav2vec 2.0, trained to output phonemes, yields 

superior performance in terms of speech transcription accuracy. Notably, the AI Listener reports 

that several previously published BCI output datasets are not intelligible, which is consistent with 

human listeners.
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I. Introduction

Restoring communication is a top priority for people who cannot speak after neurological 

injuries such as stroke or ALS. One promising approach to restore patients’ lost ability 

to speak is to bypass the damaged parts of their nervous system using a brain computer 

interface (BCI): a device that links the brain to external devices. Previous intracortical BCIs 

[1] successfully provided point-and-click and handwriting communication: paralyzed users 

attempted to move their hand, and algorithms decoded that neural data to make character 

selections (with speeds of 8 to 19 words per minute). However, a much faster (150 words 

per minute) and more intuitive approach to restoring communication would be to directly 

decode attempted speech from the associated brain activity. There have been several exciting 

recent demonstrations of speech reconstruction from neural activity [2]–[5].

However, there is a critical gap in the field: there are no established metrics for quantifying 

decoded speech when the ground truth is not known – that is, when the BCI user can’t 

speak. Quantification of BCI-synthesized speech would help us evaluate and compare 

methods for accurately communicating the user’s intended speech. Two different flavors 

of approaches have been described for quantifying speech: the first is to quantify how 

similar true and synthesized audio is in terms of low-level physical features, for example 

using metrics like correlation coefficients of the spectral power in different frequency bands 

[2]–[4]. These approaches can’t be directly applied when there is no true speech available, 

as would be the case for speech BCI users with anarthria. The second, which are applicable 

to a synthesized-only situation, is to have human listeners report if they understood the 

speech, for example in forced-multiple choice online questionnaires [3]. However, this is 

slow, labor-intensive, subjective, and does not assess the BCI speech at a more fine-grained 

resolution (e.g., individual phonemes). Ideally, the field needs an automated metric that 

(1) could facilitate comparisons across different studies using the same scoring metric, (2) 

would scale to larger datasets for BCI speech, and (3) could accurately capture human 

speech intelligibility. Such an automated metric could (4) also be used as a loss function to 

be incorporated into novel decoding algorithms.

To meet this need, our goal is to create an ‘AI Listener’ (Figure 1), which takes as inputs an 

audio signal (such as that generated by a speech BCI) and the written ground truth transcript 

of what the speaker said (or attempted to say). The output of this software tool is a set of 

metrics with varying degrees of granularity. A future, longer-term goal is to validate our 

ASR metrics against intelligibility scores by professionally trained human listeners (i.e., 

speech-language pathologists).

Here we report our first steps towards this goal. We present a comparison of the performance 

of several popular ASR techniques [6]–[9] when applied to healthy speech and to BCI 

synthesized speech from our own work [2] and two other recently published examples [3], 

[4]. The Wav2vec 2.0 architecture, trained on multilingual speech corpora, provided a highly 

accurate transcription of a healthy speech dataset and the most accurate transcription of 

dysarthric speech datasets, which we evaluated as a proxy for speech that is of intermediate 

intelligibility. We adapted Wav2vec 2.0 to provide phoneme error rates, which we view 

as a useful finer-grained metric of speech BCI output accuracy. Importantly, however, 
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we found that each of the ASR techniques reproduces the finding that the state-of-the-

art published BCI-synthesized voices are unintelligible. Nonetheless, we believe that our 

adapted Wav2vec 2.0 provides a promising starting point towards the goal of an ‘AI 

Listener’ for speech BCI assessment.

II. Methods

A. Automated speech recognition models

We considered four different candidate models for our “AI Listener”: DeepSpeech [8], two 

different versions of Wav2vec 2.0 [6], [7] and the Kaldi speech recognition toolkit [9]. 

We use Mozilla’s implementation of DeepSpeech and the latest version of their pre-trained 

model with an included language model. For the Kaldi speech recognition toolkit, we use 

their Time Delay Neural Network (TDNN) with the included Recurrent Neural Network 

(RNN) based Language Model. The Kaldi project uses a Gaussian Mixture Model - Hidden 

Markov Model (GMM-HMM) to align phones to audio followed by the TDNN for sequence 

prediction. In contrast to Kaldi, the Wav2vec 2.0 ASR is a self-supervised, Transformer-

based architecture trained on multiple corpora. We use the XLSR [6] which is trained on 

multilingual speech corpora, with English as the language most heavily used for training. 

The XLSR version of the Wav2vec 2.0 large model, fine-tuned on an English corpus 

[10], uses English characters as the output units of the acoustic model. This model was 

trained without an implicit language model, and produces quite accurate transcripts, which 

are grammatically correct in most cases. We also use XLSR [7] to output International 

Phonetic Alphabet (IPA) phonemes for comparison, which classify audio into English and 

non-English phonemes. To further produce words and sentences from the phoneme output, 

we trained our own language model, using the t5 pretrained transformer model [18] as 

the base and the Librispeech train corpus [11]. The training data was prepared using a 

phonemizer [15] with eSpeak engine to convert the Librispeech transcripts to phonemes.

B. Speech datasets

We compare these models on a variety of speech corpora, comprised of healthy speech, 

speech from individuals with dysarthria, and BCI speech generated from neural signals. 

For healthy speech, we use the Librispeech test set [11]. For the BCI-synthesized speech, 

we use participant T5’s results from (‘Wilson2020’) [2], participant 5 from (‘Herff2019’) 

[4], and the four sentences provided in the supplementary video of (‘Anumanchipallli2019’) 

[3]. For the speech of individuals with dysarthria, we use the public Nemours dataset [12], 

TORGO dataset [13], and UA Speech Dataset [14]. The audio from all of these datasets 

was converted to single channel at 16Khz. We use a phonemizer [15] with eSpeak engine to 

convert the English text prompts to their IPA phonemes.

To provide the reader with a sense of the intelligibility of these dysarthric datasets [12]–[14], 

we scored 51 randomly sampled audio files (20 each from Nemours and UA Speech, 11 

from TORGO) using the 9-point scale described in Frenchay Dysarthria Assessment [17]. 

This method categorizes the speech into 5 categories, ranging from Normal (A) to Profound 

(E). The categories Normal (A) to Moderate (C) are intelligible, where most words are 

decipherable with careful or repeated listening. The categories Moderate-Severe (C-D) to 
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Profound (E) are unintelligible, where the majority of words are undecipherable even after 

careful and repeated listening. The sample from the Nemours dataset [12] ranges from the 

Mild-Moderate (B-C) category to the Profound (E) category with the median intelligibility 

falling into the Severe (D) category. The speech in the Torgo dataset ranges from the Normal 

(A) category to the Profound (E) category, with a median rating lying in the Moderate (C) 

category. The samples from the UA Speech dataset range from Mild (B) to Profound (E) 

category with the median lying in the Moderate-Severe (C-D) category.

C. Performance metrics

To compare the ASR models, we use three metrics: the Word Error Rate (WER), Character 

Error Rate (CER), and Phoneme Error Rate (PER). We reasoned that representing speech as 

phonemes, and subsequently PER, is more appropriate than CER since 1) IPA is a larger set 

than English characters and has more acoustic granularity (and consistency), and 2) current 

BCI decoding approaches often rely on kinematic decoding of the movements of the human 

vocal apparatus [3] which is more directly related to acoustic-phonetics than characters. PER 

and WER are complementary metrics; we propose that PER will more closely align to the 

level of speech representation as a human perceives it in the moment, while the perception 

of words (as captured by WER) involves a language model and may be more analogous to 

how intelligible a human listener finds a whole utterance upon its completion (when context 

and language priors help the listener make sense of what they heard). Here we use CER 

as an additional model comparison method to be consistent with the ASR literature and 

demonstrate that our implementations are performing as expected.

All three of these metrics can yield values above 1. For example, consider if the source 

sentence is “hello” and the destination is “he will”. The WER here would be the number of 

edits (insertion, substitution or deletion) divided by the total number of words in the source. 

So the WER in this example is 2.

We use the Python implementation of DeepSpeech from Mozilla’s GitHub repository. We 

obtain the output transcripts from the DeepSpeech model to compute the WER and disable 

the scorer of the model to obtain the CER. Similarly, for Kaldi’s TDNN model, we obtain 

words and disable the language model to obtain the phonemes. For the XLSR-Wav2vec 2.0 

English model, we obtain the characters as the output for computing WER and CER, while 

on the XLSR-Wav2vec 2.0 model, we get phonemes as output to compute PER. Figure 2 

summarizes the models and their available evaluation metrics.

D. Hardware Setup

To train and test the models, we use an Intel Xeon CPU with 48 Cores, 168 GB of 

RAM, along with a 12 GB Nvidia Titan V GPU. On a test utterance of duration 4.7 

seconds, average inference time was 3.2 seconds for DeepSpeech, 450 milliseconds for 

XLSR-Wav2vec 2.0, and 4.1 seconds for the Kaldi model.

III. Results

We evaluated the four models’ ability to transcribe healthy, dysarthric, and BCI-synthesized 

speech into output series of characters, phonemes, and words (Figure 3). The XLSR model 
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performed best on the healthy and dysarthric speech datasets, which we believe indicates 

it will be particularly useful for assessing speech BCIs. That said, none of the models 

(including XLSR) suggest that the BCI speech is intelligible - which is accurate, given that 

all three of the speech BCI papers report that the output was largely unintelligible [2]–[4].

We also present the confusion matrices for the phoneme XLSR model on 3 groups of 

datasets in Figure 4. Since the XLSR model can predict phonemes outside of the English 

IPA, we mark the second to last row as “other” (empirically this design choice seems to help 

the performance of this state-of-the-art architecture [6], perhaps by not forcing every sound 

to be classified as a legitimate English phoneme). Similarly, for any phonemes in the dataset 

that are not in the output space of the model, we mark the second to last column as “other”. 

Since this is a sequence prediction problem, we do not have a one-to-one correspondence 

between the predicted output and the ground truth. We therefore mark the last row and 

last columns (separated by the thin white lines) for insertion and deletion operations on the 

predicted output to reach the ground truth. The “insert” row and “delete” column sum to 

100% and all the other columns (excluding the last row elements) sum to 100%.

One interesting trend that we notice in the confusion matrices of the dysarthric speech 

and the BCI speech is the classification of phonemes into the non-English phoneme group 

(“other” row). This may be due to the “foreign”-sounding phonemes encountered in the BCI 

and the dysarthric speech. This also shows that the model is able to recognise sounds as 

not being English phonemes, rather than forcing them into the most likely English phoneme 

class, similar to a human evaluator, who may tag the sound as unrecognizable if it does not 

resemble an English phoneme.

IV. Discussion

Establishing reliable, normative automated quality metrics is important for the nascent 

speech BCI field: these will allow researchers to compare performance across different 

methods and between studies from different groups (e.g., comparing speech BCIs that use 

different algorithms, record from different brain areas, or use different types of brain sensing 

technologies). For example, other communication BCI subfields using discrete selection 

(e.g. via SSVEP, P300, or point-and-click cursor control) have benefited from the rigorous 

use of achieved bitrate [16]. Our results validate that current BCI-synthesized speech 

and the highly dysarthric speech we evaluated are not intelligible, which is qualitatively 

consistent with human listeners also not perceiving this speech as intelligible. It remains 

to be seen how well these ASR methods perform on (hoped for) future higher-accuracy 

BCI-synthesized speech. We are developing these speech BCI metrics in parallel with the 

ongoing development of better speech synthesis BCIs [5], under the belief that having the 

right evaluation tools available will accelerate the overall endeavour.

In this work, we’ve shown that the Wav2vec 2.0 architecture – pre-trained to produce 

phoneme outputs - has very high accuracy in transcribing healthy spoken English. This is 

likely because the Transformer architecture and the multilingual training of this state-of-the-

art model boosted its performance relative to previous ASR models. Importantly, it should 
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be easily adaptable to other languages, given that this was a principal motivation behind the 

original XLSR project [6].

XLSR-Wav2Vec 2.0 as used here is causal (not using future information) when calculating 

PER, and acausal (it uses the full utterance) when calculating WER. We view the PER as a 

putative proxy for how well a human listener can identify a phoneme as it is being spoken 

(where the preceding history of speech is also used to provide a prior in the human brain, 

as it is in the deep learning model). The WER is a putative proxy for how well a human 

can identify the words spoken at the end of an utterance, where whole-sentence context is 

available both to people and to the model (via the post-processing language model). Both 

PER and WER, we believe, will ultimately be useful for evaluating intelligibility holistically 

while maintaining high specificity for errors.

Several major steps remain before this AI Listener is ready to serve its intended role as 

a speech BCI scorer. The most critical is to compare the intelligibility metrics (PER and 

WER and any additional metrics developed in the future) against the same metrics from 

annotations provided by a number of diverse human listeners. The goal is to establish a 

monotonic relationship between AI Listener and human scores. This may require adapting 

the ASR model; we note that the goal of traditional ASR is to maximize accuracy 

(potentially even beyond typical human ability), whereas here our explicit goal is to 

maximize consistency with human listeners. A related limitation of the present work is 

that we essentially evaluated the model on speech data of two extremes: easily intelligible, 

and unintelligible. Future work will need to fill out this range (and validate it against human 

listeners) with speech of intermediate quality; this data could be future BCI-generated voice 

(if the field advances fast enough), or it may be artificially degraded healthy speech or 

intermediate dysarthric speech.
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Fig. 1. Approach overview.
This work focuses on developing an ASR tool to score the intelligibility of synthesized 

speech, which would fill an important gap in the overall effort to build a speech restoration 

brain-computer interface. An important next step is to validate that this automated metric 

scores intelligibility in a way that is similar to actual human listeners.
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Fig. 2. Methods compared.
Speech audio intelligibility was assessed using four different deep learning automated 

speech recognition models. Final speech intelligibility metrics are phoneme error rate (PER), 

character error rate (CER), and word error rate (WER).
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Fig. 3. Candidate Model Performance.
Violin plots show the distribution of performance across all utterances, with colored 

horizontal lines showing the distribution mean and median. WER is defined as the number 

of edits (insertion, substitution or deletion) of words in the output of the model to reach 

the intended sentence. CER and PER are defined in the same way but for characters and 

phonemes in a sentence, respectively. Note that PER, WER, and CER can be above 1, but 

any value approaching 1 (or higher) implies that the speech is not intelligible to this model. 

The black symbols represent the mean error rates of the corresponding individual datasets 

for that column’s model. The healthy speech has only one dataset, Librispeech. (ns: p-value 

>= 0.01, *: p-value < 0.01, **: p-value < 0.005)
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Fig. 4. Confusion matrices for the output phonemes of XLSR-Wav2vec 2.0.
The datasets are grouped into 3 categories: Healthy Speech (the Librispeech test set), 

Dysarthric Speech (aggregating TORGO, Nemours and UA Speech) and BCI Speech 

(aggregating the data from Wilson et al. 2020, Herff et al. 2019, Anumanchipalli et al. 

2019). Asterisks * indicate rows where the model infers phonemes outside of English IPA 

or columns where phonemes in the dataset are not in the output space of the model. The 

“−” symbol indicates when a deletion operation was required to match ground truth, and 

a “+” indicates when an insertion operation was required. The colorbar corresponds to the 

proportion of events.
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