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Abstract

Existing risk prediction models for hospitalized heart failure patients are limited. We identified patients hospitalized with a
diagnosis of heart failure between 7 May 2013 and 26 April 2022 from a large academic, quaternary care medical centre
(training cohort). Demographics, medical comorbidities, vitals, and labs were collected and were used to construct random
forest machine learning models to predict in-hospital mortality. Models were compared with logistic regression, and to com-
monly used heart failure risk scores. The models were subsequently validated in patients hospitalized with a diagnosis of
heart failure from a second academic, community medical centre (validation cohort). The entire cohort comprised 21 802 pa-
tients, of which 14 539 were in the training cohort and 7263 were in the validation cohort. The median age (25th–75th per-
centile) was 70 (58–82) for the entire cohort, 43.2% were female, and 6.7% experienced inpatient mortality. In the overall
cohort, 7621 (35.0%) patients had heart failure with reduced ejection fraction (EF ≤ 40%), 1271 (5.8%) had heart failure with
mildly reduced EF (EF 41–49%), and 12 910 (59.2%) had heart failure with preserved EF (EF ≥ 50%). Random forest models in
the validation cohort demonstrated a c-statistic (95% confidence interval) of 0.96 (0.95–0.97), sensitivity (SN) of 87.3%, and
specificity (SP) of 90.6% for the prediction of in-hospital mortality. Models for those with HFrEF demonstrated a c-statistic of
0.96 (0.94–0.98), SN 88.2%, and SP 91.0%, and those for patients with HFpEF showed a c-statistic of 0.95 (0.93–0.97), SN
87.4%, and SP 89.5% for predicting in-hospital mortality. The random forest model significantly outperformed logistic regres-
sion (c-statistic 0.87, SN 75.9%, and SP 86.9%), and current existing risk scores including the Acute Decompensated Heart
Failure National Registry risk score (c-statistic of 0.70, SN 69%, and SP 62%), and the Get With the Guidelines-Heart Failure
risk score (c-statistic 0.69, SN 67%, and SP 63%); P < 0.001 for comparison. Machine learning models built from commonly
recorded patient information can accurately predict in-hospital mortality among patients hospitalized with a diagnosis of
heart failure.
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Introduction

Heart failure (HF) patients experience frequent hospital
admissions with in-hospital mortality rates ranging from 2–
5%.1,2 Over the years, there has been a significant effort

devoted to understanding the factors that contribute to
morbidity and mortality in this high-risk population. This
important work has led to the development of a number of
risk prediction tools, including scores such as Get With the
Guidelines Heart Failure (GWTG-HF) and Acute Decom-
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pensated Heart Failure National Registry (ADHERE), that
have significantly improved our ability to predict adverse
outcomes.3–5 While these models have accurately predicted
in-hospital mortality with good discrimination, there still ex-
ists room for additional optimization.

Machine learning (ML), a domain of artificial intelligence,
utilizes computer software to recognize complex patterns in
large datasets.6 In medicine, its use has been diverse, with
applications ranging from image interpretation to risk
prediction.7–9 The main benefit of ML derives from its ability
to make multi-level correlations using large amounts of data,
and in some circumstances, it has been shown to outperform
existing risk prediction algorithms.6,7

In an attempt to improve on currently existing risk predic-
tion models, we propose a novel ML model to predict
in-hospital mortality among patients hospitalized with a diag-
nosis of HF and compare it to existing HF risk prediction tools.

Methods

The study population included all adult (age>18 years) pa-
tients admitted with a diagnosis of HF who had an ejection
fraction (EF) available, and who had a hospital stay of >

24 hours from two large medical centres between 7 May
2013 and 26 April 2022. The first centre is a large 520 bed
quaternary care centre located on a university campus
(centre 1). The second is a 281 bed tertiary care hospital in
a community setting (centre 2). Patient data were extracted
from the electronic medical record into a structured query
language database. The database contains deidentified
information on all patient records available in these two cen-
tres. HF diagnosis and medical comorbidities were extracted
using International Classification of Diseases (ICD) 9 and 10
codes. Patients were stratified by in-hospital mortality status,
and patient information, including demographics, medical co-
morbidities, vitals on admission, and labs, were compared
using Kruskal–Wallis and Chi-squared tests for categorical
and continuous variables, respectively.

ML predictive models were created utilizing random forest
modelling to predict in-hospital mortality among the cohort.
Random forest is a bagging ML model, which makes predic-
tions based on the results from a set of decision trees. Each
decision tree is a predictor on a subspace of the entire
dataset chosen randomly and independently, and random
forest models take the majority prediction among all decision
trees. We trained our models with 256 trees and a maximum
depth of 1000. We take several approaches to detect and
prevent overfitting, including k-fold validation and a valida-
tion on a validation cohort. For training, we take 10-fold cross
validation, which helps assess generalization of the model to
a random subset of the samples and reduces variance associ-
ated with a single train-test split.

Models were trained and optimized on data prior to 1 June
2020 from centre 1. Data recorded after 1 June 2020 were
used for model evaluation. Data from centre 2 were used
for external validation.

Patient demographics, characteristics, medical comorbidi-
ties, vitals, and labs throughout the hospitalization were
included in the ML models (Supporting information, Table
S1). The admission was split temporally into 5 times points,
with labs and vitals recorded at each point and included in
the model. Time point 1 represented labs/vitals closest to
admission, time point 2 values closest to 25% of the way
into the admission, time point 3 values closest to 50% of
the way into the admission, time point 4 values closest to
75% of the way into admission, and time point 5 values
closest to time of discharge or time of death. Missing values
were denoted with a special numerical indicator and in-
cluded in the model. Missingness of the cohort is shown in
Table S2. For certain labs (total cholesterol, low density lipo-
protein, high density lipoprotein, triglycerides, haemoglobin
A1c), values were pulled from prior admission if no values
from the patient’s current admission were available. Values
were input into the model up to 12 hours prior to the
outcome.

Random forest ML models were created first utilizing
the entire training cohort and then specifically for those with
HF with reduced EF (HFrEF, EF ≤ 40%), HF with mildly reduced
EF (HFmrEF, EF 41–49%), and HF with preserved EF
(EF ≥ 50%). Patients were stratified into these three groups
based on the EF on an echocardiogram obtained during the
hospitalization from which data were pulled.

For comparison, a logistic regression model was created
utilizing the same variables from the ML Random Forest
model (Table S1). The models were then compared with
two existing risk scores: the Get With the Guidelines-Heart
Failure (GWTG-HF) risk score and the Acute Decompensated
Heart Failure National Registry (ADHERE) risk score. The
GWTG-HF risk score is composed of the following variables:
systolic blood pressure (mmHg), blood urea nitrogen
(mg/dL), sodium (mEq/L), age (years), heart rate (beats
per minute), chronic obstructive pulmonary artery disease
history, and Black race. These variables were used to calcu-
late a GWTG-HF risk score using an existing previously pub-
lished calculator.4 This score was then used as a continuous
variable in a logistic regression predicting in-hospital mortal-
ity. For the ADHERE risk score comparison, the variables
that make up the score [systolic blood pressure (mm Hg),
blood urea nitrogen (mg/dL), age (years), and heart
rate (beats per minute)] were used in a logistic regression
model.

In order to evaluate the predictive abilities of the models
above, receiver operating curves were created, and f1
scores and c-statistics were determined for each model.
We used DeLong tests with an alpha value of 95% to deter-
mine the confidence intervals for the c-statistics and f1
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scores. Thresholds were set by calculating the g-mean and
Youden’s J statistic, and subsequent model sensitivity
and specificity were obtained. Precision–recall curves
were also created, and an average precision score was
calculated. Top predictors of the models were also derived.
These predictors were computed on the centre 1 test set
data.

In order to validate the models, the analysis above was
repeated on a validation cohort at a second medical centre
(centre 2). Medical data were extracted from EPIC (Epic
Systems Corporation). Data analysis was performed using
Python. A two-sided P value of <0.05 was used to determine
statistical significance. The study was approved by a local in-
stitutional review board.

Table 1 General characteristics of the cohort stratified by in-hospital mortality

Overall
No in-hospital

mortality
In-hospital
mortality P valuea

N = 21 802 N = 20 348 N = 1454

Demographics
Age, years 70 (58–82) 70 (58–82) 70 (58–81) 0.84
Female, n (%) 9428 (43.2%) 8841 (43.4%) 587 (40.4%) 0.02
Body mass index, kg/m2 25.8 (22.3–30.4) 25.9 (22.3–30.4) 25.6 (22.1–30.4) 0.24
Race, n (%) <0.001
Asian and Pacific Islander 1768 (8.1%) 1625 (8.0%) 143 (9.8%)
Indigenous 78 (0.4%) 72 (0.4%) 6 (0.4%)
Latino 3964 (18.2%) 3664 (18.0%) 300 (20.6%)
Non-Hispanic Black 3185 (14.6%) 3022 (14.9%) 163 (11.2%)
Non-Hispanic White 10 957 (50.3%) 10 262 (50.4%) 695 (47.8%)
Unknown 1850 (8.5%) 1703 (8.4%) 147 (10.1%)

Heart failure, n (%) <0.001
Heart failure with reduced ejection fraction (EF ≤ 40%) 7621 (35.0%) 6979 (34.3%) 642 (44.2%)
Heart failure with mid-range ejection fraction (EF 41–49%) 1271 (5.8%) 1191 (5.9%) 80 (5.5%)
Heart failure with preserved ejection fraction (EF ≥ 50%) 12 910 (59.2%) 12 178 (59.8%) 732 (50.3%)

Location, n (%) <0.001
Centre 1 cohort 14 539 (66.7%) 13 479 (66.2%) 1060 (72.9%)
Centre 2 validation cohort 7263 (33.3%) 6869 (33.8%) 394 (27.1%)

Medical comorbidities/history, n (%)
Aortic valve disorders 4008 (18.4%) 3793 (18.6%) 215 (14.8%) <0.001
Other valvular heart disease 9377 (43.0%) 8817 (43.3%) 560 (38.5%) <0.001
Atrial fibrillation/flutter 8781 (40.3%) 8216 (40.4%) 565 (38.9%) 0.27
Cardiac transplant 1338 (6.1%) 1305 (6.4%) 33 (2.3%) <0.001
Other organ transplant 1788 (8.2%) 1633 (8.0%) 155 (10.7%) <0.001
Cerebrovascular disease 5022 (23.0%) 4686 (23.0%) 336 (23.1%) 0.97
Chronic obstructive pulmonary disease (COPD) 8434 (38.7%) 7923 (38.9%) 511 (35.1%) 0.01
Chronic kidney disease 9551 (43.8%) 8884 (43.7%) 667 (45.9%) 0.10
Coagulopathy 5483 (25.1%) 4910 (24.1%) 573 (39.4%) <0.001
History of coronary artery bypass graft 2624 (12.0%) 2455 (12.1%) 169 (11.6%) 0.62
Coronary artery disease/acute coronary syndrome 12 072 (55.4%) 11 324 (55.7%) 748 (51.4%) 0.002
Congenital heart disease 1855 (8.5%) 1757 (8.6%) 98 (6.74% 0.01
Dementia 674 (3.1%) 640 (3.1%) 34 (2.34%) 0.09
Depression/bipolar disorder 5532 (25.4%) 5208 (25.6%) 324 (22.3%) 0.01
Diabetes mellitus 8025 (36.8%) 7525 (37.0%) 500 (34.4%) 0.05
Dialysis/history of dialysis 1930 (8.9%) 1753 (8.6%) 177 (12.2%) <0.001
Drug use 2159 (9.9%) 2044 (10.0%) 115 (7.9%) 0.01
Ejection fraction 55.0 (35.0–60.0) 55.0 (35.0–60.0) 50.0 (25.0–60.0) <0.001
Ever smoker, n (%) 9548 (43.8%) 9017 (44.3%) 531 (36.5%) <0.001
Human immunodeficiency virus (HIV) 162 (0.7%) 153 (0.8%) 9 (0.6%) 0.68
Hypertension 15 280 (70.1%) 14 410 (70.8%) 870 (59.8%) <0.001
Hyperlipidaemia 11 729 (53.8%) 11 099 (54.5%) 630 (43.3%) <0.001
Iron-deficiency anaemia 4311 (19.8%) 4056 (19.9%) 255 (17.5%) 0.03
Liver disease 5058 (23.2%) 4521 (22.2%) 537 (36.9%) <0.001
Obesity 4393 (20.1%) 4177 (20.5%) 216 (14.9%) <0.001
Pacemaker/ICD/CRT 4025 (18.5%) 3788 (18.6%) 237 (16.3%) 0.03
History of percutaneous coronary intervention 3266 (15.0%) 3054 (15.0%) 212 (14.6%) 0.66
Peripheral vascular disease/vasculitis 8448 (38.7%) 7923 (38.9%) 525 (36.1%) 0.03
Psychosis/schizophrenia 916 (4.2%) 855 (4.2%) 61 (4.2%) 0.99
Rheumatoid arthritis/collagen vascular/connective

tissue disease
2157 (9.9%) 2025 (10.0%) 132 (9.1%) 0.28

Venous thromboembolism 3308 (15.2%) 3030 (14.9%) 278 (19.1%) <0.001
Ventricular tachycardia 3701 (17.0%) 3409 (16.8%) 292 (20.1%) 0.001

Abbreviations: CRT, cardiac resynchronization therapy; ICD, implantable cardioverter defibrillator.
aContinuous variables presented as median (25th–75th percentile). Categorical variables presented as n (%).Continuous and categorical
variables compared by Kruskal–Wallis and Chi-squared tests, respectively.
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Results

The overall cohort consisted of 21 802 patients, of which
14 539 were from centre 1 and 7263 were from centre 2 (val-
idation cohort). In the overall cohort, 7621 (35.0%) patients
had HFrEF, 1271 (5.8%) had HFmrEF, and 12 910 (59.2%)
had HFpEF. The median age (25th–75th percentile) of the co-
hort was 70 (58–82) years, 43.2% of the group was female,
and 6.7% experienced in hospital patient mortality (Table 1).
The cohort was then stratified by in-hospital mortality status.
Compared with patients who survived their hospitalization,
patients admitted with a diagnosis of HF who experienced
in-hospital mortality were less likely to be female (40.4% vs.
43.4%), more likely to be Asian/Pacific Islander (9.8% vs.
8.0%), and less likely to be non-Hispanic Black (11.2% vs.
14.9%). Patients who experienced in-hospital mortality were
more likely to have HFrEF (44.2% vs. 34.3%). They were fur-
ther less likely to have certain comorbidities, including valvu-
lar disease, cardiac transplant, and chronic obstructive pul-
monary disease, and more likely to have coagulopathy,
history of dialysis, liver disease, malignancy, and ventricular
tachycardia when compared with patients without
in-hospital mortality (Table 1; P values for all comparisons
above <0.05). When comparing admission characteristics,
patients with in-hospital mortality were found to have a
higher heart rate and lower blood pressure, as well as a

higher white blood cell count, creatinine, blood glucose,
and B-type natriuretic peptide. They were found to have
lower haemoglobin, platelets, sodium, and cholesterol values
(Table 2; all P values <0.05).

To evaluate the efficacy of our ML random forest model,
we generated receiver operating characteristic curves (ROC)
for both cohorts (Table 3). The evaluation metrics for centre
1 (training cohort) are shown in Figures S1 and S2 and Table
3. We highlight the performance of the constructed models
using the validation cohort (centre 2) in Figure 1 and Table
3. In the validation cohort, the random forest models were
found to have a c-statistic (95% confidence interval) of
0.96 (0.95–0.97). At a threshold of 0.07, the sensitivity of
the model was 87.3% and specificity 90.6% for predicting
in-hospital mortality (Figure 1). The model was also found
to have a precision score of 79.9% for the prediction of
in-hospital mortality. Figure 1 also demonstrates ROC and
precision–recall curves for simple logistic regression using
the same variables as the ML model (full logistic regression)
as well as performance characteristics for the GWTG-HF
and ADHERE risk scores. A DeLong test demonstrated a
statistically significant difference between the four models
(Table 3).

Figure 2 demonstrates the ROC curves for the validation
cohort models stratified by EF. For those with HFrEF, the c-
statistic for the random forest ML model was 0.96

Table 2 Vitals and labs of the cohort stratified by in-hospital mortality

Overall No in-hospital mortality In-hospital mortality
P valueaN = 21 802 N = 20 348 N = 1454

Vitals on admission
Temperature (°C) 98.0 (97.5–98.5) 98.0 (97.5–98.5) 97.9 (97.3–98.5) <0.001
Heart rate (beats per minute) 83.0 (70.0–100.0) 83.0 (70.0–99.0) 91.0 (76.0–108.0) <0.001
Systolic blood pressure (mmHg) 130.0 (112.0–150.0) 131.0 (113.0–150.0) 116.0 (100.0–136.0) <0.001
Diastolic blood pressure (mmHg) 74.0 (64.0–86.0) 75.0 (64.0–87.0) 69.0 (58.0–81.0) <0.001
Mean arterial pressure (mmHg) 112.0 (97.7–127.7) 112.7 (98.3–128.3) 100.3 (87.3–116.7) <0.001
Supplementary O2, n (%) 97.0 (95.0–99.0) 97.0 (95.0–99.0) 97.0 (94.0–99.0) <0.001

Labs on admission
White blood cell count (K/μL) 8.33 (6.3–11.3) 8.3 (6.3–11.1) 9.8 (6.6–14.4) <0.001
Haemoglobin (g/dL) 11.5 (9.7–13.2) 11.6 (9.8–13.3) 10.3 (8.8–12.3) <0.001
Haematocrit (%) 35.3 (30.5–40.1) 35.5 (30.8–40.2) 32.3 (27.8–37.5) <0.001
Platelets (K/μL) 202.0 (151.0–263.0) 204.0 (153.0–264.0) 172.0 (101.3–247.8) <0.001
Sodium 139.0 (135.0–141.0) 139.0 (136.0–141.0) 137.0 (133.0–140.0) <0.001
Potassium 4.2 (3.9–4.6) 4.2 (3.9–4.6) 4.3 (3.9–4.9) <0.001
Chloride 101.0 (97.0–105.0) 102.0 (98.0–105.0) 99.0 (95.0–103.0) <0.001
Bicarbonate/carbon dioxide 24.0 (21.0–26.0) 24.0 (21.0–26.0) 22.0 (19.0–26.0) <0.001
Blood urea nitrogen (BUN) 24.0 (16.0–38.0) 23.0 (16.0–36.0) 33.0 (20.0–53.0) <0.001
Creatinine 1.2 (0.9–1.8) 1.2 (0.9–1.8) 1.6 (1.0–2.7) <0.001
Glucose 122.0 (102.0–160.0) 122.0 (102.0–159.0) 129.5 (105.0–179.3) <0.001
Calcium 8.9 (8.5–9.3) 9.0 (8.6–9.3) 8.8 (8.2–9.2) <0.001
Magnesium 1.7 (1.5–1.9) 1.7 (1.5–1.8) 1.7 (1.5–2.0) <0.001
B-type natriuretic peptide (BNP) 479.0 (205.0–1067.0) 466.0 (199.0–1024.0) 768.0 (337.0–1871.3) <0.001

Labs
Total cholesterol 143.0 (115.0–174.0) 144.0 (116.0–175.0) 124.0 (93.0–156.0) <0.001
Low-density lipoprotein 71.0 (50.0–96.0) 72.0 (51.0–96.0) 56.0 (37.0–81.0) <0.001
High-density lipoprotein 44.0 (34.0–57.0) 45.0 (35.0–57.0) 37.0 (23.0–52.0) <0.001
Triglycerides 100.0 (72.0–143.0) 100.0 (72.0–143.0) 101.0 (72.0–152.0) 0.13
Haemoglobin A1c 6.0 (5.5–6.7) 6.0 (5.5–6.7) 5.9 (5.5–6.7) 0.01

aContinuous variables presented as median (25th–75th percentile). Categorical variables presented as n (%).Continuous and categorical
variables compared by Kruskal–Wallis and Chi-squared tests, respectively.
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(0.94–0.98), the average precision 81.6%, the sensitivity
88.2%, and the specificity 91% at a threshold of 0.10 for the
outcome of in-hospital mortality. For those with HFmrEF,
the c-statistic of the ML model was 0.95 (0.88–1.00), the av-
erage precision 83.1%, and the sensitivity and specificity
90% and 95%, respectively, at a threshold of 0.14. For those
with HFpEF, the c-statistic of the ML model was 0.95 (0.93–
0.97), the average precision 76.9%, and the sensitivity and
specificity 87.4% and 89.5%, respectively, at a threshold of
0.06. For those with HFrEF, HFmrEF, and HFpEF, the c-statistic
s for the ML models were statistically different than those of
the full logistic regression, GWTG-HF, and ADHERE risk pre-
diction models. A comparison of the c-statistics, SN, SP, pre-
cision scores, and DeLong statistics for each of the models
stratified by EF is shown in Table 3. Top predictors of the
random forest models at centre 1 stratified by EF are shown
in Table S3.

Discussion

HF hospitalization is associated with significant morbidity and
mortality, and outcomes among this high-risk population are
not optimally predicted by current risk scores. Using a cohort
of 21 802 patients (14 439 initial cohort, 7 263 validation
cohort) hospitalized with a diagnosis of HF between 7 May
2013 and 26 April 2022, we constructed ML models to predict
in-hospital mortality, and compared them with currently
existing in-hospital HF risk prediction scores. We demonstrate
high sensitivity, specificity, and accuracy of our ML models to
predict in-hospital mortality among those admitted with a
diagnosis of HF across the entire spectrum of EF and show
improvement when compared with both simple logistic re-
gression and with currently existing risk prediction scores.

ML is a form of artificial intelligence that centres on the
creation of algorithms with the ability to learn through the

Table 3 Model performance parameters

AUC Sensitivity Specificity Precision score DeLong*

Centre 1 (training cohort) all ejection fraction
Random forest 0.99 (0.98–0.99) 93.3% 97.3% 93.8% N/A
Logistic regression 0.93 (0.91–0.95) 81.2% 95.0% 82.2% <0.001
ADHERE 0.68 (0.65–0.71) 75.9% 49.4% 15.0% <0.001
GWTG-HF 0.69 (0.66–0.72) 64.5% 63.0% 14.6% <0.001

Centre 1 (training cohort) heart failure with reduced ejection fraction (ejection fraction ≤40%)
Random forest 0.99 (0.98–1.00) 94.1% 96.8% 95.1% N/A
Logistic regression 0.90 (0.86–0.94) 83.9% 86.9% 71.1% 3.11E-03
ADHERE 0.68 (0.63–0.72) 59.3% 66.8% 18.1% <0.001
GWTG-HF 0.64 (0.59–0.69) 52.5% 68.5% 15.8% <0.001

Centre 1 (training cohort) heart failure with mildly reduced ejection fraction (ejection fraction 41–49%)
Random forest 1.00 (1.00–1.00) 100.0% 99.6% 99.5% N/A
Logistic regression 0.73 (0.59–0.87) 79.0% 67.6% 31.6% 2.33E-02
ADHERE 0.67 (0.54–0.80) 79.0% 49.6% 18.7% 1.59E-03
GWTG-HF 0.66 (0.53–0.80) 68.4% 62.3% 15.6% 2.59E-03

Centre 1 (training cohort) heart failure with preserved ejection fraction (ejection fraction ≥50%)
Random forest 0.98 (0.97–1.00) 94.5% 93.9% 92.5% N/A
Logistic regression 0.91 (0.88–0.95) 77.9% 94.7% 77.1% 5.93E-03
ADHERE 0.68 (0.64–0.72) 60.0% 66.7% 13.2% <0.001
GWTG-HF 0.57 (0.53–0.62) 44.1% 71.1% 9.0% <0.001

Centre 2 (validation cohort) all ejection fraction
Random forest 0.96 (0.95–0.97) 87.3% 90.6% 79.9% N/A
Logistic regression 0.87 (0.85–0.89) 75.9% 86.9% 63.4% <0.001
ADHERE 0.70 (0.67–0.72) 69.0% 61.7% 11.4% <0.001
GWTG-HF 0.69 (0.67–0.72) 66.8% 62.9% 11.1% <0.001

Centre 2 (validation cohort) heart failure with reduced ejection fraction (ejection fraction ≤40%)
Random forest 0.96 (0.94–0.98) 88.2% 91.0% 81.6% N/A
Logistic regression 0.85 (0.81–0.89) 64.6% 90.1% 54.8% <0.001
ADHERE 0.69 (0.65–0.74) 70.8% 60.9% 15.8% <0.001
GWTG-HF 0.55 (0.50–0.60) 41.0% 68.5% 8.3% <0.001

Centre 2 (validation cohort) heart failure with mildly reduced ejection fraction (ejection fraction 41–49%)
Random forest 0.95 (0.88–1.00) 90.0% 95.3% 83.1% N/A
Logistic regression 0.80 (0.69–0.90) 75.0% 77.9% 20.2% 1.72E-01
ADHERE 0.70 (0.58–0.81) 70.0% 72.6% 9.8% 2.17E-02
GWTG-HF 0.71 (0.60–0.83) 75.0% 67.3% 10.7% 3.53E-02

Centre 2 (validation cohort) heart failure with preserved ejection fraction (ejection fraction ≥50%)
Random forest 0.95 (0.93–0.97) 87.4% 89.5% 76.9% N/A
Logistic regression 0.84 (0.81–0.88) 73.0% 84.5% 54.0% <0.001
ADHERE 0.70 (0.66–0.73) 66.5% 62.8% 9.9% <0.001
GWTG-HF 0.59 (0.55–0.63) 35.2% 79.7% 7.7% <0.001

*P value, compared with random forest.
Abbreviations: ADHERE, Acute Decompensated Heart Failure National Registry; AUC, area under the curve; GWTG-HF, Get With the Guide-
lines Heart Failure.
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discovery of patterns.6,7 ML algorithms can be divided into
supervised learning, where models are created to predict
specific outcomes, and unsupervised learning, where large
groups of data are analysed with the intent of finding
patterns.7,10 By analysing large data sets, these computer-
based algorithms are able to evaluate complex correlations
to ultimately develop associations between a large number
of variables.11 For example, when creating a model, variables
may not be individually predictive, yet may be able to accu-
rately model an outcome when taken together in different
combinations with each other. The evaluation of such com-
plex patterns is often beyond the scope of traditional statisti-
cal methodologies, such as logistic regression, and therefore,
ML presents an attractive opportunity to improve medical
risk prediction.7

ML has been applied to a wide range of medical applica-
tions ranging from electrocardiogram and echocardiogram
interpretation,12–15 to detection of possible malignancies in
chest radiographs,16–18 and to prediction of outcomes in
patients with various disease processes.19 In the field of HF,
ML has also been shown to be of value.20 In one study of
HFpEF patients, an unsupervised ML model was shown to
predict survival and was shown to improve on current com-
monly used models for risk assessment.21 In another study
of both admitted patients and outpatients at a large

academic medical centre, an ML algorithm was able to accu-
rately predict mortality and was used to generate a mortality
risk score that has been shown to be more accurate than pre-
viously existing risk prediction models.11

In our study, we demonstrate the power of ML to accu-
rately predict in-hospital mortality among patients admitted
with a diagnosis of HF regardless of EF. We also show an im-
provement when comparing ML to traditional logistic regres-
sion and to logistic regression using variables from previously
existing risk scores such as GWTG-HF and ADHERE in both the
initial and validation cohorts. Although prior ML models have
been created to predict outcomes in those hospitalized with
HF, ours is unique in the utilization of temporal changes in vi-
tal signs and labs (i.e., inputting labs and vital signs from five
distinct time points during every admission). This input helps
capture important information on patient trajectories while
admitted and, in doing so, is able to add an additional dimen-
sion to risk prediction not present in the majority of previ-
ously constructed HF ML models. This added dimension
may help explain why our model appears to have superior
ability (c-statistic and sensitivity) in predicting mortality
compared with nearly 30other HF models evaluated in differ-
ent cohorts in a recent meta-analysis performed by Mpanya
et al.20 The utilization of temporal variables throughout a pa-
tient’s hospitalization may allow for the ultimate creation of

Figure 1 Receiver operating and precision–recall curves for centre 2 (validation cohort) by risk prediction method. Abbreviations: ADHERE, Acute De-
compensated Heart Failure National Registry; AUC, area under the curve; FPR, false positive rate; GWTG HF, Get With the Guidelines Heart-Failure;
Rand, Random Forest; TPR, true positive rate.
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dynamic risk prediction that is able to continuously monitor
for changes in a patient’s clinical condition during hospitaliza-
tion to provide updated risk metrics as the patient’s medical
course progresses. This may help flag hospitalized HF patients
at increased risk of adverse outcomes and may be useful in
triggering interventions such as cardiology or advanced HF
consultation or upgrade to a higher level of care.

Limitations

Although the models were validated at a second hospital,
overall generalizability may still be limited, and further valida-
tion in a diverse set of populations is needed. Our cohort is
also limited to those who had an EF obtained during their

hospitalization, which further limits generalizability. The
patients included in this study were hospitalized with a diag-
nosis of HF, but due to the design of the database, we were
unable to confirm that this was the primary diagnosis. The
models created require input from many variables and so
would have to be integrated into an electronic medical record
and calculated by computer, as manually inputting such a
large amount of information would not be feasible.

Conclusions

Here we demonstrate the creation of accurate, sensitive, and
specific ML models to predict in-hospital mortality among

Figure 2 Receiver operating and precision–recall curves for centre 2 (validation cohort) stratified by ejection fraction. Abbreviations: ADHERE, Acute
Decompensated Heart Failure National Registry; AUC, area under the curve; EF, ejection fraction; FPR, false positive rate; GWTG HF, Get With the
Guidelines-Heart Failure; Rand, random forest; TPR, true positive rate.
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patients hospitalized for HF irrespective of EF and demon-
strate improvement when compared with traditional logistic
regression and commonly used risk prediction scores. These
models, when used in the appropriate context, may help flag
patients hospitalized with a diagnosis of HF at high risk for
inpatient mortality.

Code availability

We include the Python scripts used for defining and training
the models, and more specific data input formats in the pub-
lic GitHub repository (link).
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