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Abstract

Aims In recent years, there has been remarkable development in machine learning (ML) models, showing a trend towards
high prediction performance. ML models with high prediction performance often become structurally complex and are fre-
quently perceived as black boxes, hindering intuitive interpretation of the prediction results. We aimed to develop ML models
with high prediction performance, interpretability, and superior risk stratification to predict in-hospital mortality and worsen-
ing heart failure (WHF) in patients with acute heart failure (AHF).
Methods and results Based on the Kyoto Congestive Heart Failure registry, which enrolled 4056 patients with AHF, we
developed prediction models for in-hospital mortality and WHF using information obtained on the first day of admission
(demographics, physical examination, blood test results, etc.). After excluding 16 patients who died on the first or second
day of admission, the original dataset (n = 4040) was split 4:1 into training (n = 3232) and test datasets (n = 808). Based on
the training dataset, we developed three types of prediction models: (i) the classification and regression trees (CART) model;
(ii) the random forest (RF) model; and (iii) the extreme gradient boosting (XGBoost) model. The performance of each model
was evaluated using the test dataset, based on metrics including sensitivity, specificity, area under the receiver operating char-
acteristic curve (AUC), Brier score, and calibration slope. For the complex structure of the XGBoost model, we performed
SHapley Additive exPlanations (SHAP) analysis, classifying patients into interpretable clusters. In the original dataset, the pro-
portion of females was 44.8% (1809/4040), and the average age was 77.9 ± 12.0. The in-hospital mortality rate was 6.3% (255/
4040) and the WHF rate was 22.3% (900/4040) in the total study population. In the in-hospital mortality prediction, the AUC
for the XGBoost model was 0.816 [95% confidence interval (CI): 0.815–0.818], surpassing the AUC values for the CART model
(0.683, 95% CI: 0.680–0.685) and the RF model (0.755, 95% CI: 0.753–0.757). Similarly, in the WHF prediction, the AUC for the
XGBoost model was 0.766 (95% CI: 0.765–0.768), outperforming the AUC values for the CART model (0.688, 95% CI: 0.686–
0.689) and the RF model (0.713, 95% CI: 0.711–0.714). In the XGBoost model, interpretable clusters were formed, and the
rates of in-hospital mortality and WHF were similar among each cluster in both the training and test datasets.
Conclusions The XGBoost models with SHAP analysis provide high prediction performance, interpretability, and reproducible
risk stratification for in-hospital mortality and WHF for patients with AHF.
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Introduction

Heart failure (HF) is a major public health issue worldwide.1

With an aging population, the proportion of patients with
HF is rapidly increasing in Japan.2 Consistent with the rise
in the number of patients with HF, the number of patients
admitted for acute heart failure (AHF) has also increased.
Therefore, there is a need to develop models for stratifying
the prognosis of patients with AHF based on the disease’s
life-threatening status and high in-hospital mortality.3–5 Re-
searchers in various regions have reported models that can
predict the long-term prognosis of patients with AHF.6–8

Short-term prognosis models have also been developed for
in-hospital mortality and worsening heart failure (WHF).3–5,9

In the analysis of the ADHERE registry, a simple decision tree
model based on three parameters [levels of blood urea nitro-
gen (BUN), levels of serum creatinine, and systolic blood
pressure (SBP)] divided patients into five groups with
in-hospital mortality rates ranging from 2.1% to 21.9%.3 A
decision tree model is a classical machine learning (ML)
model developed through a recursive partitioning process
based on the values of input variables. It can capture
non-linear relationships between explanatory and objective
variables.10–12 It is simple to interpret and suitable for clinical
decisions.

On the other hand, patients with AHF constitute a diverse
population with variations across regions and countries.13,14

Therefore, to accurately predict the short-term prognosis of
Japanese patients with AHF in the form of a decision tree,
we found it necessary to develop a decision tree model for
predicting the short-term prognosis using the registry of pa-
tients with AHF in Japan and to validate its performance.
Furthermore, with the remarkable advancement of ML anal-
ysis in recent years, there have been reports of ML predic-
tion models that may outperform decision tree models.15–
17 Especially, the emergence of ensemble learning has played
a significant role in the advancement of ML analysis. Ensem-
ble learning is a technique that combines multiple decision
tree models to develop a robust, unified model. By integrat-
ing diverse learners, the strengths of individual decision tree
models are leveraged and overfitting is minimized, leading to
an overall improvement in performance. Despite the evolu-
tion of these ML analyses leading to improved prediction
performance, another aspect of ML has become problem-
atic. With the advances in ML models, the structure of ML
models has become more complex, and ML models have
become black boxes, making them difficult for people to in-

terpret intuitively.18,19 However, SHapley Additive exPlana-
tions (SHAP), proposed by Lundberg and Lee, may have the
potential to address this issue. SHAP is an explainable
artificial intelligence (XAI) that scales all variables as SHAP
values20 and shows the contribution of each variable to
the prediction outcome, effectively clarifying and explaining
the rationale for the complex ML model’s predictions. For
example, there is a report applying SHAP to prediction
models for 3 year all-cause mortality among HF patients
due to coronary heart disease.21 In addition, clustering
SHAP values can classify a target dataset into explainable
clusters.22–24

In this study, we aimed to develop various ML prediction
models for in-hospital mortality and WHF in patients with
AHF. From the information collected on the first day of ad-
mission (including demographics, physical examination, and
blood test results), we developed various ML prediction
models. In complex ML models, we utilized SHAP to enhance
interpretability and performed SHAP clustering for risk strati-
fication. Finally, we visualized the prediction performance of
each model and highlighted clinically significant features for
predicting in-hospital mortality and WHF.

Methods

Study population

The Kyoto Congestive Heart Failure (KCHF) registry study is a
Japanese prospective, observational, multicentre cohort
study that enrolled consecutive patients who were first ad-
mitted for AHF between October 2014 and March 2016.25

All patients with AHF, as defined by the modified Framing-
ham criteria, who were admitted to a participating facility
and treated for AHF within 24 h of hospital arrival were en-
rolled in the KCHF registry.25 Patients who died within 1 day
after admission were considered to have an extremely high
likelihood of being unlikely to survive hospitalization.
Predicting in-hospital mortality or WHF for these patients
was deemed to have little practical benefit. Therefore, they
were excluded from the analysis, focusing on identifying pa-
tients who experienced acute changes leading to in-hospital
mortality or WHF after admission. Of the 4056 patients en-
rolled, 4 who died on the first day of admission and 12 who
died the day after admission were excluded. The final study
population thus consisted of 4040 patients. This study ad-
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hered to the principles outlined in the Declaration of Helsinki.
The study protocol was approved by the Ethics Committee of
the Kyoto University Hospital (local identifier: E2311) and
each participating hospital. In addition, the Institutional Re-
view Boards of Kyoto University Hospital and each participat-
ing institution waived the need for written informed consent,
as this study met the conditions outlined in the ‘Ethical
Guidelines for Medical and Health Care Research Involving
Human Subjects’.

Definitions

In-hospital mortality was defined as in-hospital death within
24 h after admission. WHF was defined as the use of addi-
tional diuretics and inotropic drugs, mechanical support (such
as intra-aortic balloon pumping and percutaneous cardiopul-
monary support), respiratory management (i.e. non-invasive
positive pressure ventilation or intubation), or continuous
haemodiafiltration 24 h after admission.

Data preprocessing

Missing values were completed using multivariate feature
imputation, which is a method of imputation using all other
variables as well as those with missing values.26 We used
only explanatory variables with missing values below 20%
for developing the prediction model. All explanatory
variables were imputed for missing values and standardized
before being used in the development of all prediction
models.

Development of prediction models

Based on the KCHF registry, prediction models for in-hospital
mortality and WHF were developed using information ob-
tained on the first day of admission.

Specifically, demographic information, physical examina-
tions, and blood tests commonly performed on patients with
AHF were used as explanatory variables.

In addition, variables such as New York Heart Association
(NYHA) classifications at admission, the presence of acute
coronary syndromes at admission, and the presence of atrial
fibrillation at admission are included as explanatory variables.
These factors have a significant impact on the prognosis of
patients with AHF. The original dataset (n = 4040) was ran-
domly split 4:1 into training (n = 3232) and test datasets
(n = 808) in such a way that the rates of in-hospital mortality
and WHF were consistent between the training and test
datasets. The same training and test datasets were used for
all prediction models.

The hyperparameters of all the models were optimized
using Bayesian optimization with stratified 10-fold cross-vali-

dation (CV). Bayesian optimization is widely utilized as an au-
tomated technique for tuning hyperparameters in ML
models.27 All prediction models were developed exclusively
with the training dataset, and their performance was
assessed using the test dataset (Figure 1).

Development of the classification and regression trees model
The classification and regression trees (CART) model is one of
the representative decision tree models. In the CART model,
the tree construction involves using the Gini impurity to split
nodes.3 The Gini impurity represents the impurity of the
probabilities of different classes within a node. In this study,
we aimed to maximize the reduction in the Gini impurity by
selecting the most effective splits at each node. Additionally,
to prevent overfitting, pruning based on the maximum tree
depth was performed, ensuring that the tree does not be-
come excessively complex. The training and test datasets
were divided into four groups each using the CART model
(Figure 1).

Development of the random forest model
The random forest (RF) model is a type of ensemble learning
that combines multiple decision trees to achieve high predic-
tion performance.28,29 In the RF model, it initiates the process
by randomly sampling from the original dataset and then pro-
ceeds to construct multiple decision trees. The model then
employs a technique known as bagging to aggregate the pre-
dictions of these trees through a majority vote. This process
enhances the prediction performance of the model and miti-
gates the risk of overfitting.

Development of the extreme gradient boosting model
Extreme gradient boosting (XGBoost) is an ensemble learning
method that uses multiple decision trees, similar to RF. Yet,
the significant distinction lies in the sequential construction
of each tree.21,30 Once one tree is built, the subsequent trees
concentrate on minimizing the prediction errors of the pre-
ceding tree. In other words, each successive tree corrects
the inaccuracies of the previous ones, contributing to an
overall more potent prediction model.

Development of the multivariable logistic regression model
We also developed the multivariable logistic regression (MLR)
model as a comparison to multiple ML models. Using a step-
wise backward selection algorithm based on the Akaike infor-
mation criterion, we selected explanatory variables from the
significant predictors through the univariate analysis shown
in Table 1 and developed the model.

SHapley Additive exPlanations analysis in the random forest
model and the extreme gradient boosting model
To get insight into why the complicated RF models and
XGBoost models make accurate predictions, additional analy-
ses were performed using SHAP,20 which is a unified frame-
work for interpreting ML predictions. The absolute SHAP
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values for the relevant variables represent the magnitude of
their influence on the prediction outcome. SHAP values
can be negative or positive. A higher positive SHAP value
indicates a greater positive impact on the prediction out-
come, while a higher negative SHAP value indicates a greater
negative impact on the prediction outcome.20 In this study,
SHAP values were calculated to visualize the impact of each
variable on the in-hospital mortality model and the WHF
model.

Visualization of SHapley Additive exPlanations in the
random forest model and the extreme gradient boosting
model
In the feature plots, the length of each bar represents the
mean absolute SHAP value of the 20 most important vari-
ables in the model. The feature ranking (Y-axis) indicates
which variables are important for the prediction outcome,
and the SHAP value (X-axis) is a unifying indicator of the influ-
ence of each variable on the model. Each variable is indicated
by differently coloured dots for the attribution of all patients
to the prediction outcome. For numerical variables, low ac-
tual values are represented by blue dots, while high actual
values are represented by red dots. For categorical variables
processed with one-hot encoding, blue and red dots repre-
sent 0 and 1, respectively.

Visualization of the average SHapley Additive exPlanations
values for each cluster in the extreme gradient boosting
model
Using the K-means clustering method based on the SHAP
values, the patients were classified into four clusters (Fig-
ure 1). The K-means clustering method divides each dataset
point into a specified number of clusters by calculating the
shortest distance between the cluster centre point and the
data points.31 We analysed average event incidence rates
and average SHAP values for each cluster formed by cluster-
ing based on SHAP values.

Statistical analysis

Categorical variables were presented as numbers and per-
centages and were compared using the χ2 test. Continuous
variables were presented as means ± standard deviations
and were compared using the t-test according to their distri-
butions. To assess the performance of the prediction models,
we employed the bootstrap method on the test dataset. Uti-
lizing 1000 bootstrap resamples obtained from the test
dataset, we determined the 95% confidence intervals (CIs)
for each performance metric. Multiple metrics based on sen-
sitivity, specificity, area under the receiver operating charac-
teristic (ROC) curve (AUC), Brier score, and calibration slope

Figure 1 Study flowchart for the development and evaluation of models. AHF, acute heart failure; CART, classification and regression trees; RF, ran-
dom forest; SHAP, SHapley Additive exPlanations; XGBoost, extreme gradient boosting.
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Table 1 Baseline characteristics (in-hospital mortality and worsening heart failure)

Dataset for in-hospital mortality
Survival discharge In-hospital death

P value
Number of

missing valuesN = 3785 N = 255

Demographics
Age, years 77.7 ± 12.0 81.8 ± 11.0 <0.001 0
Women 1696 (44.8%) 114 (44.7%) 0.98 0
Body mass index, kg/m2 22.8 ± 4.5 21.7 ± 4.5 <0.001 583

Vital signs
Systolic blood pressure, mmHg 148.4 ± 35.0 130.5 ± 34.6 <0.001 14
Diastolic blood pressure, mmHg 85.1 ± 23.9 75.4 ± 22.4 <0.001 23
Heart rate, b.p.m. 95.9 ± 27.7 96.6 ± 25.6 0.70 30
Saturation of percutaneous oxygen, % 93.5 ± 6.3 91.9 ± 8.1 <0.001 40
Body temperature, degrees 36.5 ± 0.6 36.5 ± 0.8 0.92 188

Blood test
Brain natriuretic peptide, pg/mL 986.2 ± 1012.0 1396.1 ± 1357.2 <0.001 464
Haemoglobin, g/L 11.6 ± 2.4 11.1 ± 2.2 0.004 7
White blood cell, μL 7973.1 ± 3593.3 8694.7 ± 4441.3 0.002 8
Platelet, 104 μL 20.0 ± 8.3 17.6 ± 8.9 <0.001 23
Aspartate aminotransferase, U/L 54.1 ± 174.5 163.8 ± 528.2 <0.001 12
Total bilirubin, μmol/L 0.9 ± 2.2 1.1 ± 0.8 0.37 109
Alkaline phosphatase, g/L 294.6 ± 164.0 311.6 ± 163.5 0.14 594
Gamma-glutamyl transpeptidase, IU/L 61.7 ± 74.1 61.9 ± 73.5 0.96 578
Albumin, g/dL 3.5 ± 0.5 3.2 ± 0.6 <0.001 117
Creatine kinase, U/L 177.1 ± 334.0 318.3 ± 844.9 <0.001 184
Sodium, mmol/L 139.1 ± 4.2 137.4 ± 5.3 <0.001 13
Potassium, mmol/L 4.2 ± 0.7 4.5 ± 0.8 <0.001 13
Blood urea nitrogen, mg/dL 28.4 ± 16.2 41.6 ± 22.7 <0.001 11
Creatinine, μmol/L 1.5 ± 1.3 1.8 ± 1.2 <0.001 7
Uric acid, mmol/L 6.9 ± 2.2 8.1 ± 3.1 <0.001 695
C-reactive protein, mg/dL 2.0 ± 3.6 3.9 ± 5.0 <0.001 95
Blood glucose, mg/dL 154.1 ± 70.1 157.7 ± 76.1 0.48 610

Others
New York Heart Association Class IV 1769 (46.7%) 164 (65.1%) <0.001 20
Acute coronary syndrome 210 (5.5%) 28 (11.0%) 0.001 0
Atrial fibrillation rhythm 1370 (36.2%) 84 (32.9%) 0.292 0

Dataset for WHF
No WHF WHF

P value
Number of

missing valuesN = 3140 N = 900

Demographics
Age, years 78.2 ± 12.0 76.7 ± 12.1 0.001 0
Women 1457 (46.4%) 352 (39.1%) <0.001 0
Body mass index, kg/m2 22.8 ± 4.4 23.0 ± 4.8 0.15 583

Vital signs
Systolic blood pressure, mmHg 147.8 ± 34.3 145.3 ± 38.2 0.06 14
Diastolic blood pressure, mmHg 84.6 ± 23.6 83.9 ± 25.0 0.39 23
Heart rate, b.p.m. 95.1 ± 27.4 99.0 ± 27.7 <0.001 30
Saturation of percutaneous oxygen, % 93.7 ± 6.1 92.6 ± 7.6 <0.001 40
Body temperature, degrees 36.5 ± 0.6 36.5 ± 0.7 0.43 188

Blood test
Brain natriuretic peptide, pg/mL 934.4 ± 890.1 1276.6 ± 1413.1 <0.001 464
Haemoglobin, g/L 11.5 ± 2.3 11.6 ± 2.4 0.23 7
White blood cell, μL 7706.3 ± 3483.4 9110.8 ± 4020.8 <0.001 8
Platelet, 104 μL 19.8 ± 8.3 20.1 ± 8.6 0.31 23
Aspartate aminotransferase, U/L 47.5 ± 112.2 108.2 ± 404.2 <0.001 12
Total bilirubin, μmol/L 0.9 ± 2.4 0.9 ± 0.7 0.50 109
Alkaline phosphatase, g/L 292.9 ± 148.6 306.0 ± 211.7 0.06 594
Gamma-glutamyl transpeptidase, IU/L 60.9 ± 72.0 64.5 ± 80.5 0.22 578
Albumin, g/dL 3.5 ± 0.5 3.4 ± 0.5 <0.001 117
Creatine kinase, U/L 153.5 ± 221.8 298.9 ± 697.8 <0.001 184
Sodium, mmol/L 139.2 ± 4.1 138.3 ± 4.8 <0.001 13
Potassium, mmol/L 4.2 ± 0.6 4.4 ± 0.8 <0.001 13
Blood urea nitrogen, mg/dL 27.7 ± 15.7 34.6 ± 20.0 <0.001 11
Creatinine, μmol/L 1.3 ± 0.9 2.1 ± 2.0 <0.001 7
Uric acid, mmol/L 6.9 ± 2.2 7.3 ± 2.5 <0.001 695
C-reactive protein, mg/dL 1.9 ± 3.4 3.1 ± 4.5 <0.001 95
Blood glucose, mg/dL 149.8 ± 66.1 170.6 ± 82.2 <0.001 610

(Continues)
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were used to evaluate the performance of the prediction
models. The optimal cut-off value was defined using the
highest Youden index, and based on the optimal cut-off
value, sensitivity and specificity were calculated. Calibration
measures how well the predicted probabilities of models
align with the actual probabilities of events.32 In clinical fields
where precise predictions are essential, evaluating calibration
is a vital tool to assess the practicality and reliability of
prediction models. The closer the Brier score is to 0 and the
calibration slope is to 1, the more ideal the model’s perfor-
mance is.

All P values were two-tailed, and statistical significance
was set at P< 0.05 in comparing the characteristics of clinical
information on the admission.

Package for analysis

Pandas (1.4.2) and Sklearn (1.0.2) on Python (3.8.13) were
used to develop the decision tree model. Pandas (1.4.2),
NumPy (1.21.5), Sklearn (1.0.2), XGBoost (1.5.1), Scipy
(1.7.3), and SHAP (0.40.0) on Python (3.8.13) were used to de-
velop theMLmodel. The χ2 test and the t-test were conducted
using JMP Version 17 (SAS Institute Inc., Cary, NC, USA).

Results

Characteristics of the explanatory variable
concerning in-hospital mortality and worsening
heart failure

In the original dataset, the proportion of females was 44.8%
(1809/4040), and the average age was 77.9 ± 12.0. The
in-hospital mortality rate was 6.3% (255/4040) and the WHF
rate was 22.3% (900/4040) in eligible patients. Univariate
analysis results for each explanatory variable concerning the
outcome variables of in-hospital mortality and WHF are pre-
sented (Table 1).

Performance of the prediction models

Performance of the prediction models for in-hospital
mortality
For the CART model predicting in-hospital mortality, the AUC
on the test dataset was 0.683 (95% CI: 0.680–0.685), and the
sensitivity was low at 0.401 (95% CI: 0.393–0.409). However,
the model demonstrated good calibration results with a Brier
score of 0.057 (95% CI: 0.057–0.058) and a calibration slope
of 0.795 (95% CI: 0.777–0.814). In contrast, the RF model for
in-hospital mortality had a relatively high AUC of 0.755 (95%
CI: 0.753–0.757) and sensitivity of 0.655 (95% CI: 0.648–
0.662) on the test dataset. Nevertheless, the calibration
slope was 0.495 (95% CI: 0.491–0.500), indicating poor cali-
bration results. The XGBoost model for in-hospital mortality
exhibited a high AUC of 0.816 (95% CI: 0.815–0.818) and sen-
sitivity of 0.762 (95% CI: 0.757–0.767) on the test dataset.
Additionally, the XGBoost model showed good calibration
with a Brier score of 0.054 (95% CI: 0.053–0.054) and a cali-
bration slope of 0.894 (95% CI: 0.866–0.923) (Table 2). The
ROC curves in the models for in-hospital mortality are shown
in Figure 2A. The calibration plots are shown in Supporting
Information, Figure S1, and the hyperparameters of
prediction models are shown in Supporting Information,
Table S1. Furthermore, the MLR model, a non-ML model,
demonstrated a relatively high AUC, but it did not achieve
the level of the XGBoost model (Supporting Information,
Table S2).

Performance of the prediction models for worsening heart
failure
For the CART model predicting WHF, the AUC on the test
dataset was 0.688 (95% CI: 0.686–0.689), and the sensitivity
was low at 0.440 (95% CI: 0.435–0.446). However, the model
demonstrated good calibration results with a Brier score of
0.158 (95% CI: 0.158–0.159) and a calibration slope of 1.344
(95% CI: 1.332–1.355). In contrast, the RF model for WHF
had a relatively high AUC of 0.713 (95% CI: 0.711–0.714)
and sensitivity of 0.564 (95% CI: 0.558–0.569) on the test
dataset. Nevertheless, the calibration slope was 5.217 (95%
CI: 5.174–5.259), indicating poor calibration results. The
XGBoost model for WHF exhibited a high AUC of 0.766

Table 1 (continued)

Dataset for WHF
No WHF WHF

P value
Number of

missing valuesN = 3140 N = 900

Others
New York Heart Association Class IV 1364 (43.7%) 569 (63.4%) <0.001 20
Acute coronary syndrome 116 (3.7%) 122 (13.6%) <0.001 0
Atrial fibrillation rhythm 1203 (38.3%) 251 (27.9%) <0.001 0

WHF, worsening heart failure.
Categorical variables were presented as numbers and percentages and were compared using the χ2 test. Continuous variables were pre-
sented as mean ± standard deviation and were compared using the univariate t-test according to their distributions.
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(95% CI: 0.765–0.768) and sensitivity of 0.598 (95% CI: 0.594–
0.603) on the test dataset. Additionally, the XGBoost model
showed good calibration with a Brier score of 0.139 (95%
CI: 0.138–0.139) and a calibration slope of 1.435 (95% CI:
1.427–1.444) (Table 2). The ROC curves in the models for
WHF are shown in Figure 2B. The calibration plots are shown

in Supporting Information, Figure S2, and the
hyperparameters of prediction models are shown in
Supporting Information, Table S3. Furthermore, the MLR
model demonstrated a relatively high AUC, but it did not
achieve the level of the XGBoost model (Supporting Informa-
tion, Table S2).

Table 2 Performance of the prediction model for in-hospital mortality and worsening heart failure

CART model RF model XGBoost model

In-hospital mortality
Sensitivity 0.401 (0.393–0.409) 0.655 (0.648–0.662) 0.762 (0.757–0.767)
Specificity 0.810 (0.804–0.815) 0.737 (0.729–0.744) 0.736 (0.730–0.742)
AUC 0.683 (0.680–0.685) 0.755 (0.753–0.757) 0.816 (0.815–0.818)
Brier score 0.057 (0.057–0.058) 0.057 (0.057–0.058) 0.054 (0.053–0.054)
Calibration slope 0.795 (0.777–0.814) 0.495 (0.491–0.500) 0.894 (0.866–0.923)

WHF
Sensitivity 0.440 (0.435–0.446) 0.564 (0.558–0.569) 0.598 (0.594–0.603)
Specificity 0.823 (0.820–0.827) 0.759 (0.753–0.764) 0.815 (0.811–0.820)
AUC 0.688 (0.686–0.689) 0.713 (0.711–0.714) 0.766 (0.765–0.768)
Brier score 0.158 (0.158–0.159) 0.168 (0.168–0.169) 0.139 (0.138–0.139)
Calibration slope 1.344 (1.332–1.355) 5.217 (5.174–5.259) 1.435 (1.427–1.444)

AUC, area under the receiver operating characteristic curve; CART, classification and regression trees; RF, random forest; WHF, worsening
heart failure; XGBoost, extreme gradient boosting.
In various models (CART model, RF model, and XGBoost model), the prediction results for in-hospital mortality and WHF are shown. In
order to evaluate the performance of the models, sensitivity, specificity, AUC, Brier score, and calibration slope are calculated. The sensi-
tivity and specificity were determined using the optimal cut-off value, which is the point on the receiver operating characteristic curve
where the Youden index is maximized.

Figure 2 (A) The receiver operating characteristic (ROC) curves in the various models (the CART model, the RF model, and the XGBoost model) for
in-hospital mortality. (B) The ROC curves in the various models (the CART model, the RF model, and the XGBoost model) for worsening heart failure.
AUC, area under the ROC curve; CART, classification and regression trees; RF, random forest; XGB, extreme gradient boosting.
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Visualization of the prediction models

Visualization of the prediction models for in-hospital
mortality
In the CART model, patients were initially split based on BUN
levels, then further divided based on C-reactive protein (CRP)
levels, and finally split based on SBP, resulting in a total of
four groups. The respective raw cut-off values were
45.0 mg/dL for BUN, 2.5 mg/dL for CRP, and 135.5 mmHg
for SBP (Figure 3). The standardized cut-off values for these
explanatory variables and the Gini impurity for each node
are presented in Supporting Information, Figure S3. The
in-hospital mortality rates for the four groups in the training
and test datasets are shown (Figure 3). In the training
dataset, the in-hospital mortality rates were 5.4% in Group
1, 2.1% in Group 2, 9.7% in Group 3, and 15.4% in Group 4.
In the test dataset, the in-hospital mortality rates were
5.9% in Group 1, 2.6% in Group 2, 10.3% in Group 3, and
13.7% in Group 4. In the CART model, the in-hospital mortal-
ity rates between the four groups were similar between the
training and test datasets.

In the RF model, the feature plots showed the important
variables in the in-hospital mortality prediction model

(Supporting Information, Figure S4A,B). BUN level, SBP, and
sodium level were the most important variables for
predicting in-hospital mortality.

In the XGBoost model, the feature plots showed the impor-
tant variables in the in-hospital mortality prediction model
(Figure 4A,B). Sodium level, BUN level, and age were the
most important variables for predicting in-hospital mortality.
Next, the average SHAP values for each variable and the aver-
age in-hospital mortality rate in the XGBoost model were
analysed. All patients were divided into four clusters as fol-
lows: Cluster 1 with low SHAP values for all variables; Cluster
2 with high SHAP values for age; Cluster 3 with high SHAP
values for low sodium levels; and Cluster 4 with high SHAP
values for high BUN levels (Figure 4C). In the training dataset,
the in-hospital mortality rates were 1.3% in Cluster 1, 6.9% in
Cluster 2, 9.0% in Cluster 3, and 14.3% in Cluster 4. In the test
dataset, the in-hospital mortality rates were 1.7% in Cluster 1,
5.5% in Cluster 2, 8.5% in Cluster 3, and 16.8% in Cluster 4
(Figure 4C). As in the CART model results, the in-hospital mor-
tality rate was higher in the group with higher BUN levels.
Also, in the XGBoost model, the in-hospital mortality rates
between the four groups were similar between the training
and test datasets.

Figure 3 The classification and regression trees model of worsening heart failure prediction in the training and test datasets. Patients were initially
split based on BUN levels, then further divided based on CRP levels, and finally split based on SBP, resulting in a total of four groups. BUN, blood urea
nitrogen; CRP, C-reactive protein; SBP, systolic blood pressure.
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Figure 4 (A, B) The interpretation of the extreme gradient boosting (XGBoost) model for in-hospital mortality prediction. (A) The importance ranking
of the top 20 variables according to the collective absolute SHapley Additive exPlanations (SHAP) values. (B) SHAP value plots of the top 20 variables
with a strong impact on the XGBoost model. The positive and negative contributions to in-hospital mortality prediction are demonstrated as their re-
spective positive and negative SHAP values, and the magnitude of the absolute SHAP values indicates the degree of influence on the prediction out-
come. (C) The results of clustering the training and test datasets based on SHAP values in the XGBoost model for predicting in-hospital mortality. The
average in-hospital mortality rates and the average SHAP values for each cluster. ACS, acute coronary syndrome at admission; AF, atrial fibrillation at
admission; ALB, albumin; ALP, alkaline phosphatase; AST, aspartate aminotransferase; BG, blood glucose; BMI, body mass index; BNP, brain natriuretic
peptide; BT, body temperature at hospitalization; BUN, blood urea nitrogen; CK, creatine kinase; CRE, creatinine; CRP, C-reactive protein; DBP, diastolic
blood pressure at hospitalization; Hb, haemoglobin; HR, heart rate at hospitalization; NYHA, New York Heart Association; PLT, platelet; SBP, systolic
blood pressure at hospitalization; SpO2, saturation of percutaneous oxygen; TBil, total bilirubin; UA, uric acid; WBC, white blood cell; γGTP,
gamma-glutamyl transpeptidase.

2806 M. Tanaka et al.

ESC Heart Failure 2024; 11: 2798–2812
DOI: 10.1002/ehf2.14834



Visualization of the prediction models for worsening heart
failure
In the CART model, patients were initially split based on cre-
atinine levels, then further divided based on white blood cell
(WBC) count, and finally split based on CRP levels, resulting in
a total of four groups. The respective raw cut-off values were
2.4 mg/dL for creatinine, 11 000 mg/μL for WBC count, and
1.5 mg/dL for CRP (Figure 5). The standardized cut-off values
for these explanatory variables and the Gini impurity for each
node are presented in Supporting Information, Figure S5. The
in-hospital mortality rates for the four groups in the training
and test datasets are shown (Figure 5). In the training
dataset, the WHF rates were 14.1% in Group 1, 25.2% in
Group 2, 34.4% in Group 3, and 42.0% in Group 4. In the test
dataset, the WHF rates were 12.6% in Group 1, 25.0% in
Group 2, 33.1% in Group 3, and 52.3% in Group 4. In the
CART model, the WHF rates between the four groups in the
XGBoost model were similar between the training and test
datasets.

In the RF model, the feature plots showed the important
variables in the WHF prediction model (Supporting Informa-

tion, Figure S6A,B). WBC count, CRP level, and NYHA Class
IV were the most important variables for predicting WHF.

In the XGBoost model, the feature plots showed the impor-
tant variables in the WHF prediction model (Figure 6A,B).
Creatinine level, CRP level, and NYHA Class IV were the most
important variables for predicting WHF. Next, the average
SHAP values for each variable and the average WHF rate in
the XGBoost model were analysed. All patients were divided
into four clusters as follows: Cluster 1 with low SHAP values
for all variables; Cluster 2 with high SHAP values for NYHA
Class IV; Cluster 3 with high SHAP values for high CRP levels;
and Cluster 4 with high SHAP values for high creatinine levels
(Figure 6C). In the training dataset, the WHF rates were
11.6% in Cluster 1, 22.2% in Cluster 2, 30.6% in Cluster 3,
and 56.6% in Cluster 4. In the test dataset, the WHF rates
were 11.9% in Cluster 1, 20.4% in Cluster 2, 30.3% in Cluster
3, and 68.8% in Cluster 4 (Figure 6C). As in the CART model
results, the WHF rate was higher in the group with higher cre-
atinine levels. Also, in the XGBoost model, the WHF rates be-
tween the four groups were similar between the training and
test datasets.

Figure 5 The classification and regression trees model of WHF prediction in the training and test datasets. Patients were initially split based on cre-
atinine levels, then further divided based on WBC count, and finally split based on CRP levels, resulting in a total of four groups. CRE, creatinine; CRP,
C-reactive protein; WBC, white blood cell; WHF, worsening heart failure.
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Figure 6 (A, B) The interpretation of the extreme gradient boosting (XGBoost) model for worsening heart failure (WHF) prediction. (A) The importance
ranking of the top 20 variables according to the collective absolute SHapley Additive exPlanations (SHAP) values. (B) SHAP value plots of the top 20
variables with a strong impact on the XGBoost model. (C) The results of clustering the training and test datasets based on SHAP values in the XGBoost
model for predicting WHF. The average WHF rates and the average SHAP values for each cluster. ACS, acute coronary syndrome at admission; AF, atrial
fibrillation at admission; ALB, albumin; ALP, alkaline phosphatase; AST, aspartate aminotransferase; BG, blood glucose; BMI, body mass index; BNP,
brain natriuretic peptide; BT, body temperature at hospitalization; BUN, blood urea nitrogen; CK, creatine kinase; CRE, creatinine; CRP, C-reactive pro-
tein; DBP, diastolic blood pressure at hospitalization; Hb, haemoglobin; HR, heart rate at hospitalization; NYHA, New York Heart Association; PLT, plate-
let; SBP, systolic blood pressure at hospitalization; SpO2, saturation of percutaneous oxygen; TBil, total bilirubin; UA, uric acid; WBC, white blood cell;
γGTP, gamma-glutamyl transpeptidase.
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Discussions

We developed various ML models to predict in-hospital mor-
tality and WHF in patients with AHF. The goal was to antici-
pate acute changes in patients with AHF, enable early inter-
vention, and improve the short-term prognosis. The CART
model has a simple algorithm that is intuitive, easy to under-
stand, and suitable for clinical applications. However, even af-
ter implementing automatic adjustment of hyperparameters,
it could not demonstrate superior performance in terms of
AUC and sensitivity. While the CART model is particularly no-
table for its interpretability, previous reports have also indi-
cated its limited performance, with an AUC of approximately
0.7.3 Therefore, applying the CART model to identify high-risk
patients with AHF might not be suitable due to its perfor-
mance limitations. The RF model exhibited superior AUC
and sensitivity compared with the CART model, but calibra-
tion was inadequate. This discrepancy arises from the RF
model being either over-calibrated (overpredicting probabili-
ties) or under-calibrated (underpredicting probabilities). Even
if AUC and sensitivity are high, the RF model’s inability to
accurately predict patient risk introduces uncertainty in the
selection of treatment strategies, leading to a decrease in
its reliability.31 The XGBoost model demonstrated high AUC
and sensitivity, along with good calibration. This indicates a
low likelihood of missing patients experiencing acute
changes, such as in-hospital mortality or WHF, among pa-
tients with AHF. Moreover, the predicted risks align well with
the actual occurrence rates, highlighting the XGBoost model
as an accurate and reliable prediction model.

Some prediction models that show comparable perfor-
mance to our XGBoost model have been reported.33–35 How-
ever, it is significant that such high performance was achieved
on the KCHF registry, a relatively small Japanese registry
dataset of 4040 individuals (3232 in the training dataset
and 808 in the test dataset). In general, the performance of
prediction models tends to improve as the number of target
data increases. On the other hand, in improving the prognosis
of patients with AHF, it is important to develop prediction
models with high prediction performance even when the tar-
get dataset is relatively small, as shown in this study. This is
because patients with AHF constitute a diverse population
with variations across regions and countries.13,14 Applying
universally renowned prediction models to all patients with
AHF in distinct regions may not be optimal. Therefore, even
with a limited dataset, developing high-performance predic-
tion models based on patients with AHF in each region is cru-
cial, contributing significantly to improving the prognosis of
patients with AHF in each region.

However, as the prediction performance of ML models,
such as the XGBoost model, improves, the structure of the
model becomes more complex, and the issue of the model’s
black-box nature arises. In this study, SHAP analysis was used
to visualize the XGBoost model, providing a clear interpreta-

tion for clinicians. Additionally, SHAP clustering, based on
SHAP values, classified patients into four clusters. The event
rates for each cluster were similar in both the training and
test datasets, demonstrating good reproducibility in risk
stratification. Thus, through the implementation of SHAP
analysis and SHAP clustering, it is possible to preserve inter-
pretability that might be compromised with the enhanced
performance. SHAP analysis and SHAP clustering have been
reported to enable the development of prediction models
with interpretable clusters in various clinical scenarios,
including emergency departments and cases involving
COVID-19 infection.22–24 Using SHAP analysis and SHAP clus-
tering, high-performance and complex ML models like the
XGBoost model can be applied in clinical settings. This study
demonstrated the ability to accurately identify high-risk AHF
patients with an interpretable approach.

Many patients hospitalized with AHF are admitted ur-
gently, often without scheduled admissions, which frequently
limits the possibility of undergoing comprehensive testing at
the time of admission. We decided to avoid using explanatory
variables with extensive missing data, as it may compromise
the accuracy and generalizability of the prediction model.
Therefore, we utilized explanatory variables with minimal
missing data that are easily available. Despite the limited
set of explanatory variables, especially in the case of the
XGBoost model, sufficient prediction performance was
achieved. Regarding the prediction of in-hospital mortality,
the CART model identified BUN, CRP, and SBP as important,
while the XGBoost model highlighted the significance of
BUN, sodium, and age. In both models, BUN was the most
crucial explanatory variable. For predicting WHF, the CART
model identified creatinine, WBC count, and CRP as impor-
tant, while the XGBoost model highlighted the significance
of creatinine, CRP, and NYHA classification. In both models,
creatinine was the most important explanatory variable.
These explanatory variables are consistent with previous re-
ports, demonstrating the validity of our study. Particularly,
BUN and creatinine have been reported as the most crucial
explanatory variables in predicting in-hospital mortality and
WHF in the ADHERE registry,3,9 consistent with our study.
Inflammation-related markers such as CRP have been shown
to be clinically important in the prognosis of patients with
AHF, as reported previously.36 Our study further demon-
strated the importance of these inflammatory markers as cru-
cial explanatory variables in developing short-term prognosis
prediction models for patients with AHF.

Limitations

This study had several limitations. First, the KCHF registry has
a low occurrence rate of in-hospital mortality and WHF in pa-
tients with AHF, resulting in an imbalanced dataset with low
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event rates. Imbalanced data can lead to biased learning,
where there is a strong tendency for prediction models to fa-
vour the majority class. As a consequence, the minority class
can be overlooked, resulting in diminished prediction perfor-
mance for the minority class. Second, the selected explana-
tory variables for the ML model development in this study
were limited to those with few missing data and easy data
collection based on clinical use. As a result, the prediction
performance of the ML models may be slightly inferior com-
pared with prediction models that utilize a larger number of
explanatory variables. Finally, the data from the KCHF registry
represent only facilities in Japan and may not be representa-
tive of patients with AHF in other regions worldwide. In the
future, it will be necessary to validate the ML models using
independent external data that include patients from differ-
ent regions and hospitals.

Conclusions

The XGBoost models with SHAP clustering provide high pre-
diction performance, interpretability, and reproducible risk
stratification for in-hospital mortality and WHF for patients
with AHF, making them potentially applicable in clinical
settings.
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Figure S1. Calibration plots in the models for in-hospital mor-
tality.
Figure S2. Calibration plots in the models for WHF.
Figure S3. In the CART model, we aimed to maximize the re-
duction in the Gini coefficient, selecting the most effective
splits at each node. The Gini coefficient and in-hospital mor-
tality rate are indicated for each node. The standardized cut-
off values for explanatory variables are also shown. Gini, Gini
impurity.
Figure S4. The interpretation of the Random Forest model for
in-hospital mortality prediction. The importance ranking of
the top 20 variables according to SHAP values.
Figure S5. In the CART model, we aimed to maximize the re-
duction in the Gini coefficient, selecting the most effective
splits at each node. The Gini coefficient and WHF rate are in-
dicated for each node. The standardized cutoff values for ex-
planatory variables are also shown. Gini, Gini impurity.
Figure S6. The interpretation of the Random Forest model for
WHF prediction. The importance ranking of the top 20 vari-
ables according to SHAP values.
Table S1. The hyperparameters of the prediction models for
in-hospital mortality were optimized using Bayesian Optimi-
zation with stratified 10-fold cross-validation.
Table S2. In the multivariable logistic regression (MLR
model), the prediction results for in-hospital mortality and
WHF are shown. In order to evaluate the performance of
the models, sensitivity, specificity, AUC, Brier Score, calibra-
tion slope are calculated. The sensitivity and specificity were
determined using the optimal cutoff value, which is the point
on the ROC curve where the Youden index is maximized.
Table S3. The hyperparameters of the prediction models for
WHF were optimized using Bayesian Optimization with strat-
ified 10-fold cross-validation.
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