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Abstract

Coronary heart disease (CHD) is one of the leading causes of mortality and morbidity in the United States. Accurate time-to-event CHD
prediction models with high-dimensional DNA methylation and clinical features may assist with early prediction and intervention
strategies. We developed a state-of-the-art deep learning autoencoder survival analysis model (AESurv) to effectively analyze high-
dimensional blood DNA methylation features and traditional clinical risk factors by learning low-dimensional representation of
participants for time-to-event CHD prediction. We demonstrated the utility of our model in two cohort studies: the Strong Heart
Study cohort (SHS), a prospective cohort studying cardiovascular disease and its risk factors among American Indians adults; the
Women’s Health Initiative (WHI), a prospective cohort study including randomized clinical trials and observational study to improve
postmenopausal women’s health with one of the main focuses on cardiovascular disease. Our AESurv model effectively learned
participant representations in low-dimensional latent space and achieved better model performance (concordance index-C index of
0.864 ± 0.009 and time-to-event mean area under the receiver operating characteristic curve-AUROC of 0.905 ± 0.009) than other survival
analysis models (Cox proportional hazard, Cox proportional hazard deep neural network survival analysis, random survival forest, and
gradient boosting survival analysis models) in the SHS. We further validated the AESurv model in WHI and also achieved the best model
performance. The AESurv model can be used for accurate CHD prediction and assist health care professionals and patients to perform
early intervention strategies. We suggest using AESurv model for future time-to-event CHD prediction based on DNA methylation
features.
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Introduction
Coronary heart disease (CHD) is one of the leading causes of
mortality and morbidity in the United States [1–4]. Accurate time-
to-event CHD prediction models are needed to provide early pre-
diction and assist decisions regarding implementation of inter-
vention strategies. Clinical features and traditional risk factors
such as smoking and blood pressure have been widely used
for CHD prediction [1, 5]. On the other hand, various studies
have indicated that differential DNA methylation, a reversible
epigenetic mechanism that adds methyl groups to cytosine and
thus modifies genome function, is associated with CHD [6–12].
Furthermore, previous epidemiological studies have identified
that variations in DNA methylation are associated with CHD
risk factors such as air pollution [13], cardiotoxic metal expo-
sures [14, 15], smoking [1, 16], hypertension [17, 18], obesity [19],
and type-2 diabetes [10, 12, 13, 16–19]. For example, Turunen
et al., [20] found that reductions in DNA methylation have been
linked to atherosclerosis in various tissues, which is a chronic
disease that may contribute to cardiovascular disease morbidity
and mortality [12, 20]. Indeed, DNA methylation can reflect the
effects of cumulative cardiovascular risk factor exposures on
epigenetics and provide rich information for CHD prediction as
biomarkers.

While DNA methylation data have been previously used
towards CHD prediction, existing models usually focused on a
few selected DNA methylation sites (CpG sites) together with
other features such as single nucleotide polymorphisms (SNPs)
or clinical risk factors to predict binary CHD [7–9]. However,
binary CHD prediction does not account for the time-to-event
nature of CHD development. This can be better addressed by
survival analysis, which studies the time of certain CHD event
(e.g., CHD death, first occurrence of clinical myocardial infarction,
etc). Classic Cox proportional hazard model (CPH) estimates log
hazard through linear model, thus may not capture nonlinearity
within the data. Therefore, DeepSurv, a fully connected neural
network based Cox survival analysis model, has been proposed to
account for non-linear relationships [21]. In addition, the current
cutting-edge Illumina Methylation Array measures more than
850 000 or 450 000 epigenome-wide DNA methylation sites [22,
23], which facilitates the discovery of hundreds of significant
DNA methylation sites related to CHD through epigenome
wide association studies. These newly identified significant
sites form high-dimensional data [6, 24, 25]. For example, in a
previous study, 635 noteworthy CpG sites were discovered in the
Strong Heart Study (SHS), while 398 noteworthy CpG sites were
identified in the Women’s Health Initiative (WHI) [6]. In the same
study, the Framingham Heart Study and Atherosclerosis Risk in
Communities Study discovered 698 and 2092 noteworthy CpG
sites, respectively [6]. The study found 29 common CpG sites
across at least four cohorts [6]. While these identified noteworthy
sites help reduce the dimension of DNA methylation data for
downstream analysis, the hundreds of CpG sites are still high-
dimensional. Therefore, it is desirable to learn representation of
the participants from the high-dimensional DNA methylation
data to improve prediction of time-to-event CHD. One way of
learning representations of high-dimensional data is through
an autoencoder model. Autoencoder is an unsupervised deep
learning model that learns low dimensional representations
(embeddings) from high dimensional data [26]. When combined
with a CPH model, the autoencoder can learn embeddings of
DNA methylation and clinical data and leverage it towards time-
to-event survival analysis.

In this study, we developed a novel deep learning autoencoder
survival analysis (AESurv) model. Our AESurv model tackles non-
linear relationships and effectively learns low dimensional latent
space representation of participants from high dimensional input
DNA methylation data and clinical features. The developed model
utilized noteworthy DNA methylation CpG sites generated for
the American Indian communities in the Strong Heart Study in
combination with clinical features. We validated our model in
the Women’s Health Initiative with noteworthy CpG sites alone.
Our state-of-the-art prediction of time-to-event CHD can serve as
early signals of CHD risk in baseline healthy individuals and assist
in the development of early intervention strategies.

Methods
Schematic workflow of our study is shown in Fig. 1. Clinical and
DNA methylation data were first obtained from population cohort
studies. We then utilized the proposed AESurv model to learn
low-dimensional representations from the combined clinical
and DNA methylation features. We further compared the model
performances towards predicting time-to-event CHD with other
survival machine learning models including cox proportional haz-
ard model, cox proportional hazards deep neural network model,
random survival forest (RSF), and gradient boosted survival
analysis.

Study population
Strong Heart Study. The SHS cohort was established to study the
disproportionally high burden of CHD in American Indian com-
munities in the Southwest and the Great Plains. Incident CHD in
the SHS cohort in this study includes both fatal (sudden death
due to CHD and first occurrence of definite fatal myocardial
infarction) and non-fatal (definite non-fatal CHD and non-fatal
myocardial infarction) events. The current study was conducted
on 2321 participants with 16.45 years of follow-up and 749 inci-
dent CHD events during follow-up (338 are fatal and 411 are
non-fatal). Our participants met the same inclusion criteria as
described in Navas-Acien [6], with no coronary heart disease or
missing data for risk factors of cardiovascular disease at baseline,
but with available blood DNA methylation measures. The SHS is a
participatory based study working in partnership with tribal com-
munities in the Southwest, the Northern plains, and the Southern
Plains. Participating tribal communities and institutional review
boards (IRBs) of participating institutions and the respective area
Indian Health Service approved the protocol. Informed consent
was provided by all participants.

Women’s Health Initiative. WHI is a prospective cohort study
including randomized clinical trials (CTs) and observational study
(OS) to improve postmenopausal women’s health with one of
the main focuses on cardiovascular disease. WHI CHD is defined
as the definite silent myocardial infarction, first occurrence of
clinical myocardial infarction, or a death due to possible or def-
inite CHD in main WHI, extension 1, and extension 2 CT and OS
population. The WHI participants in this study were drawn from
Broad Agency Announcement 23 (WHI-BAA23, an incident CHD
case–control study) with available blood DNA methylation data
[27]. Few missing CpG sites that did not pass quality control were
imputed with k-nearest neighbors algorithm. WHI participants
who were included in this study were free of CHD at baseline
and had blood DNA methylation measures, resulting in a total
of 2107 participants with average of 17.33 years of follow-up
and 706 CHD events during follow-up. WHI participants in our
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Figure 1. Schematic workflow using machine learning survival analysis models with high-dimensional biomarkers from population cohorts.

study had an average age of 64.47 at screening. The majority
of race/ethnicity in WHI population are White (58%) and Black
(27%). All WHI study protocols were approved by IRBs at multiple
academic institutions and participants. Informed consent was
provided by all participants.

DNA methylation data
The MethylationEPIC BeadChip (Illumina 850 K) was used to
measure Blood DNA methylation for SHS, while the Human-
Methylation450 BeadChip (covering 450 K CpG sites) was used
for measurements in WHI. We followed the same quality check
and inclusion criteria for DNA methylation sites as described
in Navas-Acien [6]. The M-values (SHS) and beta value (WHI)
of CpG sites were screened through an elastic-net penalized
Cox proportional hazard model to identify noteworthy CpG
sites associated with time-to-event CHD. The resulting 635
noteworthy CpG sites in SHS and 398 noteworthy CpG sites
in WHI from our previous epigenome wide association studies
[6] were used as our input DNA methylation features in this
study.

Clinical features for Strong Heart Study
Continuous variables that are used as input features were age
(years), BMI (kg/m2), systolic blood pressure (mmHg), high-density
lipoprotein cholesterol (mg/dL), low-density lipoprotein choles-
terol (mg/dL). Categorical features included sex (male or female),
type 2 diabetes (yes or no), hypertension treatment (yes or no),
smoking status (current, former, or never), albuminuria status

(normal, microalbuminuria, or macroalbuminuria), study cen-
ter (Oklahoma, Arizona, or South Dakota and North Dakota),
and proportions of CD4T, CD8T, NK, B cells, and monocytes. For
simplicity, we call these variables ‘clinical features’ throughout.
One-hot encoding was utilized for categorical features (i.e., cre-
ated dummy variables) to generate the final set of 25 clini-
cal features (Table S1). Clinical features were only used in SHS
analyses.

Autoencoder survival analysis model
We developed a deep learning AESurv model utilizing a super-
vised autoencoder combined with the average negative log partial
likelihood loss function from CPH. Originally, autoencoder is an
unsupervised deep learning method that consists of an encoder
and a decoder (Fig. 2) [26, 28]. The encoder takes high-dimension
input features xi and reduces xi to lower-dimension embeddings
(representative features), whereas the decoder outputs the recon-
structed feature x̂i. Here we adapt the unsupervised autoencoder
model into a supervised one by using the learned embedding to
predict the log hazard ratio ĥw(xi) in log hazard function. Specif-
ically, the network output ĥw(xi) estimates the log-risk function
in the Cox model which enables us to conduct time-to-event
prediction [21]. To train our AESurv model, we combined the
loss function for autoencoder to reconstruct the original features
(reconstruction loss that measured the differences between the
original features and reconstructed features) and the average
negative log partial likelihood loss function from CPH (Cox loss).
We also added L2 regularization (λ ||w||22) to avoid overfitting. We
define NE=1 as the number of participants with CHD and the set

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae479#supplementary-data
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Figure 2. Conceptual of autoencoder survival analysis model (AESurv). Epigenome wide association study (EWAS); strong heart study (SHS).

of participants still at risk of failure at time t as R(t) = {i:Ti ≥ t}. The
full loss function is defined as:

lossAESurv =
N∑

i=1

(
xi − x̂i

)2

︸ ︷︷ ︸
Reconstruction loss

− 1
NE=1

∑
⎛
⎝ĥw (xi) − log

∑
j∈R(Ti)

eĥw(xj)

⎞
⎠

︸ ︷︷ ︸
Cox loss

+ λ ||w||22 (1)

The autoencoder encoding-decoding process effectively learns
low-dimensional participant representations. Meanwhile, the pre-
diction process enables the information related to CHD to be kept
in the embeddings. Our model enables an autoencoder survival
analysis for both feature representation and time-to-event pre-
diction. The 635 DNA methylation and 25 clinical features from
SHS were input together into our autoencoder model to learn
participant low dimensional representations/embeddings.

Specifically, our AESurv comprises three parts: an encoder that
learns a latent space representation of each participant based on
the initial 660 input features (635 DNA methylation features and
25 clinical features), a decoder that rebuilds the input features
(Fig. 2), and a linear prediction component of the log hazard
ratio. The number of nodes for our model in three hidden layers
are 256, 32, and 256, respectively. The layer with 32 neurons
is the embedding layer. Various embedding sizes, including 2,
16, 32, 64, 128, and 256, were compared to select the optimal
model structures. ReLU activation function was used [29–31].
The hyperparameter set was chosen according to the best model
performance from the validation set. The AESurv model was
trained with L2 regularization weight of 0.0001, the Adam opti-
mizer [32], batch size of 128, dropout rate of 0.5, and learning
rate of 0.0001. Early stopping (epoch stopped when performance
of the model on validation dataset started to decrease) was used
to prevent overfitting. We repeated the same process in WHI with
398 input DNA methylation features.

Model interpretation
The learned latent space embeddings were first visualized using t-
SNE, which has been widely used for visualizing high-dimensional

data [33]. T-SNE can embed the local structure of the data into
low dimensional spaces and reveal patterns in the data. T-SNE
minimizes the Kullback–Leibler divergence between the original
high-dimensional data and the low-dimensional embedding. Here
we utilized t-SNE to discover CHD patterns in the data. In the
t-SNE plot, participants were clustered based on the learned
embeddings of DNA methylation and clinical features. The results
were colored with or without CHD to visualize the effectiveness of
learned embeddings.

Survival analysis with other models
The Cox proportional hazards model is a regression model that
is used to investigate the simultaneous effect of risk factors on
survival time [34]. It assumes proportional hazards and linear
relationships. Splines can be used together with CPH model to
incorporate nonlinear relationships [35]. Katzman [21] developed
a DeepSurv model that used a non-linear neural network based
log hazard ratio in the CPH log hazard function. Additionally, RSF
is an ensemble method for right-censored survival data, which do
not assume proportional hazards and takes non-linear effects into
consideration [36]. Gradient boosted survival analysis (GBRTS)
is an additive model that minimized the partial likelihood loss
by adding regression trees [37]. It combines the multiple base
learners’ predictions to achieve a better overall model. Hyperpa-
rameters for CPH, DeepSurv, RSF, and GBRTS were tuned with five-
fold cross validation. We used same CHD endpoint for all models
for comparability.

We used five-fold cross validation in our supervised machine
learning model. To summarize, we first randomly shuffle and
split the dataset into five equal groups, where each of the group
was used as a test set and the other four groups were used as
training data. To identify the best parameter combination, the
training data were further split into 10% for validation and 70%
for training. Therefore, the dataset was split into individually held
20% test, 70% training, and 10% validation. The best parameter
sets were selected based on the model performance from the
validation set. We then used the best parameter combination to
build the model and test on the unseen test set. We averaged the
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Table 1. Embedding size comparison of AESurv models in the
strong heart study.

Embedding size C-index mean AUROC

2 0.862 ± 0.014 0.903 ± 0.012
16 0.862 ± 0.012 0.903 ± 0.014
32 0.864 ± 0.009 0.905 ± 0.009
64 0.861 ± 0.016 0.902 ± 0.015
128 0.860 ± 0.01 0.901 ± 0.009
256 0.859 ± 0.013 0.900 ± 0.014
512 0.857 ± 0.011 0.898 ± 0.011

five-split performance results to get the final prediction results.
Therefore, each sample is given the opportunity to be tested
once and used to train the model four times. The five-fold cross
validation procedure were then conducted five times to obtain
their average results. We reported the average prediction accuracy
and standard deviation (± SD). We computed Concordance index
(C-index), time-to-event mean Area Under the Receiver Operating
Characteristic curve (AUROC), and time-dependent AUROC as
measures of predictive accuracy. C-index is a generalization of the
AUROC curve to consider censored data. It reflects the model’s
ability to accurately rank survival times [38, 39]. It calculates as
the number of concordant pairs divided by the sum of number of
concordant pairs and discordant pairs. The higher the AUROC and
C-index, the better model performance. Time-dependent AUROC
determines how well a model can perform at certain time points
given the disease status at that time point. Time-to-event mean
AUROC is calculated as the average of all time-dependent AUROC.
Our AESurv model was implemented using Pytorch (Version
1.10.1) and [37]. We compared AESurv results with other machine
learning and deep learning models, including CPH, DeepSurv,
RSF, and GBRTS. We implemented the other models with Scikit-
survival (Version 0.16.0), PyTorch (Version 1.10.1)), and R survival
package (Version 3.5–7). The de-identified code is available at
https://github.com/YikeShen/AESurv.

Results and discussion
Exploration of CHD patterns with participant
representations in the latent space
Our AESurv model effectively learned the participant represen-
tation from the DNA methylation and clinical features in a low-
dimensional latent space that can be used towards CHD predic-
tion. We first compared the model performances of our AESurv
model with different embedding sizes: 2, 16, 32, 64, 128, 256,
and 512 (Table 1). Our results showed that the AESurv model is
robust to the choice of embedding sizes with embedding size 32
achieved the highest model performance (C-index = 0.864 ± 0.009,
mean AUROC = 0.905 ± 0.009). We thus selected 32 as the optimal
embedding size.

We then visualized the raw input features of the training
dataset (Fig. 3a), the learned embeddings of training (Fig. 3b), and
test dataset (Fig. 3c) under their t-SNE coordinates colored by with
or without CHD. We randomly selected one of the five splits in one
repeat for visualization. The purple color refers to participants
without CHD and yellow color refers to participants with CHD.
Our results showed that the CHD patterns can be reflected by the
participant embeddings. There were clear clusters of participants
with or without CHD in the test dataset using learned participant
representations (Fig. 3). The ability to reflect CHD diagnoses based
on learned DNA methylation and clinical feature embeddings sug-
gests that our AESurv method effectively learns low-dimensional

Table 2. Time-to-event model performance of the strong heart
study. DNA methylation features were selected through
elastic-net penalized cox regression from epigenome-wide DNA
methylation array (850 K). Clinical features are listed in the
materials and methods. Numbers are prediction
score ± standard deviation of five repeat runs. AESurv = deep
autoencoder survival analysis model, DeepSur = Cox
proportional hazards deep neural network model, RSF = random
survival forest model, GBRTS = gradient boosted survival
analysis model, CPH = Cox proportional hazard model.

SHS DNA methylation features (635) + Clinical features (25)

Model C-index mean AUROC

AESurv 0.864 ± 0.009 0.905 ± 0.009
DeepSurv 0.855 ± 0.013 0.897 ± 0.012
RSF 0.683 ± 0.023 0.719 ± 0.024
GBRTS 0.710 ± 0.027 0.757 ± 0.029
CPH 0.855 ± 0.014 0.898 ± 0.015
DNA methylation features (635)
AESurv 0.853 ± 0.01 0.893 ± 0.009
DeepSurv 0.845 ± 0.013 0.885 ± 0.011
RSF 0.645 ± 0.027 0.670 ± 0.031
GBRTS 0.689 ± 0.019 0.730 ± 0.021
CPH 0.845 ± 0.013 0.887 ± 0.013
Clinical features (25)
AESurv 0.706 ± 0.017 0.759 ± 0.02
DeepSurv 0.708 ± 0.015 0.761 ± 0.016
RSF 0.694 ± 0.019 0.742 ± 0.024
GBRTS 0.679 ± 0.014 0.729 ± 0.015
CPH 0.713 ± 0.014 0.767 ± 0.017

latent space representations of high-dimensional DNA methyla-
tion and clinical features.

Prediction of time-to-event CHD
We utilized our AESurv model to predict the time-to-event CHD
combining the selected DNA methylation and clinical features.
Additionally, we compared the performance of other commonly
used survival analysis models—DeepSurv, CPH, RSF, GBRTS. Our
AESurv model achieved the best model performance compared
to all other survival analysis models with the highest C-index
of 0.864 ± 0.009 and time-to-event mean AUROC of 0.905 ± 0.009
(Table 2). Time-dependent AUROC of AESurv model had better
performance than tree-based RSF and GBRTS model (Fig. 4).
The C-index gives a rank-based prediction score while the time-
dependent AUROC shows survival function with the mean AUROC
averaged across time. CPH and DeepSurv models had similar
performance with the similar mean AUROC (CPH = 0.898 ± 0.015,
DeepSurv = 0.897 ± 0.012) and C-index (CPH = 0.855 ± 0.014, Deep-
Surv = 0.855 ± 0.013) (Table 2). DNA methylation of adjacent CpGs
within the same CpG island or regulatory region may be co-
regulated, leading to the detection of multiple co-regulated
CpGs in a single EWAS. Some distant CpGs could be interrelated
as well [40, 41]. Inclusion of all these CpGs within models
increases the dimensionality of the data, leading to potentially
redundant information. Our AESurv model successfully reduced
the dimensionality and learned the latent space representation
of DNA methylation features. The representative features in the
low dimensional latent space had more predictive power than the
raw input features.

The performances of the tree-based survival analysis models
were worse than AESurv, DeepSurv, and CPH, with the C-index
being 0.683 ± 0.023 and mean AUROC of 0.719 ± 0.024 for RSF
and C-index of 0.710 ± 0.027 and mean AUROC of 0.757 ± 0.029
for GBRTS (Table 2). Previous studies used tree-based models

https://github.com/YikeShen/AESurv
https://github.com/YikeShen/AESurv
https://github.com/YikeShen/AESurv
https://github.com/YikeShen/AESurv
https://github.com/YikeShen/AESurv
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Figure 3. Visualization of DNA methylation and clinical feature embeddings in t-SNE coordinates in the strong heart study. (a) t-SNE of raw EWAS selected
features; (b) t-SNE of autoencoder learned embeddings in training dataset; (c) t-SNE of autoencoder learned embeddings in test dataset.

with selected DNA methylation and/or SNPs to predict binary
CHD outcomes. Dogan [7] achieved an AUROC of 0.78 in the
Framingham Heart Study with random forest classification on
binary CHD outcomes. Cugliari [9] predicted the fatal and non-
fatal cardiovascular disease events using random forest model in
an Italian cardiovascular cohort (EPICOR cohort) with AUROC of
0.74. However, predicting time-to-event CHD can better account
for time component in CHD development and could be more
challenging.

Ablation study of DNA methylation and clinical
features
To further understand the contribution of DNA methylation
and clinical features to predict time-to-event CHD, we tested
model performance using only clinical features and only DNA
methylation features. The results of CHD prediction using 635
DNA methylation features alone had slightly worse performance
(AUROC = 0.853 ± 0.01) than using both DNA methylation and
clinical features (AUROC = 0.864 ± 0.009) (Table 2). Using 25
clinical features alone has the lowest prediction accuracy than
DNA methylation alone and the combination of DNA methylation
and clinical features (Table 2). Previous studies also found clinical
features and traditional risk factors may have substantial residual
risks in CHD prediction [1, 5, 7, 8, 24]. For example, Wilson
[1] incorporated clinical features including blood pressure and
cholesterol in CHD prediction and noted that other factors,
may also contribute to CHD prediction but are not included
in the model due to data availability. Since clinical features
and traditional risk factors are usually selected based on prior
knowledge, it would be almost impossible to capture all potential
CHD risk factors. On the other hand, the effects of cumulative
cardiovascular risk factor exposures can be reflected by DNA
methylation. By utilizing rich DNA methylation data, researchers
and clinicians now have more power in accurate time-to-event
CHD prediction to assist in early intervention of patients with
high risk for CHD.

Table 3. Time-to-event model performance of Women’s health
initiative. DNA methylation features were selected through
elastic-net penalized cox regression from epigenome-wide DNA
methylation array (450 K). Clinical features are listed in the
materials and methods. Numbers are prediction
score ± standard deviation of five repeat runs. AESurv = deep
autoencoder survival analysis model, DeepSur = Cox
proportional hazards deep neural network model, RSF = random
survival forest model, GBRTS = gradient boosted survival
analysis model, CPH = Cox proportional hazard model.

WHI DNA methylation features (398)

Model C-index

AESurv 0.752 ± 0.019
DeepSurv 0.741 ± 0.023
RSF 0.457 ± 0.014
GBRTS 0.457 ± 0.014
CPH 0.725 ± 0.021
CPH-Splines 0.624 ± 0.016

Validation in Women’s Health Initiative
To further investigate our model applicability across different
cohorts, we tested our AESurv in the Women’s Health Initiative.
From the SHS ablation study, DNA methylation features alone
have good performance and adding clinical features only
incrementally increased prediction accuracy. Therefore, we
focused on WHI with DNA methylation features. Similarly, AESurv
had the best performance (C-index = 0.752 ± 0.019) than DeepSurv
(C-index = 0.741 ± 0.023), CPH (C-index = 0.725 ± 0.021), and CPH
with splines (C-index = 0.624 ± 0.016) (Table 3). Similarly, tree-
based survival analysis models had the worst performance of
0.457 ± 0.014 for both RSF and GBRTS (Table 3).

We note that there are several differences between SHS and
WHI cohorts that may contribute to different prediction accuracy
in two cohorts. For example, the noteworthy CpG sites from SHS
were obtained from 850 K DNA methylation array, while the CpG
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Figure 4. Strong heart study time-dependent AUROC (one randomly selected repeat (total 5). AESurv = deep autoencoder survival analysis model,
DeepSurv = Cox proportional hazards deep neural network model, RSF = random survival forest model, GBRTS = gradient boosted survival analysis model,
CPH = Cox proportional hazard model.

sites from WHI were obtained from 450 K DNA methylation array.
Additionally, WHI is a female cohort, whereas SHS includes both
male and female participants. However, our ablation results from
SHS showed that adding gender as a feature only incrementally
increased prediction accuracy. Finally, our AESurv model consis-
tently performs better than other survival analysis models in
different population cohorts, highlighting the applicability of our
model for coronary heart disease prediction.

Limitations and future directions
In this study, we used two distinct populations, an American
Indian population (SHS) and a female population (WHI), with
over 2000 participants in each cohort. While our AESurv model
consistently achieved better results in both populations, the

performance of our model in other populations is yet to be
explored. In the future, we could expand to larger populations
or consortia to increase generalizability. We could also predict
different subcategories of CHD, such as fatal and non-fatal CHD,
to provide more nuanced predictions. Finally, we could further
adapt our AESurv model to directly learn from 850 K or 450 K
DNA methylation array data.

Conclusion
We developed a novel AESurv model to analyze high-dimensional
DNA methylation features and predict time-to-event CHD, which
can contribute to early prediction and clinical intervention of
CHD. Our model achieved the state-of-the-art prediction accuracy
of CHD in both SHS and WHI and showed that incorporating DNA
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methylation data to predict CHD has substantial increase in pre-
diction accuracy than only using traditional clinical features (risk
factors). Finally, our AESurv model demonstrates the strength of
learning low dimensional representations of high dimensional
DNA methylation features. In the future, with the advancement
of technology, even higher dimensional DNA methylation
features may become available, and our model provides a new
approach and complements the traditional survival analysis
models in high-dimensional settings for more accurate CHD
prediction.

Abbreviations
CHD = coronary heart disease; AESurv: deep learning autoencoder
survival analysis; DeepSurv = Cox proportional hazards deep
neural network model; CPH = Cox proportional hazard model;
RSF = random survival forest; GBRTS = gradient boosted survival
analysis; C-index = concordance index; AUROC = area under the
receiver operating characteristic curve.

Key Points

• Developed a deep learning autoencoder survival analysis
model (AESurv) that can incorporate high-dimensional
DNA methylation and clinical data to learn lowdi-
mensional participant representations towards coronary
heart disease (CHD) prediction.

• The learned participant embeddings through AESurv
can effectively reveal patterns of participants’ CHD con-
ditions.

• AESurv is able to accurately predict CHD in two differ-
ent population cohorts: the Strong Heart Study (con-
cordance index = 0.864 ± 0.009) and the Women’s
Health Initiative (concordance index = 0.752 ± 0.019)
and achieved the best model performance compared
with other machine learning models such as DeepSurv,
random survival forest, and gradient boosting survival
analysis models.

• The proposed AESurv model can be used to assist early
detection of CHD based on DNA methylation and clinical
features.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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