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Abstract: Huntington’s disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells 
in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including 
pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic 
potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, 
a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously 
over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within 
an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open 
field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP. 
Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group. 
Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group. 
Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in 
the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory 
and fibrotic factors in the HD model.
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Introduction

Huntington’s disease (HD) is a rare hereditary neurode-
generative condition marked by the progressive emergence 
of physical limitations, psychiatric symptoms, and cognitive 
deterioration [1]. The global rate of HD is about 2.7 cases 
per 100,000 [2]. Nevertheless, it is widely acknowledged that 
there is geographical variation in its incidence. Compared to 
Asian countries, the condition is more prevalent in Western 
nations, including the Australia, United States, Canada, and 
the United Kingdom [3, 4]. HD is a hereditary condition 
passed down in an autosomal dominant manner and arises 
due to the expansion of a trinucleotide sequence, known as 
cytosine-adenine-guanine (CAG), inside the coding domain 
of the gene associated with HD. This gene is responsible for 
the production of the Huntingtin (HTT) protein, found in 
various tissues, including the central nervous system (CNS). 
Although its precise actions remain incompletely under-
stood, it has been postulated to fulfil crucial functions in 
several cellular processes, including vesicle transport, protein 
trafficking, and selective autophagy [5, 6]. When repetitions 
of CAG trinucleotide sequence exceed the typical range of 
6–26, it exhibits instability and has the potential to expand 
in later generations, particularly when transmitted pater-
nally. The popularly accepted threshold for the development 
of HD is often regarded as 36 repetitions or more, however 
complete penetrance is not shown until there are at least 40 
repeats present [7, 8]. The symptoms of HD often manifest in 
people aged among 30–50 years and can be categorized into 
three primary domains: motor, psychiatric, and cognitive 
[9, 10]. Chorea, a prominent motor manifestation of HD, is 
characterized by transient and involuntary movements that 
often impact the trunk, facial region, and upper extremities. 
Additional Motor/physical symptoms are the emergence 
of bradykinesia, dystonia, hyperreflexia, and deceleration 
of ocular saccades [11]. HD does not have a definitive cure, 
but drug therapy, physiotherapy, occupational therapy and 
speech therapy are also effective in reducing the complica-
tions caused by this disease. Recently, some neuroprotective 
substances are used for treatment HD, such as Apelin, Ape-
lin, which is a neuropeptide with bioactive properties, has 
been shown to functions as an ligand for the apelin receptor 
(APR) [12]. Widely recognized is the fact that proteases play 
a significant role in cleaving prepro-Apelin, contributing 
to the generation of physiologically-active Apelin peptide, 
including Apelin-12, -13, -17, and -36 [13]. Within this set of 

peptides, Apelin-13 exhibits the highest level of biological 
activity in comparison to the others [14]. Comprising 380 
amino acids, APR stands as a prototypical G protein-coupled 
receptor. It exhibits significant sequence similarity, with 
around 30%–40% amino acid sequence of the angiotensin 
II receptor type 1 [15]. APR has been identified in different 
parts of the CNS like cerebral cortex, thalamus, hypothala-
mus, midbrain, reticular formation, basal ganglia, glial cells 
and white matter [16]. Previous research has shown a sig-
nificant association between Apelin and the advancement 
of HD. A recent study illustrated that that Apelin facilitates 
the upregulation and phosphorylation of cytoskeletal com-
ponents via the regulation of PI3K/Akt and MAPK/ERK 
signaling pathways, therefore, facilitating the microtubule-
mediated transport [17]. Additionally, the administration of 
insulin-like growth factor 1 (IGF1) can promote microtubule 
transport and metabolic function. This improvement subse-
quently leads to the elimination of HTT protein aggregates, 
and then improve mitochondria functionality, alleviation of 
motor irregularities, and increased endurance and survival. 
Interestingly, the upregulation of Apelin expression has been 
seen in response to IGF1 [18]. Hence, it is plausible that Ape-
lin has a significant role in supporting the preservation of ax-
ons and dendrites by controlling the process of cytoskeleton 
remodeling. Recent studies have suggested that Apelin-13 
may have potential therapeutic benefits for HD. Apelin-13 
has been shown to shield neural cell from cell death caused 
by mutant HTT and reduce inflammation in the brain [18]. 
Although now it is used for the treatment of neurodegenera-
tive diseases from mesenchymal stem cells and neural stem 
cells and their differentiation, but it seems that apelin can 
be a suitable option for treatment [19]. Overall, the associa-
tion between Apelin-13 and HD seems to be multifaceted, 
with Apelin-13 potentially playing a protective role against 
the neurodegenerative effects of mutant HTT in HD [12-15]. 
Consequently, we intended to assess the impact of Apelin-13 
HD rat models induced by 3-NP.

Materials and Methods

Animals and HD model
Thirty male’s adult Wistar rats with weights ranging 

from 200–220 g were obtained from the Laboratory Animal 
Center of Shahid Beheshti University of Medical Sciences 
(Tehran, Iran). The animal experiment conducted received 
approval from the Shahid Beheshti University’s Medical Re-
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search Ethics Committee (IR.SBMU.AEC.1401.054). The rats 
were placed in cages, maintaining constant humidity and 
temperature at 22°C, following 12-hour light and 12-hour 
dark cycle. All rats were randomly divided into three groups 
as follows: control (n=10), HD (n=10), and HD+Apelin-13 
(n=10). To initiate the development of HD in these animals, 
all rats in the HD and HD+Apelin-13 (Sigma-Aldrich) 
groups were administered intraperitoneal injections of 3-NP 
for duration of five consecutive days (30 mg/kg, Sigma-
Aldrich).

Rotarod test for evaluating motor coordination
One week before the initiation of the experiment, daily 

sessions of the training trial were conducted. The rotarod 
performance assessment took place consistently over a pe-
riod of four weeks subsequent to the final administration 
of 3-NP on a designated day each week. Throughout the 
trial, animals were positioned on the accelerating cylinder, 
ranging 4–40 rpm, with individual testing session lasting 
300 seconds. The trial was halted if the rat dislodged from 
the rods, clung to the device, or completed two consecutive 
turns. Ultimately, the recorded parameter was the maximum 
duration that each rat successfully performed the task.

Locomotion tracking apparatus: open field and 
elevated plus maze

To evaluate both locomotor activity levels and anxiety 
across all experimental groups, an open field test was per-
formed subsequent to the final injection of 3-NP. This test 
involved placing the animals into a square field measuring 
90 cm in both height and length.

At the start of the test, rat was located in one angle of the 
apparatus. The camera (Ethovision; Noldus), situated on the 
ceiling above the open field arena, automatically recorded 
the total distance covered by the animals. Ethovision soft-
ware (version 7) facilitated data acquisition, with recording 
concluding after 5 minutes, after which the rats were all 
returned back to designated cages. Additionally, the field 
underwent cleaning and drying after each trial. To minimize 
the potential impact of unexpected disruptive environmental 
factors, behavioral tests were carried out in a serene, enclosed 
setting. The animals’ anxiety levels were expressed by de-
termining the duration they spent in the center or corner of 
the apparatus. The elevated plus maze, which is a common 
behavioral test in rats can be used to measure anxiety-like 
behavior. The elevated plus maze comprises a raised struc-

ture with two open arms and two enclosed arms. The rat is 
introduced into the central area of the maze and permitted 
unrestricted exploration for a set period of time, typically 
around 5–10 minutes.

Anxiety-like behavior is measured based on the rat’s ten-
dency to avoid the open arms, which are more exposed and 
therefore perceived as riskier or threatening. Rats that exhibit 
higher levels of anxiety will spend more time in the enclosed 
arms and less time in the open arms.

Electromyography after sciatic nerve stimulation and 
compound muscle action potential recording

Rats were anesthetized via intraperitoneal injection of 
xylazine (at a dosage of 8 milligrams per kilogram) as well as 
ketamine hydrochloride (at a dosage of 60 milligrams per ki-
logram). Initially, the rat’s right hind limb underwent shav-
ing and thoroughly cleansing with Betadine. A longitudinal 
incision of 3 centimeters was created on the posterior part of 
the thighs, stretching from the rat’s greater trochanter site to 
the knee. Subsequently, in order to clearly expose and acti-
vate the sciatic nerve within the gastrocnemius muscle, the 
dissection focused on isolating the muscles extending from 
the rat’s gluteus maximus muscle to the biceps femoris mus-
cle. Careful application of forceps avoided any harm to the 
nerve exposed, making it accessible. The sciatic nerve was 
then carefully isolated from the surrounding connective tis-
sue, and electrodes for stimulation were positioned beneath 
it. Two monopolar electromyography (EMG) needle elec-
trodes were positioned parallel to each other, maintaining a 
distance of 7 mm, as stimulation electrodes. The electrodes 
used for recording were insulated, except for the distal part, 
the sciatic nerve was subsequently subjected to stimulation, 
with an amplitude of 1 A, a frequency of 0.2 Hz, and lasting 
for a duration of 100 seconds. Concurrently, the compound 
muscle action potential (CMAP) assessed the overall electri-
cal activity of gastrocnemius muscle from the stimulated 
limb. The CMAP parameter, specifically latency, was con-
sidered. Following the procedure, the incision was stitched 
closed, and the rats were then placed back to their designated 
cages, being monitored until they were completely recovered.

Tissues preparation for striatal volume estimation
The brain tissue specimens underwent fixation within 

formalin (10%) for a period of seven days. Subsequently, se-
quential coronal sections with a thickness of 10 µm were cre-
ated and underwent hematoxylin and eosin (H&E) staining. 
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Systematic sampling technique was used to randomly choose 
sample data (20 sections) for each individual animal that 
represents a population.

Quantifying the total count of neuron and glial
Cavalieri’s principle was used to evaluate total striatal 

volume. The density of neurons and glial cells (Nv) in the 
striatum was determined by the optical dissector technique, 
as per the following equation:

Nv=∑Q/∑P×h×a/f×t/BA:
In the given equation, ΣQ represents the total nuclei num-

ber, h denotes the dissector’s height, Σp stands for the overall 
count of frames, a/f represents the area of each frame, BA is 
the tissue section thickness, and t signifies the actual thick-
ness of section [20].

Immunohistochemistry
Rats underwent anesthesia using chloral hydrate and 

subsequently underwent trans-cardial perfusion with saline, 
which is followed by perfusion with a fixative consisting of 4% 
paraformaldehyde in 0.1 M phosphate-buffered saline (PBS) 
(Sigma-Aldrich). Subsequently, the rat’s brains were ex-
tracted and immersed in the fixation solution with the same 
formula for a duration of 24 hours. The tissues underwent 
dehydration via multiple ethanol baths of varying concentra-
tions to eliminate water content and were then embedded in 
paraffin waxes. The microtome was utilized to cut tissues 
into sections of 5 μm thickness. Following this, the tissue 
sections embedded in paraffin and fixed with formalin were 
then treated to remove the paraffin and hydrated. For the 
purpose of immunohistochemistry, the primary antibody, 
were diluted within PBS buffer (Sigma-Aldrich) having 0.3% 
Triton X-100 (Sigma-Aldrich) and supplemented 1% bovine 
serum albumin (Merck). Tissues were subjected to overnight 
primary antibody incubation at 4°C against GFAP (Abcam) 
and inflammatory factor (Iba-1, Abcam) (dilution concen-
trations 1:100). In the subsequent step, the sections under-
went incubation with the avidin-biotin complex, followed by 
incubation with 3,3-diaminobenzidine tetrahydrochloride 
(0.05%) and hydrogen peroxide (0.03%) within 0.05 M Tris-
buffer (pH 7.6). The positive areas associated with GFAP and 
Iba-1 antibodies were quantified. By using Image J software, 
positive cells in groups were measured. The threshold was 
adjusted, and examination was done for totally selected im-
ages. The mean±SD of the final data was described [19].

Reactive oxygen species assay
The measurement of reactive oxygen species (ROS) fol-

lowed the procedures outlined by Keston and Brandt (1965) 
with some level of optimization. After brain dissection, in 
order to achieve a 5 mg/ml tissue concentration, the tissue 
solution was further diluted at a ratio of 1:10 in the buffer. 
Subsequently, the brain solution was transferred into 24-
well plates (0.45 ml/well) and left at 25°C for a period of 5 
minutes. During this period, with the aim of incorporat-
ing 2’-7’-dichlorodihydrofluorescein diacetate (DCFH-DA) 
(Sigma-Aldrich) into any membrane-bound vesicles, 5 ml of 
DCFH-DA (final concentration of 10 mM) was pipetted into 
individual well, and subseuqntly plates were left at 25°C for 
15 minutes. Esterases cleaved the diacetate group, and sub-
sequent to the preincubation, 50 ml of Fe was pipetetd to the 
wells. Following a 30-minute incubation, DCFH underwent 
oxidation, leading to the generation of a fluorescent product, 
dichlorofluorescein, which was subsequently measured by 
fluorescence spectrophotometer. The concentration of pro-
teins in tissue solution was assessed via Bradford’s method 
using a commercial kit [21].

Measurement of reduced glutathione content and 
glutathione disulfide

The working reagent, 5,5’-dithiobis (DTNB) (Sigma-
Aldrich), composed of 50 μl of DTNB, 100 μl of Tris (Sigma-
Aldrich), and 840 μl of distilled water, was quantified using a 
spectrophotometer. Subsequently, 10 μl of tissue-lysed buffer 
was combined with 990 μl of the DTNB reagent, thoroughly 
mixed, and left to incubate at room temperature for 5 min-
utes. Concentration of glutathione (GSH) were quantified in 
microliters. DTNB, known as Ellman’s reagent, was utilized 
for the detection of thiol compounds, enhancing the sensi-
tivity of total GSH detection through a recycling reaction. 
The yellow-colored product, 2-nitro-5-thiobenzoic acid, gen-
erated from the reaction, enabled the quantification of GSH 
absorption in a sample by measuring absorbance at 412 nm 
[21].

Data analysis
Numerical results are presented as mean±standard er-

ror of the mean. Variations among groups were examined 
through one-way ANOVA, following by Tukey’s test. A sig-
nificance level of P<0.05 was considered statistically signifi-
cant.
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Results

Rotarod result
The rotarod test was performed to evaluate the effect of 

Apelin-13 on motor coordination after induction of HD in 
rats. The motor coordination was significantly decreased 
in the HD group in comparison with the control group 
(P<0.001). In contrast, the rotarod scores (latency to fall) 
increased significantly in the HD+Apelin group in compari-

son with the HD group (P<0.001). Indeed, after the intra-
peritoneal administration of Apelin-13, motor coordination 
significantly improved over a period of 4 weeks, with notable 
enhancement observed, particularly during the second week 
(Fig. 1).

EMG result
To assess the impact of Apelin-13 on muscle activity, EMG 

was conducted. The EMG latency increased in the HD group 
compared to the control group (P<0.001). However, follow-
ing Apelin-13 injection, the latency decreased compared 
to the HD group (P<0.05). Intraperitoneal management of 
Apelin-13 demonstrated a beneficial effect on muscle activity 
recovery by reducing EMG latency (Fig. 2).

Open field and elevated plus maze test
The elevated plus maze test serves as a tool to evaluate 

anxiety-like behavior in animal models of the disease. Re-
sult showed that rats in HD group showed that increased 
anxiety-like behavior open arm time (OAT%) and open arm 
entry (OAE) on the elevated plus maze in comparison with 
control group (P<0.001). This is believed to stem from dys-
function in brain areas responsible for modulating anxiety 
and fear responses, notably the amygdala and prefrontal 
cortex, both of which are impacted by HD. The open field 
test is usually used for behavioral studies, motor deficits and 
anxiety and depression in rats. This test is very useful and ef-
fective in studying and evaluating the effects of anti-anxiety 
and depression drugs, and the reactions of motor organs to 
substances such as drugs, as well as behavioral reactions. 
The result of open field showed that 3-NP administration 
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significant decrease in distance travelled and time in center 
(P<0.001) (Fig. 3).

Reactive oxygen species, glutathione, glutathione 
disulfide result

According to the study results, 3-NP injections led to a 
significant increase in ROS and glutathione disulfide (GSSG) 
concentration in the striatum compared to the control group 
(P<0.001). However, following HD, the administration of 
Apelin-13 resulted in a notable decrease in ROS and GSSG 
concentration. The graphs showed that HD group decreased 
GSH concentration compared with control group (P<0.001). 
In contrast, the result indicated that GSH concentration led 
to significant increase in HD+Apelin-13 group in compari-

son with the HD group. This test indicated the antioxidant 
effects of Apelin-13 following HD induced (Fig. 4).

Histology and stereology
According to the stereological analysis, the numerical 

densities of glial and neurons within the striatum were as-
sessed to gauge the neuroprotective impact of Apelin-13 on 
neuronal density. The outcomes revealed a significant in-
crease in the numerical density of glial cells in the striatum 
and a considerable decrease in neurons after 3-NP injections. 
Conversely, there was a notable decrease in the total count 
of glial cells and a significant increase in neurons in the 
HD+Apelin-13 group (Fig. 5).
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Immunohistochemistry (GFAP, Iba-1)
GFAP, a type-III intermediate filament, serves as a cell-

specific marker distinguishing astrocytes from other glial 

cells. On the other hand, Iba-1 acts as a calcium-binding 
protein specific to microglia/macrophages. A key indicator 
of the brain’s response in inflammatory conditions is the ac-
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tivation and proliferation of microglia, referred to as micro-
gliosis. Immunohistochemistry results shown a significant 
increase in the concentration of GFAP and Iba-1-positive 
cells in the striatum of the HD group compared to the con-
trol group (P<0.001). However, there was a notable decrease 
in the expression of GFAP and Iba-1 in the HD+Apelin-13 

group compared to the HD group (P<0.001), indicating re-
ductions in astrogliosis and microgliosis (Figs. 6, 7).

Discussion

The result of this research showed that Apelin-13 exhibits 
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a positive impact on the therapy of HD. Furthermore, it has 
been observed that various tissues of patients with HD, in-
cluding plasma, postmortem brain tissue, lymphoblasts, and 
cerebrospinal fluid, demonstrate increased oxidative dam-
age [22, 23]. It seems that Apelin-13, causes recovery in mo-
tor function with neuroprotective effects, and prevents cell 
death. In addition, the analysis of the EMG test showed that 
muscle nerve function in the Apelin-13 group is better than 
the HD group. The rotarod test in our investigation shows 
that better motor recovery is observed in the group having 
Apelin-13 treatment compared to the HD group. So, Apelin 
shielded hippocampus neurons from excitotoxicity caused 
by NMDA receptors [24]. In these neurons, the phosphoryla-
tion of Akt on certain residues and Raf /ERK1/2 most likely 
caused the impact. It was decided that Apelin-13 should be 
further researched as a possible neuroprotectant against hip-
pocampus damage since. The Apelin/APJ signaling pathway 
likely serves as an intrinsic survival response for neurons. 
On the other hand, other studies failed to pinpoint how 
Apelin-induced myocardial protection involved the PI3K/
Akt pathway [25]. It was proposed that Apelin actions might 
involve other signaling pathways besides Akt/ERK1/2 genes. 
However, experimental data are still needed to support this 
hypothesis [26, 27]. Cell counting in immunohistochemis-
try against the marker Iba-1, a specific marker of microglia 
cells, shows that treatment with Apelin-13 can reduce mi-
crogliosis and as a result, causes a reduction in cell death. 
There is growing evidence that astrocytes from different 
neurodegenerative disorders include intracellular aggregates 
like Syn or HTT. Additionally, these aggregates are known 
to impair regular astrocytic activity, which has a toxic effect 
on neurons. IFN and tumor necrosis factor-α (TNF-α), two 
pro-inflammatory cytokines and chemokines, are crucial in 
activating astrocytes and microglia [28]. In exchange, it has 
been demonstrated that activated microglia are a significant 
biological source of inflammatory and cytotoxic substances, 
including TNF and interleukin-1 (IL-1), which can cause 
the death of vascular and neuronal cells. Based on a study, 
neuroinflammation is implicated in several neurological 
illnesses [29]. Further, by halting the flow of inflammatory 
cytokines into the brain, Inhibition of the hepatic NLRP3 
inflammasome inhibits DA neuronal degeneration. It ap-
pears that inflammation negatively affects neurodegenera-
tive diseases. According to several lines of research [30, 31], 
Apelin has an anti-inflammatory impact, it has been shown 
that Apelin-13 treatment reduces activation of NLRP3 in-

flammasome and the secretion of IL-6, IL-1, and TNF [32]. 
Furthermore, by reducing inflammation, the loss of APLN 
hastens the development of increased systolic dysfunction 
and heart failure [33]. TNF and IL-6 production are inhib-
ited by APJ antagonists [34, 35]. Similar to this, Apelin-13 
appears to prevent neurological impairments following an 
ischemic stroke by reducing inflammation [36, 37]. Apelin’s 
ability to reduce inflammation is well-established [16]. Im-
munohistochemically analysis against the astrocytic marker 
GFAP shows a decreased astrogliosis in the Apelin-13 group. 
HD is caused by the HTT protein-encoding gene that causes 
the condition. In addition to increasing the protein’s aberrant 
function, the mutant HTT also decreases its normal function 
[38]. Exploring the interplay of the Apelin/APJ molecular 
pathway in HD, despite the absence of direct evidence im-
pacting HTT proteins, is crucial considering the prodromal 
molecular events in the condition. Notably, the mutant HTT, 
a biomarker for HD, serves as an autophagic substrate, and 
autophagy inducers promote its clearance [39]. Apelin has 
the potential to expedite the breakdown of HTT via trigger-
ing the cellular autophagy process. Moreover, ferroptosis, a 
process involving lipid metabolism, iron metabolism, and 
oxidative stress, occurs as a promising healing target for 
neurodegenerative disease [40]. Apelin-13 can lead to iron 
accumulation inside the mitochondria thereby triggering 
ferritinophagy [41]. The Apelin/APJ system, specifically Ela-
bela, can contribute to ferroptosis via influencing the IL-6/
STAT3/GPX4 signaling pathway. This process involves scav-
enging HTT and promoting ferroptosis, suggesting a poten-
tial avenue for future treatment strategies in HD [42]. Apelin 
inhibits the TNF/NF-B pathway, which significantly impacts 
the delay of HD progression. neuronal death brought on by 
HTT poisoning in HD fosters inflammation [43]. HD patho-
genesis in astrocytes is caused by an increase in the p65-
mediated inflammatory response [44]. XPro1595, a human 
TNF variant lacking TNF receptor-binding activity, has been 
shown to improve motor function and reduce the quantity of 
mutant HTT aggregates in R6/2 mice [45]. TNF activates NF-
κB. Neurodegeneration brought on by mutant HTT may be 
caused by abnormal NF-B activation [46]. In medium-sized 
spiny neurons, the suppression of IkappaB kinase, a crucial 
NF-B regulator, decreases mutant HTT-induced toxicity [47]. 
According to growing evidence [48], exogenous and endoge-
nous Apelin exhibit the ability to inhibit the NMDA-induced 
rise of TNF levels within the retina. Apelin-13 not only ham-
pers the generation of ROS but also possesses the capability 
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to thwart the initiation of the NF-B pathway, as evidenced in 
both a mouse lung injury [49]. Therefore, it is plausible that 
Apelin inhibits the growth of HD by obstructing the TNF/
NF-B pathway [16].

In conclusion, Apelin-13 exhibits promising therapeutic 
potential for HD by effectively managing oxidative stress, in-
flammatory factors, and gliosis processes, while simultane-
ously enhancing motor function. Considering the interaction 
of Apelin with the HTT protein in HD, even in the absence 
of direct evidence, emphasizes the importance of exploring 
the prodromal molecular events in the disease. Furthermore, 
Apelin displays anti-inflammatory properties, activation and 
the secretion of pro-inflammatory cytokines and capabil-
ity to interrupt the flow of inflammatory cytokines into the 
brain, aligning with its overall anti-inflammatory impact.
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