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Abstract

Aims Heart failure (HF) is a clinical syndrome with no definitive diagnostic tests. HF registries are often based on manual
reviews of medical records of hospitalized HF patients identified using International Classification of Diseases (ICD) codes.
However, most HF patients are not hospitalized, and manual review of big electronic health record (EHR) data is not practical.
The US Department of Veterans Affairs (VA) has the largest integrated healthcare system in the nation, and an estimated 1.5
million patients have ICD codes for HF (HF ICD-code universe) in their VA EHR. The objective of our study was to develop ar-
tificial intelligence (AI) models to phenotype HF in these patients.
Methods and results The model development cohort (n = 20 000: training, 16 000; validation 2000; testing, 2000) included
10 000 patients with HF and 10 000 without HF who were matched by age, sex, race, inpatient/outpatient status, hospital, and
encounter date (within 60 days). HF status was ascertained by manual chart reviews in VA’s External Peer Review Program for
HF (EPRP-HF) and non-HF status was ascertained by the absence of ICD codes for HF in VA EHR. Two clinicians annotated 1000
random snippets with HF-related keywords and labelled 436 as HF, which was then used to train and test a natural language
processing (NLP) model to classify HF (positive predictive value or PPV, 0.81; sensitivity, 0.77). A machine learning (ML) model
using linear support vector machine architecture was trained and tested to classify HF using EPRP-HF as cases (PPV, 0.86; sen-
sitivity, 0.86). From the ‘HF ICD-code universe’, we randomly selected 200 patients (gold standard cohort) and two clinicians
manually adjudicated HF (gold standard HF) in 145 of those patients by chart reviews. We calculated NLP, ML, and NLP + ML
scores and used weighted F scores to derive their optimal threshold values for HF classification, which resulted in PPVs of 0.83,
0.77, and 0.85 and sensitivities of 0.86, 0.88, and 0.83, respectively. HF patients classified by the NLP + ML model were char-
acteristically and prognostically similar to those with gold standard HF. All three models performed better than ICD code ap-
proaches: one principal hospital discharge diagnosis code for HF (PPV, 0.97; sensitivity, 0.21) or two primary outpatient en-
counter diagnosis codes for HF (PPV, 0.88; sensitivity, 0.54).
Conclusions These findings suggest that NLP and ML models are efficient AI tools to phenotype HF in big EHR data to create
contemporary HF registries for clinical studies of effectiveness, quality improvement, and hypothesis generation.
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Introduction

Heart failure (HF) is a leading cause of morbidity and
mortality.1,2 Evidence from randomized controlled trials
(RCTs) provide the foundation for guideline-directed medical
therapy (GDMT) for patients with HF that contributes to im-
proving clinical outcomes.3 Post hoc analyses of data from
RCTs provide important insights into risk stratification, treat-
ment optimization, and hypothesis generation.4–14 However,
patients enrolled in RCTs are often not representative of those
seen in clinical practice.15 HF registries include real-world
patients from clinical practice, but are often based on quality
improvement initiatives in hospital settings with limited
follow-up data.16–32 The Organized Program to Initiate Lifesav-
ing Treatment in Hospitalized Patients With Heart Failure
(OPTIMIZE-HF) began as a quality improvement initiative that
included nearly 50 000 hospitalizations, but the registry
component included about 6000 patients with 60–90 days of
follow up.28,33,34 The hospitalization records of OPTIMIZE-HF
was later linked to Medicare inpatient claims data using
indirect identifiers to obtain long-term follow-up data of
unique patients.17,35 The Get With The Guidelines (GWTG)
HF data was similarly linked to Medicare for long-term out-
comes data.29,30

HF registries contain extensive data including admission
and discharge medications, which allow the use of
new-user design to minimize prevalent-user bias.36 However,
these registries are based on manual abstraction of charts of
patients identified by International Classification of Diseases
(ICD) codes for HF. Because charts are often abstracted at
the local hospital level, they are also subject to potential bias
due to inter-abstractor and inter-hospital variabilities. These
registries are often limited to index hospitalizations, with
limited or no access to prior medical records, and no access
to any medical record after data collection is completed. The
emergence of electronic heath records (EHRs) and the ad-
vances in the field of artificial intelligence (AI) have created
an opportunity to automate the creation of contemporary
clinical registries with longitudinal data for both quality im-
provement and outcomes research. However, an efficient
use of these big datasets requires the development of a uni-
form data abstraction process using AI approaches. While
several studies have used AI approaches to define HF pheno-
type in EHR,37–42 most focused on natural language process-
ing (NLP) and a few utilized machine learning (ML), in con-
junction with ICD codes. The past NLP and ML approaches
relied heavily on supervised learning or expert-crafted rule.
We propose an approach that will combine NLP and weakly
supervised ML to create a phenotype that is not dependent
on ICD. The Veterans Health Administration (VHA) of the De-
partment of Veterans Affairs (VA) is the largest integrated
healthcare system in the United States, which is enriched
by large genomic and phenomic databases.43–45 The VA

EHR is one of the largest integrated EHR in the world and
nearly 1.5 million patients have ICD codes for HF in their
EHR. Thus, an HF registry based on the VA EHR in which
HF has been adjudicated based on medical record would
be a valuable resource for clinical studies of effectiveness,
quality improvement, and hypothesis generation. Thus, the
objective of our study is to develop ML and NLP models to
phenotype HF in patients with an ICD code for HF in national
VHA EHR data.46

Methods

Data source and study population for model
development

We used VA’s national EHR data available at the VA
Informatics and Computing Infrastructure platform and
VA’s External Peer Review Program for HF (EPRP-HF) avail-
able from EPRP. EPRP is VA’s quality improvement initiative
for monitoring hospital performance by manual abstraction
of randomly selected medical records by external medical
professional abstractors. Patients are selected for EPRP
review if they have used VA healthcare system at least once
in the 2 years before and had at least 1 primary care or
specialty medical visit in the month being sampled for the
year being evaluated.47–50 We began by randomly selecting
10 000 patients with HF from the EPRP-HF (2014–2016)
and 10 000 patients from VA EHR who had no ICD code for
HF in their EHR, matching them by age, sex, race, setting (in-
patient vs. outpatient), location (medical center), and within
60 days of index date (HF diagnosis date in EPRP-HF data),
thus assembling a population of 20 000 patients (Figure 1).
The cohort was divided into three subsets: training
(n = 16 000), validation (n = 2000), and testing (n = 2000),
each subset containing the same number of cases and con-
trols. Baseline characteristics of these patients were exam-
ined and compared using absolute standardized difference
(ASD). Unlike Chi-square or t-tests, ASD is not influenced by
sample size.51 ASD values <10% suggest that two study
groups are comparable.

Model development

We used both NLP and ML models. A linear support vector
machine (SVM) NLP model was trained to determine the HF
status based on the textual data. We started by determining
a set of keywords (viz. HF, CHF, and heart failure) in the notes
and creating snippets (30 words before and 30 words after
the keyword) to determine if the context surrounding those
keywords can classify the HF status (yes, no, or uncertain)
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Figure 1 Phenotyping HF in VA national EHR using ML and NLP models. After developing and testing NLP and ML models in the model development
cohort of 20,000 patients, we applied the models to the gold standard cohort of 200 patients. We calculated NLP and ML scores and derived NLP + ML
scores for each of the 200 patients and estimated the best threshold scores for each model using the highest F score values. Using threshold scores for
each model, we classified HF in the gold standard cohort. Th NLP + ML model had the highest PPV and was chosen as the best-performing model. All 3
models performed better than the traditional ICD code approaches for identifying HF cohorts. The presence of ≥1 ICD code of HF as the principal hos-
pital discharge diagnosis was used to defined the ‘Inpatient’ HF cohort and ≥2 ICD codes as primary outpatient encounter diagnoses were used to
define the ‘Outpatient’ HF cohort (‘Either’ included ≥1 inpatient and ≥2 outpatient HF diagnoses). Abbreviations: AI, artificial intelligence; EHR, elec-
tronic health record; EPRP, External Peer Review Program; HF, heart failure; ML, machine learning; NLP, natural language processing; PPV, positive
predictive value; SVM, support vector machine; VA, Veterans Affairs.
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of the patient. Two clinician authors (A. A. and S. P.) per-
formed the annotation of 1000 random notes from a total
of 70 159 snippets derived from 135 856 notes from the
20 000 patients. For outpatient visits, we used notes from
the index date and for inpatient stays, we used discharge
summary notes and eight randomly selected notes between
admission and discharge dates. The annotation results were
used as the gold standard for the training and testing of the
NLP model.

The ML was developed through supervised learning while
also utilized an unsupervised learning method called topic
modelling for the extraction of features from text notes.
For ML, we used linear SVM which has several advantages
relevant to this study, including excellent prediction
performance, fast training speed on datasets of large sam-
ple sizes with large number of features, and less prone to
overfitting.52,53 Variables used in ML were obtained from
both structured and unstructured data. Features from struc-
tured data included 43 manually crafted variables (viz. co-
morbidities, laboratory values, and vital signs) and addi-
tional 513 variables that included 130 medications, 106
procedure codes, 258 laboratory test orders, and 19 note ti-
tles (Table S1). The 513 variables were selected based on
Chi-square (≥10) and prevalence (≥10%) in the training
data.

Topic modelling was used to extract topic variables from
the unstructured text data. For topic modelling, we used
the method of latent Dirichlet allocation (LDA), which is an
unsupervised ML method for uncovering the hidden topics
within a large number of textual documents. The topic
model was trained on the above-mentioned 135 856 clinical
notes that generated 1694 stable topic variables. We se-
lected 387 topic variables using the same approach de-
scribed above (Table S1). In addition, we included the results
from the NLP model as features. Details of the model devel-
opment are presented in Supporting information. The final
ML model used a total of 947 variables, which included all
the variables extracted from structured and unstructured
data (Table S1).

The linear SVM model we used (for both NLP and ML) had
only one meta-parameter: C, which was set as 0.03 for NLP
model and 0.0002 for ML model. The LDA model had only
one meta-parameter: total number of topics, which was
set as 2000. The input feature values for the ML model were
all normalized to have zero mean and unit standard devia-
tion while the input feature values for the NLP model were
kept unchanged before they were fed into the model. These
models were used to phenotype HF in VA’s Centralized In-
teractive Phenomics Resource (CIPHER) and the source
codes used are shared in the publicly-available GitHub
platform.54 CIPHER is a knowledgebase of computable
EHR-based phenotypes, designed to optimize the use of
VA’s EHR data for use in research and clinical operations.
The software library for developing the SVM models (NLP

and ML) was the Python (version 3.7) library named
Scikit-Learn (version 0.22.1), and the library for developing
the LDA topic model was the Java (version 1.8) library
named MALLET (version 2.0).

Assembly of the gold standard HF and ICD HF
cohorts

We randomly selected 200 patients (100 inpatient) from the
HF universe (at least 1 ICD code for HF) in the VA EHR
(n = 1 446 053). To identify gold standard HF, two clinician au-
thors (A. A. and V. R.) manually reviewed the charts, scoring
HF status using a scale of 1 to 5: 1 = definite; 2 = probable;
3 = possible; 4 = unlikely; and 5 = no. Each patient could have
a combined score between 2 (definite, by both reviewers)
and 10 (no HF, by both reviewers). Patients were considered
to have HF if they had a combined score of ≤6 by both re-
viewers. Patients with classified as ‘no HF’ (score of 5) by
one reviewer were not considered as HF regardless of the
score (e.g., ‘1 + 5’). In addition to the gold standard based
on manual review described above, we used three other
cohorts based on ICD codes for HF: (i) at least one principal
hospital discharge diagnosis, (ii) at least two primary
outpatient encounter diagnoses, and (iii) either one principal
hospital discharge diagnosis or two primary outpatient
encounter diagnoses.

Calculation of model scores and selection of
optimal threshold score

We calculated NLP and ML scores for all 200 patients. Using
the minimum and maximum values as boundaries, we cre-
ated candidate threshold values for HF classification for both
scores. For example, for the NLP model, the NLP scores for
the 200 patients ranged between �0.30 and 2.76. We then
created 307 candidate NLP threshold values starting with
�0.30, �0.29, �0.28, and �0.27 and ending with 2.73,
2.74, 2.75, and 2.76 (using an arbitrary increment of 0.01).
Respective ML scores for the 200 patients ranged between
�0.80 and 4.27, which generated 508 candidate threshold
values. Finally, we used a simple logistic regression model
and the NLP and ML scores to generate combined scores, de-
noted as NLP + ML, for each of the 200 patients. The com-
bined NLP + ML score had a range between �2.49 and
3.44, and 594 candidate threshold values. To identify the op-
timal threshold values, for each candidate threshold value of
NLP, ML, and NLP + ML score, we calculated positive predic-
tive value (PPV) and sensitivity. Using PPVs and sensitivities,
we calculated F scores, which are harmonic means of the
two (PPV and sensitivity). To limit inclusion of
false-positives in the HF cohort to be classified by the models
(higher PPV or precision) over capturing all true HF patients
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from the ‘HF ICD-code universe’ (higher sensitivity or recall),

we used a weighted F score Fβ ¼
1þ β2
� �

· PPV · Sensitivity

β2 · PPVþ Sensitivity
where β is a real valued number indicating the importance
of sensitivity relative to PPV, specifically we used β ¼ 0:5.
The maximal weighted F score values were used to determine
the optimal threshold values of each of NLP, ML, and
NLP + ML scores to classify HF. Model with the best perform-
ing PPV was used to classify HF.

Patient characteristics and outcomes

We compared patient characteristics at baseline of the HF pa-
tients classified by the best performing model with those
with manually adjudicated gold-standard HF as well as those
identified by the three ICD code approaches. The ICD ap-
proaches included (i) one principal hospital discharge diagno-
sis of HF; (ii) two primary outpatient encounter diagnoses for
HF; and (iii) either one principal inpatient or two primary

Table 1 Baseline characteristics by 20 000 patients with and without heart failure used for model development

n (%) or mean (±standard deviation) No heart failure (n = 10 000) Heart failure (n = 10 000) ASD (%) P value

Age, years 67.5 (±11.2) 67.5 (±11.2) 0 1.00
Female 230 (2.3%) 230 (2.3%) 0 1.00
Race

White 8080 (80.1%) 8080 (80.1%) 0
African American 1913 (19.1%) 1913 (19.1%) 0 1.00
Others 79 (0.8%) 79 (0.8%) 0

Left ventricular ejection fraction (%)
≤40% 488 (4.9%) 3183 (31.8%) 74.3 <0.001
41 to 49% 198 (2%) 864 (8.6%) 30 <0.001
≥50% 2345 (23.5%) 4222 (42.2%) 40.8 <0.001
Unknown 6969 (69.7%) 1731 (17.3%) 124.4 <0.001

Hospitalization in prior 1 year 5688 (56.9%) 6644 (66.4%) 19.8 <0.0001
Smoking history 2466 (24.7%) 2790 (27.9%) 7.4 <0.0001
Hypertension 7415 (74.2%) 8952 (89.5%) 40.7 <0.0001
Coronary artery disease 3110 (31.1%) 6367 (63.7%) 69 <0.0001
Acute myocardial infarction 767 (7.7%) 2459 (24.6%) 47.3 <0.0001
Coronary artery bypass graft surgery 236 (2.4%) 710 (7.1%) 22.5 <0.0001
Percutaneous coronary intervention 573 (5.7%) 1241 (12.4%) 23.4 <0.0001
Defibrillator 70 (0.7%) 267 (2.7%) 15.4 <0.0001
Pacemaker 227 (2.3%) 554 (5.5%) 16.9 <0.0001
Atrial fibrillation 937 (9.4%) 2684 (26.8%) 46.6 <0.0001
Lipid disorder 6692 (66.9%) 7826 (78.3%) 25.6 <0.0001
Diabetes mellitus 3375 (33.8%) 5193 (51.9%) 37.4 <0.0001
Stroke 297 (3%) 460 (4.6%) 8.5 <0.0001
Peripheral arterial disease 1721 (17.2%) 2871 (28.7%) 27.6 <0.0001
Chronic obstructive pulmonary disease 2429 (24.3%) 3884 (38.8%) 31.7 <0.0001
Asthma 660 (6.6%) 1059 (10.6%) 14.3 <0.0001
Autoimmune disease 1635 (16.4%) 1789 (17.9%) 4.1 0.0038
Liver disease 947 (9.5%) 1081 (10.8%) 4.4 0.0017
Renal failure and/or dialysis 1376 (13.8%) 2653 (26.5%) 32.3 <0.0001
Cancer 4956 (49.6%) 5415 (54.2%) 9.2 <0.0001
Anaemia of deficiency 939 (9.4%) 1519 (15.2%) 17.7 <0.0001
Anaemia of chronic disease 328 (3.3%) 664 (6.6%) 15.5 <0.0001
Osteoarthritis 4124 (41.2%) 4713 (47.1%) 11.9 <0.0001
Depression 3690 (36.9%) 4257 (42.6%) 11.6 <0.0001
Dementia 632 (6.3%) 535 (5.4%) 4.1 0.0034
Body mass index, kg/m2 28.6 (±6.6) 31.5 (±7.6) 41.1 <0.0001
Pulse, beat/min 77.1 (±14.9) 80.6 (±17.8) 21.1 <0.0001
Systolic blood pressure, mmHg 134.4 (±18.7) 136.0 (±21.7) 7.7 <0.0001
Diastolic blood pressure, mmHg 76.3 (±11.2) 77.0 (±13.5) 5.4 0.0002
Serum creatinine, mg/dL 1.2 (±0.9) 1.4 (±1.1) 17.1 <0.0001
Serum glucose, mg/dL 150.5 (±63.2) 157.8 (±66.9) 11.2 <0.0001
Serum total cholesterol, mg/dL 170.9 (±43.1) 161.8 (±44.8) 20.7 <0.0001
Serum sodium, mEq/L 138.6 (±3.7) 138.6 (±3.8) 0.6 0.7102
Serum potassium, mEq/L 4.2 (±0.5) 4.2 (±0.5) 2.3 0.1301
Haemoglobin, g/dL 13.6 (±2.1) 13.0 (±2.2) 26 <0.0001
White blood cell, 109/L 8.4 (±6.5) 8.5 (±5.2) 1.6 0.2993
Platelets, 109/L 226.6 (±81.7) 221.3 (±82.1) 6.5 <0.0001

Of the 3671 patients with left ventricular ejection fraction ≤40%, 86.7% (3183/3671) were in the group with heart failure. Respective pro-
portions for those with ejection fraction 41 to 49%, ≥50% and unknown were 81.4%, 64.3%, and 19.9%.
ASD, absolute standardized difference.
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outpatient HF diagnoses. Baselines are based on the dates of
the first mention of HF in VA EHR. Baseline comorbidities
were defined using ICD codes any time before baseline. For
all other baseline characteristics, we used data up to 1 year
before baseline. We also examined all-cause mortality, HF
hospitalization, and all-cause hospitalization in these patients
during 1 and 5 years of follow up, up to 31 December 2022.
We also examined all-cause mortality, HF hospitalization,
and all-cause hospitalization in these patients during 1 and
5 years of follow up.

Results

Baseline characteristics of the model
development cohort

Patients with and without HF used for the model development
had a mean age of 67.5 ± 11.2 years, 230 (2.3%) were women,
1913 (19.1%) were African American, and 5000 (50.0%) were
inpatient (Table 1). Patients with HF had a higher prevalence
of cardiovascular risk factors and morbidities such as

Table 2 Baseline characteristics by 200 patients with and without gold standard heart failure

n (%) or mean (±standard deviation) No heart failure (n = 55) Heart failure (n = 145) ASD (%) P value

Age, years 67.1 (±12.2) 72.7 (±11.4) 47.4 0.0027
Female 2 (3.6%) 5 (3.4%) 1.0 0.9485
Race 0.0089

White 43 (78.2%) 126 (86.9%) 23.1
African American 6 (10.9%) 17 (11.7%) 2.6
Others 6 (10.9%) 2 (1.4%) 40.9

Left ventricular ejection fraction (%)a

≤40% 4 (7.3%) 37 (25.5%) 50.8 0.0003
41 to 49% 3 (5.5%) 11 (7.6%) 8.6
≥50% 27 (49.1%) 30 (20.7%) 62.4
Unknown 21 (38.2%) 67 (46.2%) 16.3

Hospitalization in prior 1 year 30 (54.5%) 43 (29.7%) 52.1 0.0011
Smoking history 12 (21.8%) 18 (12.4%) 25.2 0.0963
Hypertension 43 (78.2%) 119 (82.1%) 9.8 0.5315
Coronary artery disease 28 (50.9%) 77 (53.1%) 4.4 0.7814
Acute myocardial infarction 8 (14.5%) 23 (15.9%) 3.7 0.8183
Coronary artery bypass graft surgery 1 (1.8%) 4 (2.8%) 6.3 0.7037
Percutaneous coronary intervention 3 (5.5%) 11 (7.6%) 8.6 0.5978
Defibrillator 0 (0%) 4 (2.8%) 23.8 0.2134
Pacemaker 1 (1.8%) 12 (8.3%) 29.8 0.0981
Atrial fibrillation 12 (21.8%) 40 (27.6%) 13.4 0.4063
Lipid disorder 33 (60%) 83 (57.2%) 5.6 0.7241
Diabetes mellitus 23 (41.8%) 58 (40%) 3.7 0.8151
Stroke 1 (1.8%) 3 (2.1%) 1.8 0.9099
Peripheral arterial disease 11 (20%) 32 (22.1%) 5.1 0.7505
Chronic obstructive pulmonary disease 18 (32.7%) 47 (32.4%) 0.7 0.9663
Asthma 5 (9.1%) 10 (6.9%) 8.1 0.5988
Autoimmune disease 3 (5.5%) 20 (13.8%) 28.6 0.0988
Liver disease 10 (18.2%) 5 (3.4%) 48.8 0.0004
Renal failure and/or dialysis 11 (20%) 24 (16.6%) 8.9 0.5666
Cancer 26 (47.3%) 47 (32.4%) 30.7 0.0513
Anaemia of deficiency 5 (9.1%) 13 (9%) 0.4 0.9779
Anaemia of chronic disease 4 (7.3%) 4 (2.8%) 20.8 0.1458
Osteoarthritis 20 (36.4%) 44 (30.3%) 12.8 0.4152
Depression 24 (43.6%) 24 (16.6%) 61.8 <0.0001
Dementia 10 (18.2%) 11 (7.6%) 32 0.0291
Body mass index, kg/m2 30.2 (±6.9) 30.2 (±7.2) 0.8 0.9639
Pulse, beat/min 77.1 (±17.6) 79.0 (±16.8) 11.5 0.4801
Systolic blood pressure, mmHg 127.6 (±24.0) 134.4 (±22.8) 29.2 0.0884
Diastolic blood pressure, mmHg 73.2 (±12.9) 72.6 (±14.4) 4.5 0.8000
Serum creatinine, mg/dL 1.3 (±0.8) 1.6 (±1.6) 21.0 0.2959
Serum glucose, mg/dL 141.0 (±62.3) 144.6 (±44.8) 6.6 0.8123
Serum total cholesterol, mg/dL 151.0 (±49.5) 165.6 (±39.3) 32.6 0.0757
Serum sodium, mEq/L 138.1 (±3.7) 139.7 (±4.1) 41.5 0.0481
Serum potassium, mEq/L 4.2 (±0.5) 4.3 (±0.6) 15.2 0.4811
Haemoglobin, g/dL 12.7 (±2.7) 13.1 (±2.0) 13.9 0.4008
White blood cell, 109/L 7.3 (±2.6) 8.9 (±4.4) 45.7 0.0159
Platelets, 109/L 190.8 (±78.5) 228.8 (±79.5) 48.1 0.0064

ASD, absolute standardized difference.
aOf the 41 patients with left ventricular ejection fraction ≤40%, 90.2% (37/41) were in the group with heart failure. Respective proportions
for those with ejection fraction 41 to 49%, ≥50% and unknown were 78.6%, 52.6%, and 76.1%.
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hypertension, coronary artery disease, atrial fibrillation, and di-
abetes mellitus, as well as non-cardiovascular morbidity such
as cancer, osteoarthritis, and depression (Table 1).

Baseline characteristics of the gold standard
cohort

The gold standard cohort of 200 patients included 145
manually adjudicated as HF. Of these, 47 had a score of 2 (def-
inite HF by both reviewers), 9 patients had a score of 3 (defi-
nite HF by one reviewer and probable HF by the other), 25 pa-
tients had a score of 4 (probable HF by both reviewers, except
3 who had possible HF by one reviewer), 26 had a score of 5
(probable HF by one reviewer and possible HF by the other),
and 37 patients had a score of 6 (possible HF by both re-
viewers, except 1 had unlikely HF by one reviewer). Unlike
the model development cohort of 20 000 patients in which
non-HF patients had no ICD code for HF, in the gold standard
cohort of 200 patients, those without HF had at least one ICD
code for HF but a diagnosis of HF could not be confirmed by
manual adjudication by two reviewers. Thus, the distribution
of cardiovascular risk factors and morbidities such as hyperten-
sion, coronary artery disease, and diabetes mellitus were rela-
tively balanced based on ASD < 10% (Table 2).

Evaluation of model performance

The NLP approach used human annotation as the supervision
for learning whether the occurrence of a HF keyword within
a note was a positive or negative indication of HF based on
the context around the keyword. The NLP contributed four bi-
nary variables from its classifications: (i) yes HF, (ii) no HF, (iii)
HF uncertain, and (iv) no keyword. The model achieved a PPV
0.81 and sensitivity 0.77 in classifying ‘yes’ compared with
other categories; a PPV 0.81 and sensitivity 0.70 in classifying
‘uncertain’ compared with other categories; and a PPV 0.83

and sensitivity 0.71 in classifying ‘no’ compared with other cat-
egories. The concordance index of the model was 0.89. The
concordance index is a performance metric for ordinal classifi-
cation and can be considered an extension of the area under
ROC curve (AUC) for binary classification. The final ML model
with 947 variables achieved AUC of 0.94, accuracy of 0.86,
sensitivity of 0.86. and specificity of 0.86 on the testing set.

Classification of HF using the optimal threshold
score

The highest F scores for the NLP, ML, and NLP + ML models
were 0.84, 0.79, and 0.85, respectively (Table 3). Correspond-
ing respective optimal threshold NLP, ML, and NLP + ML
models were 1.23, 0.55, and 0.63. At the threshold of 0.63,
the NLP + ML model identified 143 patients as HF, of whom
121 had gold standard HF (PPV, 0.85), who came from the
145 manually-adjudicated HF patients in the gold standard
cohort (sensitivity, 0.83; Table 3). PPV and sensitivity of the
three ICD code approaches are displayed in Table 3.

Patients characteristics and outcomes

Baseline characteristics of 143 patients whose HF was classi-
fied by the model were comparable with those with the
145 patients with gold standard HF as well as those identified
by ICD codes: 31 with a principal discharge diagnosis of
HF, 89 with two primary outpatients encounters for HF, and
91 with either (Table 4). During 1 year of follow up from
study baseline, 15.9% of the patients from the manually-
adjudicated HF cohort and 15.4% of the patients from the
model-classified HF cohort died due to all causes (Table 5).
Respective rates for HF hospitalizations were 9.0% and
7.7%. Other outcomes of the model-classified HF patients
and those with gold standard HF and identified by ICD codes
are presented in Table 5.

Table 3 Performance of various models and traditional ICD code approaches to define and identify patients with HF among 200 patients
with and without gold standard HF where gold standard HF that included possible HF

Gold
standard
HF

HF classified
by models
or ICD codes

Number of
gold standard
HF within the
HF cohort

Precision
(PPV)

Recall
(sensitivity) F score Accuracy

1. NLP 145 151 125 82.8% 86.2% 83.6% 77.0%
2. ML 145 167 128 76.6% 88.3% 79.0% 72.0%
3. NLP + ML 145 143 121 84.6% 83.4% 84.7% 77.0%

4. ICD codes
a: One or more principal hospital

discharge diagnosis
145 31 30 96.8% 20.7% 55.8% 42.0%

b. Two or more primary outpatient
encounter diagnoses

145 89 78 87.6% 53.8% 77.8% 61.0%

c. One principal hospital discharge
diagnosis or two primary outpatient
encounter diagnoses

145 91 80 87.9% 55.2% 78.6% 62.0%

HF, heart failure; ICD, International Classification of Diseases; ML, machine learning; NLP, natural language processing.
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Classification of HF using the alternate threshold
score

The use of a stricter criteria to defined gold standard HF
that excluded possible HF identified 80 patients from the
gold standard cohort of 200 patients. The highest F scores
for the NLP, ML, and NLP + ML models were 0.70, 0.71,
and 0.76, respectively (Table 6). Corresponding respective
optimal threshold NLP, ML, and NLP + ML models were
1.91, 1.72, and 0.13. At the threshold of 0.13, the
NLP + ML model identified 64 patients as HF, of whom

51 had gold standard HF (PPV, 0.80), who came from the
80 gold standard HF patients (sensitivity, 0.64). PPV and
sensitivity of the three ICD code approaches are displayed
in Table 6.

Discussion

The findings from our study demonstrate that an approach
based on NLP and ML algorithms to classify HF from a pool
of patients with ICD codes for HF in the VA EHR performed

Table 4 Baseline characteristics of patients identified as HF using various approaches from a cohort of 200 patients with at least one ICD
code for HF.

n (%) or mean (±standard deviation)
Gold standard
HF (n=145)

Model (NLP+ML)
classified
HF (n=143)

HF diagnosed using ICD codes

One principal hospital
discharge diagnosis
of HF (n=31)

Two primary
outpatient encounter
diagnosis of HF (n=89)

Either one inpatient
or two outpatient
diagnosis of HF (n=91)

Age, years 72.7 (±11.4) 71.3 (±11.7) 73.5 (±12.6) 71.2 (±12.6) 71.4 (±12.7)
Female 5 (3.4%) 4 (2.8%) 2 (6.5%) 5 (5.6%) 5 (5.5%)
Race

White 126 (86.9%) 124 (86.7%) 28 (90.3%) 76 (85.4%) 78 (85.7%)
African American 17 (11.7%) 15 (10.5%) 3 (9.7%) 10 (11.2%) 10 (11%)
Others 2 (1.4%) 4 (2.8%) . (.%) 3 (3.4%) 3 (3.3%)

Left ventricular ejection fraction (%)
≤40% 37 (25.5%) 33 (23.1%) 10 (32.3%) 21 (23.6%) 21 (23.1%)
41 to 49% 11 (7.6%) 12 (8.4%) 6 (19.4%) 10 (11.2%) 11 (12.1%)
≥50% 30 (20.7%) 39 (27.3%) 11 (35.5%) 24 (27%) 24 (26.4%)
Unknown 67 (46.2%) 59 (41.3%) 4 (12.9%) 34 (38.2%) 35 (38.5%)

Hospitalization in prior one year 43 (29.7%) 48 (33.6%) 20 (64.5%) 26 (29.2%) 28 (30.8%)
Smoking history 18 (12.4%) 18 (12.6%) 8 (25.8%) 16 (18%) 16 (17.6%)
Hypertension 119 (82.1%) 116 (81.1%) 26 (83.9%) 73 (82%) 75 (82.4%)
Coronary artery disease 77 (53.1%) 77 (53.8%) 20 (64.5%) 44 (49.4%) 45 (49.5%)
Acute myocardial infarction 23 (15.9%) 21 (14.7%) 3 (9.7%) 11 (12.4%) 11 (12.1%)
Coronary artery bypass graft surgery 4 (2.8%) 4 (2.8%) 0 (0%) 2 (2.2%) 2 (2.2%)
Percutaneous coronary intervention 11 (7.6%) 9 (6.3%) 2 (6.5%) 4 (4.5%) 4 (4.4%)
Defibrillator 4 (2.8%) 4 (2.8%) 1 (3.2%) 2 (2.2%) 2 (2.2%)
Pacemaker 12 (8.3%) 12 (8.4%) 3 (9.7%) 8 (9%) 8 (8.8%)
Atrial fibrillation 40 (27.6%) 34 (23.8%) 10 (32.3%) 21 (23.6%) 23 (25.3%)
Lipid disorder 83 (57.2%) 87 (60.8%) 16 (51.6%) 49 (55.1%) 50 (54.9%)
Diabetes mellitus 58 (40%) 64 (44.8%) 15 (48.4%) 33 (37.1%) 34 (37.4%)
Stroke 3 (2.1%) 3 (2.1%) 2 (6.5%) 2 (2.2%) 2 (2.2%)
Peripheral arterial disease 32 (22.1%) 31 (21.7%) 7 (22.6%) 15 (16.9%) 15 (16.5%)
Chronic obstructive pulmonary disease 47 (32.4%) 44 (30.8%) 10 (32.3%) 25 (28.1%) 25 (27.5%)
Asthma 10 (6.9%) 12 (8.4%) 2 (6.5%) 9 (10.1%) 9 (9.9%)
Autoimmune disease 20 (13.8%) 15 (10.5%) 4 (12.9%) 8 (9%) 8 (8.8%)
Liver disease 5 (3.4%) 7 (4.9%) 3 (9.7%) 5 (5.6%) 5 (5.5%)
Renal failure and/or dialysis 24 (16.6%) 26 (18.2%) 8 (25.8%) 16 (18%) 16 (17.6%)
Cancer 47 (32.4%) 52 (36.4%) 14 (45.2%) 30 (33.7%) 31 (34.1%)
Anemia of deficiency 13 (9%) 14 (9.8%) 7 (22.6%) 8 (9%) 8 (8.8%)
Anemia of chronic disease 4 (2.8%) 5 (3.5%) 0 (0%) 1 (1.1%) 1 (1.1%)
Osteoarthritis 44 (30.3%) 41 (28.7%) 11 (35.5%) 25 (28.1%) 27 (29.7%)
Depression 24 (16.6%) 28 (19.6%) 9 (29%) 19 (21.3%) 19 (20.9%)
Dementia 11 (7.6%) 11 (7.7%) 1 (3.2%) 5 (5.6%) 5 (5.5%)
Body mass index, kg/m2 30.2 (±7.2) 30.3 (±7.3) 30.4 (±5.6) 31.0 (±8.0) 31.0 (±8.0)
Pulse, beat/min 79.0 (±16.8) 77.9 (±16.5) 79.9 (±14.2) 79.1 (±16.1) 78.9 (±16.1)
Systolic blood pressure, mmHg 134.4 (±22.8) 133.9 (±23.0) 133.3 (±22.2) 134.1 (±23.5) 134.4 (±23.3)
Diastolic blood pressure, mmHg 72.6 (±14.4) 73.3 (±14.6) 74.8 (±14.5) 73.8 (±15.5) 74.1 (±15.5)
Serum creatinine, mg/dL 1.6 (±1.6) 1.5 (±1.4) 1.4 (±0.5) 1.4 (±0.6) 1.4 (±0.6)
Serum glucose, mg/dL 144.6 (±44.8) 149.2 (±56.2) 145.0 (±55.5) 148.1 (±49.1) 147.2 (±48.1)
Serum total cholesterol, mg/dL 165.6 (±39.3) 161.4 (±40.4) 144.7 (±45.5) 160.3 (±42.9) 160.0 (±42.6)
Serum sodium, mEq/L 139.7 (±4.1) 139.4 (±4.1) 139.3 (±4.0) 139.7 (±3.8) 139.6 (±3.9)
Serum potassium, mEq/L 4.3 (±0.6) 4.2 (±0.6) 4.3 (±0.7) 4.2 (±0.6) 4.2 (±0.6)
Hemoglobin, g/dL 13.1 (±2.0) 12.9 (±2.2) 12.8 (±2.5) 13.1 (±2.2) 13.1 (±2.2)
White blood cell, 10^9/L 8.9 (±4.4) 8.5 (±4.2) 7.9 (±2.0) 8.6 (±4.5) 8.6 (±4.4)
Platelets, 10^9/L 228.8 (±79.5) 222.5 (±75.3) 228.5 (±87.4) 225.5 (±75.6) 224.0 (±75.2)

HF, heart failure; ICD, International Classification of Diseases; ML, machine learning; NLP, natural language processing.

3162 Y. Shao et al.

ESC Heart Failure 2024; 11: 3155–3166
DOI: 10.1002/ehf2.14787



well and that NLP and ML models, alone or in combination,
performed better than approaches based on ICD codes alone.
These findings also shows that model-identified HF patients
were characteristically and prognostically similar to those
whose HF was manually adjudicated by extensive chart
review by two clinicians. These findings suggest that HF
registries created from big EHR data using AI-based ap-
proaches are representative of HF populations that are adju-
dicated by manual chart review and can be useful for answer-
ing clinical questions regarding quality and outcomes of care,
effectiveness of therapy, and generation of hypothesis.

Accurately phenotyping HF on a population level is chal-
lenging yet highly impactful. As illustrated by national registry
initiatives such as OPTIMIZE-HF and GWTG-HF, adherence to
guideline directed medical therapy in HF can translate
directly to mortality benefits and a reduction in costly
readmissions.28,55 In this study, we show that an approach
combining NLP and ML techniques can allow for accurate
identification of HF using EHR data. This approach is novel
in its use of an architecture that combines structured and un-

structured data elements into a classification algorithm to
boost performance. A distinctive feature of our algorithm is
selection of features from unstructured text data through
both linear SVM classification of text snippets (supervised)
and topic modelling (unsupervised). When topic variables
were incorporated alongside standard ML trained on struc-
tured variables, the model achieved an AUC of 0.92, which
improved further, albeit modestly, to 0.94, when variables
from the NLP model were included. Our approach to use text
data using a combination of topic modelling and clustering
through snippets can be implemented within a different insti-
tution and take advantage of subtle differences in documen-
tation practices.

Given the large pool of patients with one or more ICD code
for HF in large EHR systems such as that of the VA’s, our empha-
sis was not on identifying all possible true HF cases. Instead, our
focus was on including fewer non-HF patients into the HF co-
hort classified by the model. Thus, we chose an F score that
was associated with the greatest PPV and sensitivity of all the
possible combinations. Even though the F score of the NLP

Table 5 Outcomes of patients identified as HF using various approaches from a cohort of 200 patients with at least one ICD code for HF.

Outcomes

Gold
standard HF
(n=145)

Model (NLP+ML)
classified HF
(n=143)

HF diagnosed using ICD codes

One principal
hospital discharge
diagnosis of HF
(n=31)

Two primary
outpatient encounter
diagnosis of HF
(n=89)

Either one
inpatient or two
outpatient diagnosis
of HF (n=91)

All‐cause mortality
1 Year 23 (15.9%) 22 (15.4%) 1 (3.2%) 11 (12.4%) 11 (12.1%)
5 Years 82 (56.6%) 76 (53.1%) 18 (58.1%) 44 (49.4%) 46 (50.5%)

HF Hospitalization
1 Year 13 (9.0%) 11 (7.7%) 9 (29.0%) 11 (12.4%) 11 (12.1%)
5 Years 34 (23.4%) 31 (21.7%) 21 (67.7%) 27 (30.3%) 28 (30.8%)

All‐cause hospitalization
1 Year 64 (44.1%) 71 (49.7%) 17 (54.8%) 44 (49.4%) 45 (49.5%)
5 Years 101 (69.7%) 104 (72.7%) 26 (83.9%) 68 (76.4%) 70 (76.9%)

HF, heart failure; ICD, International Classification of Diseases; ML, machine learning; NLP, natural language processing.

Table 6 Performance of various models and traditional ICD code approaches to define and identify patients with HF among 200 patients
with and without gold standard HF where gold standard HF that excluded possible HF

Gold
standard HF

HF classified by
models or
ICD codes

Number of gold
standard HF within

the HF cohort
Precision
(PPV)

Recall
(Sensitivity) F score Accuracy

1. NLP 80 52 40 76.9% 50.0% 69.5% 74.0%
2. ML 80 73 53 72.6% 66.3% 71.5% 77.0%
3. NLP + ML 80 64 51 79.6% 63.7% 76.1% 79.0%
4. ICD codes 80

a: One or more principal hospital
discharge diagnosis

80 31 26 83.9% 32.5% 63.7% 70.5%

b. Two or more primary outpatient
encounter diagnoses

80 89 53 59.6% 66.3% 60.8% 68.5%

c. One principal hospital discharge
diagnosis or two primary outpatient
encounter diagnoses

80 91 55 60.4% 68.8% 61.9% 69.5%

HF, heart failure; ICD, International Classification of Diseases; ML, machine learning; NLP, natural language processing; PPV, positive pre-
dictive value.
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model was similar to that of the NLP + MLmodel, we chose the
NLP + ML model as it had a higher PPV. A 2% difference in PPV
may translate into additional 20 000 non-HF patients in a cohort
of 1 million patients classified by the model. Excluding possible
HF cases from the gold standard HF would be expected tomake
the adjudication more stringent and the resultant cohort to in-
clude a higher proportion of true HF. However, we observed
that the model did not perform as well when the gold standard
HF cohort excluded possible HF cases. Of note, prior studies on
HF phenotyping, especially in the ambulatory setting, have in-
cluded ‘possible HF’ as gold standard.56

All models in both gold standard HF (including and exclud-
ing possible HF) seem to have performed better than the tra-
ditional ICD code approaches. When HF is diagnosed using a
principal hospital discharge diagnosis with a HF ICD code, the
PPV was the highest (0.88) but also had the lowest sensitivity
(0.31). We found that when the gold standard HF includes
possible HF, when both NLP and ML models are combined
to calculate an NLP + ML score, and when a weighted F score
is used to identify the optimal threshold score, the phenotyp-
ing process was most efficient, and the assembled HF cohort
is characteristically and prognostically similar to those of a
manually-adjudicated HF cohort. While it is not surprising
given the considerable overlap between the two populations,
considering that both manually-adjudicated and
model-classified HF cohorts included 122 gold standard HF
patients from the gold standard cohort of 200 patients, this
also highlights the success of our models to classify HF from
a pool of patients with an ICD code for HF in EHR.

Several limitations of our study need to be acknowledged.
Our gold standard dataset for estimation of threshold for HF
classification was relatively small. We did not compare our al-
gorithm with other published algorithms as most are not
readily available as free-standing tools or rely on ICD codes.
Our use of 947 variable specifically available in the VA EHR
also limits generalizability to other EHR data. However, the
objective of our study was to develop AI models to pheno-
type HF within the VA EHR and was not meant for non-VA
EHR. It is akin to the logistic regression models used to calcu-
late propensity scores for a specific patient population and
are not meant to be used for other patient populations.57

Patients in our study are predominantly male US veteran pa-
tients which may limit generalizability to other populations.

In conclusion, ML and NLP models performed better
than the traditional ICD code-based approaches in identify-
ing patients with HF from big VA EHR data, and these
AI-phenotyped HF patients were characteristically and

prognostically similar to those manually adjudicated to
have HF. These findings suggest that AI approaches are
useful in developing HF registries from big EHR data, which
can serve as contemporary resources for studies of quality
of care and outcome, clinical effectiveness, and hypothe-
ses generation.
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